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Abstract: 1,2,3-triazoles are versatile building blocks with growing interest in medicinal chemistry.
For this reason, organic chemistry focuses on the development of new synthetic pathways to obtain
1,2,3-triazole derivatives, especially with pyridine moieties. In this work, a novel series of 1,5-
disubstituted-1,2,3-triazoles functionalized with pyrimidine nucleobases were prepared via 1,3-
dipolar cycloaddition reaction in a regioselective manner for the first time. The N1-propargyl
nucleobases, used as an alkyne intermediate, were obtained in high yields (87–92%) with a new
two-step procedure that selectively led to the monoalkylated compounds. Then, FeCl3 was employed
as an efficient Lewis acid catalyst for 1,3-dipolar cycloaddition between different aryl and benzyl
azides and the N1-propargyl nucleobases previously synthesized. This new protocol allows the
synthesis of a series of new 1,2,3-triazole derivatives with good to excellent yields (82–92%). The
ADME (Absorption, Distribution, Metabolism, and Excretion) analysis showed good pharmacokinetic
properties and no violations of Lipinsky’s rules, suggesting an appropriate drug likeness for these
new compounds. Molecular docking simulations, conducted on different targets, revealed that two of
these new hybrids could be potential ligands for viral and bacterial protein receptors such as human
norovirus capsid protein, SARS-CoV-2 NSP13 helicase, and metallo-β-lactamase.

Keywords: 1,2,3-triazoles; nucleobases; Lewis acid; click chemistry; molecular docking; ADME

1. Introduction

The synthesis of triazole compounds, such as 1,2,3- and 1,2,4-triazoles, is of interest
due to their versatility and usefulness in several fields including agriculture [1,2], mate-
rial sciences [3,4], chemistry [5–7], as well as medicine [8–10]. In particular, the use of
1,2,3-triazoles as potential pharmacophores was intensively investigated. Thanks to their
ability to form various non-covalent and dipole–dipole interactions, they were tested
towards different biological targets [11]. From a synthetic point of view, 1,2,3-triazoles
derivatives have attracted considerable attention after the independent discoveries of
Meldal and Sharpless in the early 2000s, which allowed the regiospecific synthesis of
1,4-disubstituted 1,2,3-triazoles via click chemistry [12,13]. Furthermore, in 2005, Zhang
and co-workers showed that it was also possible to attain the regioselective synthesis of
1,5-disubstituted 1,2,3-triazoles by changing copper to ruthenium [14].

Other transition metal catalysts (Au, Ir, Ni, Ag) were tested [15], but despite the huge
efforts, the employment of heavy metals in the synthesis restricts their application due to
their hazardous nature, toxicity, and high cost. In recent years, great attention was paid to
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the development of copper- and ruthenium-based alternative routes, and different protocols
were developed [16]. Besides 1,2,3-triazoles, natural and modified nucleosides are another
class of heterocyclic compounds with widespread applications as pharmaceutically active
compounds [17,18] and diagnostic probes [19]. Considering the numerous advantages of
using both triazoles and nucleosides as building blocks in drug discovery, many researchers
synthesized nucleosides containing the triazole moiety [20,21]. Starting from the discovery
of the broad-spectrum antiviral compound Ribavirin I (Figure 1), in which a 1,2,4-triazole
was used as a nucleobase, different new hybrids were designed and tested, showing
antiviral and/or antitumor activity. These nucleoside analogues were characterized by
the introduction of a triazole group in place of the nucleobase I [22], or the sugar moiety
II [23], as a linkage between them III [24], and as a modification group of the sugar IV [25]
(Figure 1).
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Figure 1. Some reported anticancer agents bearing triazole, nucleobase, and/or glycoside moieties.

To date, only a few examples of 1,4-disubstituted 1,2,3-triazole nucleoside derivatives
were synthesized. These compounds were tested as corrosion inhibitors for steel [26],
against HCV (Hepatitis C virus) [23], and against influenza virus A (H3N2) [27]. How-
ever, to the best of our knowledge, there have been no reported synthetic efforts toward
1,5-disubstituted analogues.

In this work, considering our experience in the development of alternative synthetic
routes catalyzed by Lewis acids [28,29] and cycloaddition reactions [30,31], we report
the synthesis of new 1,5-disubstituted 1,2,3-triazole derivatives containing pyrimidine
nucleobases in high yields and a regioselective way. All of the triazole derivatives were syn-
thesized starting from different aryl azides and non-commercial N1-propargyl pyrimidine
nucleobases using a common Lewis acid catalyst. In detail, iron(III) chloride was selected as
a suitable catalyst because of its low price, easy availability, sustainability, nontoxicity, and
environmentally friendly characteristic [32,33]. Moreover, the use of N1-propargyl pyrimi-
dine nucleobases allows the introduction of a methylene bridge at C-5 of the triazole, which
could mimic the behavior of “fleximers”, a kind of nucleoside analogue characterized by
enhanced conformational freedom [34]. The pharmacokinetic properties of the synthesized
derivatives were predicted through ADME (Absorption, Distribution, Metabolism, and
Excretion) analysis to evaluate the medicinal chemistry friendliness. Furthermore, an in
silico screening was performed towards selected receptors from the Protein Data Bank,
suggesting biological potential for our products.

2. Results and Discussion
2.1. Chemistry

N1-propargyl nucleobases are important starting materials for the synthesis of nucle-
oside analogues with biological activity [35]. Usually, propargyl nucleobases are synthe-
sized in a one-step reaction between the appropriate nucleobase and propargyl bromide
under basic conditions [36] or employing an intermediate bis(trimethylsilyl)pyrimidine
nucleobase using N,O-bis(trimethylsilyl)-acetamide (BSA) [37]. Unfortunately, the first
methodology yields the products with low selectivity [38] because a mixture composed
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of N1-monoalkylated and N1,N3-dialkylated pyrimidines is obtained, while the second
approach results in long reaction times and low yield [26]. With this in mind, selective
nucleobase propargylation is necessary, and, due to the feasibility of performing selective
alkylation at the N-1 position of pyrimidine nucleobases, the propargylation is performed
in two-reaction steps via O-protection by a transient group, as shown in Scheme 1.
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Here, we developed a methodology that involves the N1-selective propargylation of
bis(trimethylsilyl)pyrimidine intermediates (4–6) to prepare compounds 7–9. Thus, pyrimi-
dine nucleobases 1–3 were treated under an inert atmosphere with hexamethyldisilazane
(HMDS), trimethylsilyl chloride (TMS-Cl), and (NH4)2SO4 to give the silylated nucleobases
4–6, which were used without further purification and isolated by under vacuum evapora-
tion of HMDS. In situ propargylation of 4–6, conducted in dry acetonitrile at reflux under
an inert atmosphere, furnished the desired products 7–9 with excellent reaction yields and
in a regioselective way because only N-1 monosubstituted nucleobases were observed in
all cases.

With compounds 7–9 in hand, we then performed a Lewis acid-catalyzed azide-alkyne
1,3-dipolar cycloaddition reaction to generate a series of 1,5-disubstituted 1,2,3-triazole
derivatives of nucleobases in a regioselective way.

To begin, we chose the cycloaddition reaction between 1-propargylthymine 7 and
phenyl azide 10 in the presence of Lewis acid catalysts as the model system to optimize the
reaction conditions (Scheme 2). The results are reported in Table 1.
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Firstly, the reaction between 1-propargylthymine 7 and phenyl azide 10, in a 1:2 ratio,
was performed with 20 mol% Er(OTf)3 as the catalyst and heated at 60 ◦C both in CH2Cl2
(Table 1, entry 1) and THF (Table 1, entry 2). In both cases, no product formation was
observed after 24 h of time reaction. An increase in temperature to 100 ◦C favored a slight
formation of the product with a yield of 15% (Table 1, entry 3). Changing THF to CH3CN
allowed a small yield increase in 24 h (Table 1, entry 4). Better results were obtained by
raising the temperature to 120 ◦C (Table 1, entry 5), and also using nitromethane as a
solvent (Table 1, entry 6). However, the use of DMF as a solvent and Er(OTf)3 as the catalyst
at 120 ◦C provided good yields in only 8 h (Table 1, entry 7). At this point, a screening of
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different Lewis acids was performed (Table 1, entries 8–11) and the best reaction conditions
were found when FeCl3 was used as the catalyst (Table 1, entry 11), leading to 88% yield
in 8 h. The role of the catalyst was remarkable since it selectively led to one regioisomer,
corresponding to the 1,5-disubstituted 1,2,3-triazole 14a. However, the regioisomer 14b
was also isolated and characterized by 1H NMR and 13C NMR, and an 88:12 ratio was
calculated by 1H NMR analysis of the reaction crude (see Supplementary Materials). In
fact, without any catalyst, reagents 7 and 10 under the same reaction conditions gave the
1,5-disubstituted triazoles 14 in low yield after a long reaction time (Table 1, entry 12) and a
mixture of the 1,5-disubstituted/1,4-disubstituted products was observed in a 63:37 ratio.
This last result suggests that the Lewis acid catalyst accelerates the reaction by increasing the
electrophilicity of the alkyne group through coordination. Although the iron(III) chloride
efficacy as a catalyst in an eliminative azide–olefin cycloaddition was already demonstrated
for the synthesis of 1,5-disubstituted triazoles [39], we were delighted to observe such
regioselectivity. Moreover, a comparison with classical cycloaddition reaction conditions
was made in toluene without any catalyst. A regioisomer mixture in a 60:40 ratio was
obtained in low yield after a long reaction time (Table 1, entry 13). The addition of a catalyst
slightly increased the yield without significantly improving regioselectivity (Table 1, entry
14). Finally, the 1,3-dipolar cycloaddition reaction was carried out in [mPy](OTf) ionic
liquid (Table 1, entry 15), prepared as reported in the literature [40], with the purpose
of hypothetically recycling the solvent. Unfortunately, due to the high solubility of the
pyrimidine in the ionic liquid, it was not possible to use the latter as a solvent because it
was impossible to purify the product by simple liquid–liquid extraction.

Table 1. Optimization of reaction conditions of azide-alkyne 1,3-dipolar cycloaddition.

Entry a Solvent Catalyst T (◦C) Time (h) Yield (%) b 14a:14b Ratio c

1 CH2Cl2 Er(OTf)3 60 24 - -
2 THF Er(OTf)3 60 24 - -
3 THF Er(OTf)3 100 24 15 n.c.
4 CH3CN Er(OTf)3 100 24 30 n.c.
5 CH3CN Er(OTf)3 120 24 53 80:20
6 CH3NO2 Er(OTf)3 120 24 50 75:25
7 DMF Er(OTf)3 120 8 75 82:18
8 DMF Yb(OTf)3 120 24 70 85:15
9 DMF ZnCl2 120 24 71 77:23

10 DMF CeCl3 120 24 72 80:20
11 DMF FeCl3 120 8 88 88:12
12 DMF - 120 24 56 63:37
13 Toluene - 120 24 40 60:40
14 Toluene FeCl3 120 24 48 70:30
15 [mPy](OTf) FeCl3 120 24 - -

a Reaction Conditions: 7 (1 eq), catalyst (0.2 eq), 10 (2 eq), in 8 mL of solvent for the appropriate time. b Isolated
yield for regioisomer 14a. c Regioisomeric ratio calculated from 1H NMR analysis of the reaction crude on the
C6H proton of the nucleobase. n.c.= not calculated.

Once the reaction conditions were optimized, we extended the protocol to various
N1-propargyl nucleobases 7–9 and different azides 10–13 (Scheme 3, Table 2).

As shown in Table 2, the N1-propargyl nucleobases 7–9 showed a high reactivity
towards the iron(III)-catalyzed 1,3-dipolar cycloaddition, and high reaction yields were
obtained. Conversely, the reactivity of the azides depended on the nature of the aryl or
alkyl group. In fact, benzyl azide 11 provided products 17a–19a (Table 2, entries 4–6) with
slightly lower yields than phenyl azide 10 (Table 2, entries 1–3).

Aromatic azides 10, 12, and 13 exhibited different reactivities depending on the substi-
tution of the aromatic ring. In fact, the presence of a strong electron-withdrawing group
(-NO2) at the para position reduced the nucleophilicity of the azide 12 (Table 2, entries 7–9),
while the presence of the electron-donor group (CH3O−) at the same position increased
its nucleophilicity (azide 13, Table 2, entries 10–12). Hence, the reaction yield for the re-
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gioisomer a, as an isolated compound, was excellent in all cases. In addition, only a single
regioisomer was obtained for all synthesized compounds, proving the high regioselectivity
of the iron(III)-catalyzed reaction.
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Table 2. Substrate scope for the synthesis of 1,5-disubstituted 1,2,3-triazoles 14–25.

Entry a Nucleobase R1 Azide R2 Product Yield b(%) a:b Ratio c

1 7 CH3 10 Ph 14 88 88:12
2 8 H 10 Ph 15 90 88:12
3 9 F 10 Ph 16 88 87:13
4 7 CH3 11 Bn 17 85 87:13
5 8 H 11 Bn 18 87 88:12
6 9 F 11 Bn 19 84 86:14
7 7 CH3 12 (4-NO2)Ph 20 83 87:13
8 8 H 12 (4-NO2)Ph 21 86 86:14
9 9 F 12 (4-NO2)Ph 22 82 85:15

10 7 CH3 13 (4-
CH3O)Ph 23 90 89:11

11 8 H 13 (4-
CH3O)Ph 24 92 89:11

12 9 F 13 (4-
CH3O)Ph 25 89 88:12

a Reaction Conditions: 7 (1 eq), catalyst (0.2 eq), 10 (2 eq), in DMF for the appropriate time. b Isolated yield for
regioisomers 1,5-disubstituted a. c Regioisomeric ratio calculated from 1H NMR analysis of the crude on the C6H
proton of the nucleobases.

Finally, we proposed a possible catalytic reaction mechanism for the reaction between
7 and 10 as illustrated in Scheme 4. The first reaction step is the coordination of iron(III)
chloride to the alkyne group of N-propargylthymine 7, generating intermediate a with
increased electrophilicity. Activated dipolarophile a reacts with phenyl azide 10 through a
concerted 1,3-dipolar cycloaddition reaction to give intermediate c. Subsequent heterocycle
aromatization of c gives product 14 and allows catalyst turnover.

2.2. Molecular Docking

Finally, to evaluate the potential biological activity of our products, molecular docking
simulations were carried out using GOLD (CCDC Discovery) [41] and the ChemScore
scoring function [42]. An in silico study was performed over 16 targets for the full set of
the compounds synthesized in this work (see Supplementary Materials for further details).
Compounds 20a and 21a were the best ranked ones (Figure 2), matching or exceeding in
some cases the score of the co-crystallized ligand in the original structure, suggesting that
these compounds might be able to bind the selected targets. Such targets have been at
the center of great attention in the last years due to their possible implication in different
pathologies. Human norovirus is one of the major causes of nonbacterial gastroenteritis
in humans, and targeting the protruding P domain dimer (P-dimer) of a GII.10 Norovirus
strain (Figure 2A) could be a successful strategy in drug discovery [43]. Eosinophil-derived
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neurotoxin (EDN) (Figure 2B) is a member of the Ribonuclease A (RNase A) superfamily
involved in inflammatory disorders and the immune response system [44]. Metallo β-
lactamases (Figure 2C) are a family of enzymes employed by bacteria to hydrolyze β-lactam
drugs as carbapenems, determining the resistance to antibiotics [45]. Hence, the discovery
of new inhibitors capable of blocking such receptors could be of interest in combating
bacterial infective diseases. As for the target reported in Figure 2D, SARS-CoV-2 NSP13
helicase was described by Newman et al. [46] in 2021 as a potential target for new antivirals
due to its essential role in viral replication and its high sequence conservation.
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Binding interactions mostly involve hydrogen bonds with the protein backbone or
with charged residues, which are in general very much favored from the energetic point of
view and capable of dictating the local structure [47].

2.3. Pharmacokinetics and ADMET Study

The drug-likeness of the newly synthesized hybrids was further evaluated. The
analysis of absorption, distribution, metabolism, and excretion (ADME) was determined in
silico by using the online database ADMETlab 2.0 [48]. As reported in Table 3, all hybrids
expressed good ADME properties. They showed good water solubility and no violation
of the Lipinsky rules of 5 [49]. Although the Caco-2 permeability was not excellent in
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some cases, effective intestinal absorption was found for all compounds, not only with
the ADMETlab 2.0 software but also using the Brain Or IntestinaL EstimateD permeation
method (BOILED-Egg) that evaluates the accessibility of compounds to the gastrointestinal
(GI) tract and blood–brain barrier [50] (Figure 3). The boiled egg model revealed that
all molecules had satisfactory GI absorption and no sufficient permeability across the
blood–brain barrier (BBB), thus indicating good safety for the Central Nervous System
(CNS). Moreover, all compounds had a good clearance rate (excretion rate) from the body.
The encouraging results reported in Table 3 suggest that these compounds could be eligible
as drug candidates, confirming the use of 20a and 21a as potential lead compounds for a
new class of active pharmaceutical ingredients.
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Figure 2. Best docking poses of compounds 14a–25a vs. co-crystalized ligands on selected protein
receptors: (A) Compound 21a bound to human norovirus capsid protein (PDB 6GY9). (B) Compound
20a bound to eosinophil-derived neurotoxin (PDB 5E13). (C) Compound 21a bound to metallo-β-
lactamase (PDB 7OVE). (D) Compound 21a bound to SARS-CoV-2 NSP13 helicase (PDB 7NNG).
Ligands and binding residues are shown as sticks. Non-polar hydrogens have been omitted for clarity.
In the table, the docking scores of compounds 14a–25a and literature ligands were compared. The
green color refers to scores higher than the literature ligands. The orange color refers to scores lower
than the literature ligands. For those cases in which the docking score was higher than literature
ligands the receptors are reported in bold.
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Table 3. Pharmacokinetic properties as predicted in silico by the software ADMETlab 2.0.

ADMET Parameters 14a 15a 16a 17a 18a 19a 20a 21a 22a 23a 24a 25a

Physio-
Chemical
properties

MW 283.29 269.26 287.25 297.31 283.29 301.28 328.28 314.26 332.25 313.31 299.28 317.28
Log P a 0.39 0.044 0.174 0.691 0.368 0.5 0.672 0.286 0.449 0.269 −0.037 0.098
Log S b −2.011 −1.92 −1.97 −2.055 −2.057 −1.98 −2.968 −2.766 −2.845 −2.278 −2.242 −2.208

Medicinal
chemistry

Lipinsky
Violation c No No No No No No No No No No No No

SAscore d 2.456 2.475 2.536 2.468 2.485 2.544 2.613 2.628 2.684 2.471 2.485 2.545

Absorption

Caco-2
permeability e −5.142 −5.444 −5.129 −5.218 −5.573 −5.216 −5.132 −5.409 −5.139 −5.099 −5.287 −5.03

Pgp-
substrate f 0.003 0.001 0.001 0.002 0.001 0.001 0.005 0.001 0.001 0.006 0.002 0.002

HIA g 0.02 0.071 0.021 0.017 0.065 0.15 0.016 0.027 0.023 0.056 0.236 0.053

Distribution
BBB

permeability h 0.566 0.691 0.721 0.187 0.323 0.188 0.36 0.386 0.232 0.372 0.679 0.59

Plasma
Protein

Binding i
59.29% 42.51% 49.03% 66.16% 49.75% 58.27% 75.29% 61.81% 68.17% 70.45% 58.58% 60.93%

Metabolism
CYP2D6

substrate l 0.106 0.102 0.088 0.118 0.111 0.101 0.117 0.114 0.097 0.156 0.152 0.123

CYP3A4
substrate l 0.403 0.272 0.256 0.354 0.257 0.235 0.24 0.175 0.153 0.457 0.286 0.284

Excretion Clearance m 7.411 6.579 8.095 8.509 7.408 9.215 7.473 6.571 8.108 7.412 6.665 8.128

a Log of the octanol/water partition coefficient. Optimal: 0–3. b Log of the aqueous solubility. Optimal:
−4–0.5 log mol/L. c MW ≤ 500; logP ≤ 5; Hacc ≤ 10; Hdon ≤ 5. d The synthetic accessibility score is designed
to estimate ease of synthesis of drug-like molecules. SAscore ≥ 6, difficult to synthesize; SAscore < 6, easy to
synthesize. e Optimal: higher than−5.15 Log unit. f The output value is the probability of being the Pgp-substrate.
g Human Intestinal Absorption. Category 1: HIA+(HIA < 30%); Category 0: HIA−(HIA < 30%); The output value
is the probability of being HIA+. h Blood–Brain Barrier Penetration. Category 1: BBB+; Category 0: BBB−; The
output value is the probability of being BBB+. i Optimal: <90%. Drugs with high protein binding may have a
low therapeutic index. l The output value is the probability of being the substrate. m High: > 15 mL/min/kg;
moderate: 5–15 mL/min/kg; low: <5 mL/min/kg.
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3. Materials and Methods
3.1. General Procedure for Nucleobase Propargylation 7–9

In a three-necked round-bottomed flask, equipped with a bubble condenser and mag-
netic stir bar, the opportune nucleobase 1–3 (39.6 mmol, 1 eq) in dry hexamethyldisilazane
(HMDS, 139 mmol, 3.5 eq) was suspended under nitrogen atmosphere. Subsequently,
trimethylsilyl chloride (8.71 mmol, 0.22 eq) and (NH4)2SO4 (1.98 mmol, 0.05 eq) were
added, and the mixture was stirred at 145 ◦C for 2 h. After completion, the solution was
cooled to room temperature, and the HMDS was evaporated under vacuum. Then, the
obtained silylated nucleobase 4–6 was dissolved in dry acetonitrile (150 mL) without any
further purification. Propargyl bromide (39.6 mmol, 1 eq) was added dropwise at 80 ◦C
for 30 min, and the reaction was stirred under reflux for 12 h. After cooling to room
temperature, acetonitrile was removed under vacuum, and the crude was purified by silica
flash chromatography (eluent mixture CHCl3/CH3OH 8:2) to give a solid product 7–9. For
characterization data, see Supplementary Materials.

3.2. General Procedure for Nucleobase-Containing 1,5-Disubstituted 1,2,3-Triazoles 14a–25a

In a 50 mL two-necked round-bottomed flask equipped with a bubble condenser and
magnetic stir bar, propargyl nucleobase 7–9 (1.52 mmol, 1 eq) was dissolved in DMF (8 mL).
Subsequently, FeCl3 (0.304 mmol, 0.2 eq) and opportune azide 10–13 (3.05 mmol, 2 eq) were
added, and the mixture was stirred at 120 ◦C for 8 h. DMF was removed under vacuum
by generating an azeotrope with toluene, and the obtained crude solid was purified on
a flash silica gel column (eluent mixture: CHCl3/acetone/CH3OH 8:1:1 v/v/v) to obtain
the desired solid product 14a–25a. The configuration of regioisomers was determined by
spectroscopic data reported in Supplementary Materials. Furthermore, to calculate the
regioisomeric ratio, the C6H proton on the nucleobases was chosen for both regioisomers
(see Supplementary Materials).

3.3. Docking Studies

For each receptor, the docking cavity was centered on the binding site of the crystallo-
graphic ligand and allowed to extend in a spherical surrounding volume with a radius of
15 Å. In cases where a metal ion was present at the binding site, the docking cavity was
centered on it, and metal parameters were set to maintain the same coordination number
as that in the crystallographic structure. In the absence of metals, the XYZ coordinates that
defined the center of the cavity were obtained from the position of the co-crystalized ligand,
choosing an atom that was reasonably at the center of the ligand. The number of genetic
algorithm runs was set to 20 for each analyzed ligand. Protein structures were prepared
using UCSF Chimera [51], by reverting selenomethionine to methionine, eliminating alter-
nate locations of side chains, adding hydrogen atoms, assigning appropriate protein atom
types, and removing the co-crystalized ligand and solvent molecules. Crystallographic
ligands were docked after adding hydrogen atoms with UCSF Chimera and without opti-
mizing their geometries. Conversely, the geometries of the screened ligands 14a–25a were
optimized quantum mechanically. Geometry optimizations and frequency calculations for
stationary point characterization were carried out with Gaussian16 [52] using the M06-2X
hybrid functional [53], the 6-31G(d,p) basis set, and ultrafine integration grids. Bulk solvent
effects in water were considered implicitly through the IEF-PCM polarizable continuum
model [54]. As for the potential receptors, 26 targets were initially selected from the Protein
Data Bank (Figure S1). The main selection criterion was the presence of a triazole (i.e., 1,2,3-
and 1,2,4-triazoles) scaffold or structurally similar heterocycles (i.e., imidazoles, thiazoles)
in the crystallographic structure of the ligand–receptor complex. Docking simulations were
performed, keeping the coordinates of the protein fixed while allowing flexibilization of
the ligands around their rotatable bonds.
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3.4. Prediction of Pharmacokinetic Properties

The absorption, distribution, metabolism, and excretion (ADME) analysis and assess-
ment of Lipinski parameters were carried out using the free software “ADMETlab 2.0”
supported by the Xiangya School of Pharmaceutical Sciences, Central South University
ADMETlab 2.0 (2021) https://admetmesh.scbdd.com (accessed on 12 September 2022) [48].
The main properties considered were physical and chemical properties such as molecular
weight, oil/water partition coefficient, and water solubility. Medicinal chemistry param-
eters were evaluated: the synthetic accessibility score (designed to estimate the ease of
synthesis of drug-like molecules) and the violation of Lipinsky’s rules. Absorption was
studied mainly considering the permeability after oral administration (Caco-2 cell per-
meability) and human intestinal absorption (HIA). Among the distribution parameters,
Plasma Protein Binding and blood brain–barrier (BBB) penetration were selected. CYP2D6
and CYP3A4 were selected as key enzymes in the metabolism of the compounds. Further-
more, clearance was evaluated as an excretion parameter. Finally, the Brain Or IntestinaL
EstimateD permeation method (BOILED-Egg) was used to clarify the main distribution
tissue for compounds 14a–25a [50].

4. Conclusions

We have developed a new synthetic approach towards the highly regioselective syn-
thesis of 1,5-disubstituted 1,2,3-triazole derivatives containing pyrimidine nucleobases.
N1-propargyl nucleobases were first prepared in excellent yields through an alternative
route that led only to the N1-monoalkylated derivatives. These alkyne compounds were
characterized and used in a 1,3-dipolar cycloaddition reaction to obtain the 1,2,3 triazole
heterocycles. The 1,5-disubstituted-1,2,3-triazol moiety was obtained in a regioselective
way by using FeCl3 as an inexpensive and non-toxic catalyst. It was demonstrated that this
procedure worked well for different aryl and benzyl azides. Although some differences
were found with aryl azides bearing strong electron-withdrawing and electron-donating
groups, reaction yields ranged from good to excellent in all cases. Finally, compounds
20a and 21a exhibited the best docking scores against four of the selected protein targets,
suggesting potential biologic activity for these scaffolds. In addition, ADMET analysis was
also performed using an in silico online database, which predicted that all hybrids might
have qualified pharmacokinetic parameters and Lipinski’s rule of five properties to claim
their intestinal absorption and good clearance rate.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules27238467/s1, Characterization spectra of the N-propargyl
nucleobases 7–9 (1H NMR–13C NMR–HRMS); Characterization spectra of nucleobase-containing
disubstituted 1,2,3-triazoles 14a, 14b, 15a–25a (1H NMR–13C NMR–COSY NMR–HRMS); Charac-
terization spectra of derivative 21a (HMBC and HSQC NMR); Figure S1. Workflow describing the
approach used to validate the docking protocol and select the target receptors (first series) and to
evaluate the binding capacity of compounds 14a–25a to them.
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