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Dunkl theory on the real line involves some tools such as the Dunkl derivative

Λαf(x) =
d

dx
f(x) +

2α + 1
2

f(x) − f(−x)
x

or the Dunkl exponential Eα(z) that is defined in terms of the Bessel functions. 
Taking α = −1/2 we get Λ−1/2 = d/dx and E−1/2(z) = ez , hence, the classic 
derivative and exponential are particular cases. In recent years, some papers have 
generalized, in a Dunkl sense, number theoretic concepts such as Appell sequences, 
and then they are called Appell-Dunkl sequences; in particular, the so called 
Bernoulli-Dunkl and Euler-Dunkl polynomials have been defined, among others. 
Here we generalize, also in a Dunkl sense, some Hurwitz or Lerch zeta functions 
such as ζ(s, x) =

∑∞
n=0 1/(n + x)s and, in addition, we get properties that relate 

those functions, extended to the s-complex plane and evaluated at negative integers 
s, with Bernoulli-Dunkl and Euler-Dunkl polynomials. One of the results we get for 
the “Dunkl zeta function” ζα(s) is

ζα(1 − s) = Γ(s) cos
(πs

2

) ∞∑
n=1

1
ssn

, Re(s) > 1

(where sn are the positive zeros of the Bessel function Jα+1(x)). This equation 
provides a generalization of the reflection formula of the Riemann zeta function, 
where the function 

∑∞
n=1 1/ssn is playing a similar role as 

∑∞
n=1 1/ns.
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1. Introduction

An Appell sequence {Pn(x)}∞n=0 is a sequence of polynomials defined by a Taylor generating expansion

A(t)ext =
∞∑

n=0
Pn(x) t

n

n! , (1.1)

where A(t) is a function analytic at t = 0 with A(0) �= 0. Since the exponential function ex is invariant 
under the differential operator d/dx, it is easy to show that Pn(x) is a polynomial of degree n and P ′

n(x) =
nPn−1(x). Typical examples of Appell sequences are the Bernoulli polynomials {Bn(x)}∞n=0, the Euler 
polynomials {En(x)}∞n=0, or the probabilistic Hermite polynomials {Hen(x)}∞n=0 that are defined by taking 
A(t) = text

et−1 , 
2ext

et+1 or e−t2/2 respectively (a slight variation is the physicists’ Hermite polynomials {Hn(x)}∞n=0

defined by e−t2e2xt =
∑∞

n=0 Hn(x) t
n

n! ).
The Appell sequences of polynomials have been extended in many ways. One of them consists of changing 

the derivative operator by operators in the context of Dunkl. In [16] and [13], the derivative operator was 
replaced by

Λαf(x) = d

dx
f(x) + 2α + 1

2

(
f(x) − f(−x)

x

)
,

where α > −1 is a fixed parameter (see [17,29]); observe that the case α = −1/2 recovers the classical case 
Λ−1/2 = d

dx . In that setting, an Appell-Dunkl sequence {Pn}∞n=0 is a sequence of polynomials that satisfies

ΛαPn(x) =
(
n + (α + 1/2)(1 − (−1)n)

)
Pn−1(x)

(instead of ΛαPn = nPn−1, the previous definition with a different multiplicative constant in the place of 
n is used for convenience with the notation). The Appell-Dunkl sequences can be written as a generating 
expansion similar to (1.1), namely

A(t)Eα(xt) =
∞∑

n=0
Pn(x) tn

γn,α
,

for a certain function Eα and certain constants γn,α (with E−1/2 = exp and γn,−1/2 = n!); we will see the 
details in Section 2. The first Appell-Dunkl sequence of polynomials studied in the mathematical literature 
were the so called generalized Hermite polynomials; see [29]. In recent years, also the Bernoulli and the Euler 
polynomials (among other Appell families) have been extended to the Dunkl context; see, for instance, [13,
14,18]. These polynomials have proved to be very useful to extend some classical properties to a more general 
context. For instance, the Bernoulli polynomials can be used to find the values of the series 

∑∞
m=1 1/m2k, and 

the Bernoulli-Dunkl polynomials can be used to compute the Rayleigh series 
∑∞

m=1 1/s2k
m , where {sm}∞m=1

are the positive zeros of a Bessel function (note that, essentially, the sine function is a particular case of a 
Bessel function, and the positive zeros of the sine are sm = πm, m ≥ 1, so in this case the corresponding 
Rayleigh series reduces to 

∑∞
m=1 1/m2k).

In the classical case, there is a large class of Appell sequences {Pn(x)}∞n=0 for which there is a function 
H(s, x), entire in s for fixed x with Rex > 0, and satisfying H(−n, x) = Pn(x) for n = 0, 1, 2, . . . For 
example, in the case of Bernoulli polynomials, H is essentially the Hurwitz zeta function ζ(s, x) that for 
Re(s) > 1 is defined as ζ(s, x) =

∑∞
m=0(m + x)−s, and whose analytic extension to the s-complex plane 

satisfies −nζ(1 − n, x) = Bn(x). Another well-known example is the Apostol-Bernoulli polynomials, whose 
corresponding function H is, essentially, the Lerch transcendent function (see [3]). More examples can be 



A. Gil Asensi, J.L. Varona / J. Math. Anal. Appl. 520 (2023) 126870 3
found in [8,9,22]. The papers [24,25] show how this can be done, in a very general way, with the help of the 
Mellin transform 

∫∞
0 f(t)ts−1 dt, and provide many additional examples.

The aim of this paper is to show how to do it in the context of Appell-Dunkl sequences. Here, there are 
two important difficulties. The first one is the size of Eα(t) when t → ±∞. Although Eα(t) is a generalization 
of et to the Dunkl context, it is not true that Eα(t) ∼ et when t → ±∞, but, roughly speaking, Eα(t) ∼ e|t|

(except for α = −1/2). In the above mentioned Mellin transform, a factor e−t in f(t) greatly contributes 
to the convergence of the integral; however, this does not happen with Eα(−t). In the second place, the 
classical translation f(x) �→ f(x +m) becomes a complicate operator in the Dunkl context, and this affects 
the summands of type (x +m)−s of the classical Hurwitz zeta function, which are not so simple in the new 
context.

The organization of this paper is as follows. In Section 2 we give the details of the Dunkl context, and the 
precise definitions of the Appell-Dunkl sequences. Section 3 gives the details of the Dunkl translation. In 
Section 4 we give a general procedure, based on the Mellin transform, to extend an Appell-Dunkl sequence 
{Pn(x)}∞n=0 to an analytic function H(s, x) such that H(−n, x) = Pn(x) (actually, it is a bit different); due to 
the above mentioned difficulties, this is not as general as in the classical case studied in [24], is not valid in the 
whole range of x, and requires some additional hypotheses. This section also studies several particular cases of 
Appell-Dunkl polynomials (Bernoulli-Dunkl, Euler-Dunkl, generalized Bernoulli-Dunkl, generalized Euler-
Dunkl, and generalized Hermite), giving their corresponding Hurwitz-Dunkl zeta functions. In Section 5 we 
study some additional properties of these Hurwitz-Dunkl zeta functions. In particular, we show how these 
functions are connected with series of type 

∑∞
m=1 1/jsm,α (where {jm,α}∞m=1 are the positive zeros of the 

Bessel function of order α), by means of some formulas that resembles Riemann’s functional equation for 
the classical ζ(s) function: if we use ζα to denote the function associated to de Bernoulli-Dunkl polynomials, 
we have

ζα(1 − s) = Γ(s) cos
(πs

2

) ∞∑
m=1

1
jsm,α+1

, Re(s) > 1

(see the details in that section). In Section 6 we study the connection of our results with the analytic 
continuation to the s-complex plane of Zα(s) =

∑∞
m=1 1/jsm,α, which was studied by Hawkins [21]. Finally, 

Section 7 includes some of the technical proofs of the results presented in Section 5.

2. Appell-Dunkl sequences

For α > −1, let Jα denote the Bessel function of order α and, for complex values of the variable z, let

Iα(z) = 2αΓ(α + 1) Jα(iz)
(iz)α = Γ(α + 1)

∞∑
n=0

(z/2)2n

n! Γ(n + α + 1) = 0F1(α + 1, z2/4)

(the function Iα is a small variation of the so-called modified Bessel function of the first kind and order α, 
usually denoted by Iα; see [35] or [28]). Also, again for z ∈ C, take

Eα(z) = Iα(z) + z

2(α + 1) Iα+1(z) = ez 1F1(α + 1/2, 2α + 2,−2z). (2.1)

Following [17] for α ≥ −1/2 and [29] for α > −1, in the real line and with the reflection group Z2, the 
Dunkl operator Λα is defined as

Λαf(x) = d
f(x) + 2α + 1

(
f(x) − f(−x)

)
, (2.2)
dx 2 x
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where f is a suitable function on R. If we want to specify that the variable involved in the Dunkl operator 
is x, we will use Λα,x. For any λ ∈ C, we have

ΛαEα(λx) = Λα,xEα(λx) = λEα(λx). (2.3)

Let us note that, when α = −1/2, we have Λ−1/2 = d/dx and E−1/2(λx) = eλx.
From the definition, it is easy to check that

Eα(z) =
∞∑

n=0

zn

γn,α
, Iα(x) =

∞∑
n=0

x2n

γ2n,α
,

with

γn,α =
{

22kk! (α + 1)k, if n = 2k,
22k+1k! (α + 1)k+1, if n = 2k + 1,

(2.4)

and where (a)n denotes the Pochhammer symbol

(a)n = a(a + 1)(a + 2) · · · (a + n− 1) = Γ(a + n)
Γ(a)

(with a a non-negative integer); of course, γn,−1/2 = n!. From (2.4), we have

γn,α
γn−1,α

= n + (α + 1/2)(1 − (−1)n) =: θn,α. (2.5)

We also define (
n

j

)
α

= γn,α
γj,αγn−j,α

,

which becomes the ordinary binomial coefficient in the case α = −1/2. To simplify the notation we sometimes 
write γn = γn,α and θn = θn,α. For each function A(t) analytic in a neighborhood of t = 0 and with A(0) �= 0, 
we define an Appell-Dunkl sequence {Pn(x)}∞n=0 by means of the generating function

A(t)Eα(xt) =
∞∑

n=0
Pn(x) t

n

γn
(2.6)

(additionally to the papers [2,29] cited in the introduction, Appell-Dunkl sequences have been also con-
sidered, for instance, in [10,11,16]). From this definition, it is not difficult to prove that Pn,α(x) is a 
polynomial of degree n and, moreover, ΛαPn(x) = γn

γn−1
Pn−1(x) (when α = −1/2, this becomes the classical 

P ′
n(x) = nPn−1(x) in the Appell sequences).
Besides the generalized Hermite polynomials that, in the Dunkl context, were studied in [29], we will use 

the so called Bernoulli-Dunkl polynomials, Euler-Dunkl polynomials, and their corresponding generalization 
with an extra parameter.

2.1. Bernoulli-Dunkl polynomials

Following [13], we define the Bernoulli-Dunkl polynomials {Bn,α}∞n=0 by means of the generating function

Eα(xt)
Iα+1(t)

=
∞∑ Bn,α(x)

γn,α
tn. (2.7)
n=0
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Table 1
Scheme that describes the process to transform the definition of the classical Bernoulli and 
Euler polynomials into the definition of the Bernoulli-Dunkl and Euler-Dunkl polynomials 
(and their generalizations of order r). In the classical case, we use the “basic” interval [0, 1], 
the function exp and the factorial n!; in the Dunkl case with α > −1, we must use the 
“basic” interval [−1, 1], the function Eα and γn,α.

Bernoulli �→ Bernoulli-Dunkl Euler �→ Euler-Dunkl

Classical text

et−1 =
∞∑

n=0
Bn(x) tn

n!
2ext

et+1 =
∞∑

n=0
En(x) tn

n!

x �→ x+1
2

text/2et/2

et−1 =
∞∑

n=0
Bn( x+1

2 ) tn

n!
2ext/2et/2

et+1 =
∞∑

n=0
En( x+1

2 ) tn

n!

t �→ 2t 2textet

e2t−1 =
∞∑

n=0
Bn( x+1

2 ) 2ntn

n!
2extet

e2t+1 =
∞∑

n=0
En( x+1

2 ) 2ntn

n!

rewrite 2text

et−e−t =
∞∑

n=0
Bn( x+1

2 ) 2ntn

n!
2ext

et+e−t =
∞∑

n=0
En( x+1

2 ) 2ntn

n!

exp �→ Eα
2tEα(xt)

Eα(t)−Eα(−t) =
∞∑

n=0
B∗

n( x+1
2 ) 2ntn

γn,α

2Eα(xt)
Eα(t)+Eα(−t) =

∞∑
n=0

E∗
n( x+1

2 ) 2ntn

γn,α

rewrite 2(α+1)Eα(xt)
Iα+1(t)

=
∞∑

n=0
B∗

n( x+1
2 ) 2ntn

γn,α

Eα(xt)
Iα(t) =

∞∑
n=0

E∗
n( x+1

2 ) 2ntn

γn,α

Dunkl Eα(xt)
Iα+1(t)

=
∞∑

n=0
Bn,α(x) tn

γn,α

Eα(xt)
Iα(t) =

∞∑
n=0

En,α(x) tn

γn,α

Generalized Eα(xt)
(Iα+1(t))r

=
∞∑

n=0
B

(r)
n,α(x) tn

γn,α

Eα(xt)
(Iα(t))r =

∞∑
n=0

E
(r)
n,α(x) tn

γn,α

To simplify the notation we sometimes write Bn = Bn,α (and γn = γn,α).
The first few Bernoulli-Dunkl polynomials are

B0(x) = 1, B1(x) = x,

B2(x) = x2 − α + 1
α + 2 , B3(x) = x3 − x,

B4(x) = x4 − 2x2 + (α + 4)(α + 1)
(α + 3)(α + 2) , B5(x) = x5 − 2 α + 3

α + 2 x3 + α + 4
α + 2 x.

Some of the properties of these polynomials can be seen in [13].
Before we continue, let us explain why we use “Bernoulli-Dunkl” to name these polynomials. The first 

reason is that

Bn,−1/2(2x− 1)
2n = Bn(x), (2.8)

where {Bn}∞n=0 are the Bernoulli polynomials (for the definition and properties of the Bernoulli polynomials 
see, for instance, [15] or [20]). Indeed, taking into account that

E−1/2(x) = ex, I1/2(x) = sin(ix)
ix

,

the relation (2.8) can be deduced substituting x for 2x − 1, t for t/2 and α for −1/2 in the definition (2.7). 
Here, we must note that the change x �→ 2x − 1 in (2.8) is very natural, because in the reflection group 
Z2, which is key in the standard definition of the Dunkl operator (2.2), the symmetry plays an important 
role, and thus the role of x = 0 and x = 1 on the classical Bernoulli polynomials must be translated to 
the points −1 and 1. In fact, this is the process that is explained in Table 1 (extracted from [14]) to define 
Bernoulli-Dunkl polynomials as an extension to the Dunkl case of the classical Bernoulli polynomials. As is 
shown in the table, this process can be used for other classical polynomials.

Another reason to use the name Bernoulli-Dunkl polynomials for Bn is the role that they play in certain 
sums involving the zeros of the Bessel functions (see [13]), which is a generalization of what happens in the 
case α = −1/2 with the Bernoulli polynomials. This will appear again later in this paper; see Corollary 5.6.
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2.2. Generalized Bernoulli-Dunkl polynomials

In the classical case, the generalized Bernoulli polynomials of order r are {B(r)
n (x)}∞n=0, defined by

(
t

et − 1

)r

ext =
∞∑

n=0
B(r)

n (x) t
n

n! .

They were introduced by Nørlund in 1922 (see [26,27]).
When α > −1 we can also define the generalized Bernoulli-Dunkl polynomials {B(r)

n,α}∞n=0 (or B(r)
n ) of 

order r by means of the generating function

Eα(xt)
Iα+1(t)r

=
∞∑

n=0

B
(r)
n,α(x)
γn,α

tn. (2.9)

In this case, the generalized Bernoulli polynomials and the generalized Bernoulli-Dunkl polynomials are 
related by

B
(r)
n,−1/2(2x− r) = 2nB(r)

n (x).

In the recent paper [19] we can see how the polynomials B(r)
n,α can be used in the context of Appell-Dunkl 

discrete sequences, in the same way that B(r)
n appear in the context of Appell discrete sequences and falling 

factorial polynomials.

2.3. Euler-Dunkl polynomials

We define the Euler-Dunkl polynomials {En,α}∞n=0 of order α > −1 by means of the generating function

Eα(xt)
Iα(t) =

∞∑
n=0

En,α(x)
γn,α

tn.

As usual, we will sometimes denote it only by En, without specifying α. The first few Euler-Dunkl polyno-
mials are

E0(x) = 1, E1(x) = x,

E2(x) = x2 − 1, E3(x) = x3 − α + 2
α + 1 x,

E4(x) = x4 − 2 α + 2
α + 1 x2 + α + 3

α + 1 , E5(x) = x5 − 2 α + 3
α + 1 x3 + (α + 3)2

(α + 1)2 x.

These polynomials are related to the classical Euler polynomials {En}∞n=0 by

En,−1/2(2x− 1)
2n = En(x) (2.10)

(for the definition and properties of the Euler polynomials see, for instance, [15]). This process has been 
sketched in Table 1.
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2.4. Generalized Euler-Dunkl polynomials

When α > −1 we can also define the generalized Euler-Dunkl polynomials {E(r)
n,α}∞n=0 (or E(r)

n ) of order 
r by means of the generating function

Eα(xt)
Iα(t)r =

∞∑
n=0

E
(r)
n,α(x)
γn,α

tn.

In the classical case, the generalized Euler polynomials of order r are {E(r)
n (x)}∞n=0 defined by

(
2

et + 1

)r

ext =
∞∑

n=0
E(r)

n (x) t
n

n! .

The generalized Euler polynomials and the generalized Euler-Dunkl polynomials are related by

E
(r)
n,−1/2(2x− r) = 2nE(r)

n (x).

3. The Dunkl translation: definition and some properties

The Dunkl translation operator of a function f is defined by

τyf(x) =
∞∑

n=0
Λn
αf(x) yn

γn,α
, α > −1, (3.1)

where Λ0
α is the identity operator and Λn+1

α = Λα(Λn
α). As in the case of Λα,x = Λα, we sometimes use 

τy,x if we want to indicate that the translation τy is acting on a function whose variable is x. In the case 
α = −1/2, the translation τyf is just the Taylor expansion of a function f around a fixed point x, that is,

f(x + y) =
∞∑

n=0
f (n)(x)y

n

n! .

Of course, definition (3.1) is valid only for C∞ functions, and assuming also that the series on the right is 
convergent. In particular, this can be guaranteed when f is a polynomial, because the operator Λα applied 
to a polynomial of degree k generates a polynomial of degree k − 1, so the series (3.1) has only a finite 
number of nonzero summands. Other properties of the translation operator τy can be found in [29], [31], [34]
and [23], including some integral expressions that can be applied to a wider class of functions than (3.1).

From the definition (3.1), it is clear that τy commutes with the Dunkl operator Λα. In what follows, we 
are going to see some other basic properties. It is not difficult to prove these properties, and here we state 
most of them without a proof; in most cases, more details can be found in [14].

A nice property of the Dunkl translation, which resembles the Newton binomial (x + y)n =∑n
k=0

(
n
k

)
ykxn−k, is the following:

τy((·)n)(x) =
n∑

k=0

(
n

k

)
α

ykxn−k. (3.2)

More generally, and in relation to the Appell-Dunkl sequences {Pn(x)}∞n=0 defined as in (2.6), the Dunkl 
translation satisfies
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τy(Pk)(x) =
k∑

j=0

(
k

j

)
α

Pj(x)yk−j ,

which in the classical case α = −1/2 becomes Pk(x + y) =
∑k

j=0
(
k
j

)
Pj(x)yk−j .

Another important property is the fact

τyf(x) = τxf(y). (3.3)

This is a direct consequence of the above mentioned integral expressions for the Dunkl translation. Moreover, 
at least for polynomials, it can be easily checked starting from (3.1) using the linearity of τy and its behavior
on f(x) = xn, n = 0, 1, 2, . . . Indeed, using 

(
n
k

)
α

=
(

n
n−k

)
α

and (3.2) we have τy((·)n)(x) = τx((·)n)(y), and 
this proves (3.3).

The inverse operator of τy defined as in (3.1) is

τ−1
y f(x) =

∞∑
n=0

cny
n

γn,α
Λn
αf(x), (3.4)

where c0 = 1 and cn for n ≥ 1 is defined by the recurrence cn = − 
∑n−1

j=0
(
n
j

)
α
cj (a proof can be found in [14, 

Lemma 4.4]). The operator τ−1
y is not, in general, a translation (in particular, it is not τ−y except when 

α = −1/2).
Moreover, it is not difficult to check that the operators of type τa, τb, τ−1

c and τ−1
d commute; for instance, 

τaτb = τbτa, τ−1
c τ−1

d = τ−1
d τ−1

c , τaτ−1
c = τ−1

c τa and so on. Note that, in general (except when α = −1/2), 
τaτb is not a new translation, even if a = b.

In relation to Eα, the Dunkl translation has a nice behavior that resembles the classical et(x+y) = etxety, 
namely

τy(Eα(t·))(x) = Eα(tx)Eα(ty). (3.5)

Indeed, using Λα,x(Eα(tx)) = tEα(tx) (this is d
dxe

tx = tetx in the classical case), the proof of (3.5) is a 
simple consequence of the definition (3.1):

τy
(
Eα(t·)

)
(x) =

∞∑
m=0

Λm
α,xEα(tx)y

m

γm
=

∞∑
m=0

Eα(tx) (ty)m

γm
= Eα(tx)Eα(ty).

It is also easy to check that

τ−1
y

(
Eα(t·)

)
(x) = Eα(tx)/Eα(ty).

From these relations, we can easily state the following lemmas, which we will use later in this paper:

Lemma 3.1. Let τy be the Dunkl translation operator. Then the identities

τny
(
Eα(t·)

)
(x) = Eα(tx)Eα(ty)n

and

τ−n
y

(
Eα(t·)

)
(x) = Eα(tx)/Eα(ty)n

holds for all n = 0, 1, 2, 3, . . .
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Lemma 3.2. Let τy and τz be Dunkl translations and let n and m be two non-negative integers. Then

τny τ
−m
z

(
Eα(t·)

)
= Eα(t·)Eα(ty)n/Eα(tz)m.

There are still a couple of technical lemmas about the behavior of the Dunkl translation which we will 
use later in the paper (Subsections 4.1 and 4.2). We will apply these results only to functions like Eα, so 
we can use the Dunkl translation operator (3.1), which is valid only for functions in C∞. Then, we can 
assume in the lemmas and in the proofs that the functions are in C∞ (this could be weakened using integral 
expressions for the translation).

Lemma 3.3. Let Λα,x be the Dunkl operator acting over the variable x and let g(t, x) be a function such as 
the integral 

∫∞
0 g(t, x) dt converges and Λα,xg(t, x) exists. Then,

Λα,x

∞∫
0

g(t, x) dt =
∞∫
0

Λα,xg(t, x) dt.

Proof. Using the definition of Λα,x, we have

Λα,x

∞∫
0

g(t, x) dt = d

dx

∞∫
0

g(t, x) dt + 2α + 1
2

∫∞
0 g(t, x) dt−

∫∞
0 g(−t, x) dt

x

=
∞∫
0

d

dx
g(t, x) dt + 2α + 1

2

∞∫
0

g(t, x) − g(−t, x)
x

dt

=
∞∫
0

Λα,xg(t, x) dt. �

Lemma 3.4. Let g(t, x) be a function in C∞ such that the integral 
∫∞
0 g(t, x) dt converges, and let τy,x be the 

Dunkl translation operator. Then

τy,x

∞∫
0

g(t, x) dt =
∞∫
0

τy,xg(t, x) dt.

Proof. By the previous lemma,

τy,x

∞∫
0

g(t, x) dt =
∞∑

n=0
Λn
α,x

( ∞∫
0

g(t, x) dt
)yn
γn

=
∞∑

n=0

( ∞∫
0

Λn
α,xg(t, x) dt

)yn
γn

=
∞∫
0

∞∑
n=0

Λn
α,xg(t, x)y

n

γn
dt =

∞∫
0

τy,xg(t, x) dt. �

4. The Mellin transform to get Appell-Dunkl polynomials as values of Hurwitz-Dunkl zeta functions

In this section, we define a special function, H(s, x), which generalizes the Appell-Dunkl polynomials in 
such way that H(−n, x) will give us the n-th Appell-Dunkl polynomial Pn(x) multiplied by some constant. 
We express H(s, x) in terms of the well-known Mellin transform
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M(f)(s) = 1
Γ(s)

∞∫
0

f(t)ts−1 dt.

Here we have a very general result, and later we study particular cases of generating functions that involve 
Bernoulli-Dunkl and Euler-Dunkl polynomials (and also their respective generalized families) and obtain 
particular special functions, H(s, x) for each one. In Theorem 4.3 we relate this H(s, x) with a function 
which we call Hurwitz-Dunkl zeta function, ζα(s, x) (see Definition 4.4), because it plays a similar role as 
the traditional Hurwitz zeta function ζ(s, x) =

∑∞
n=0 1/(x +n)s and, in addition, it generalizes ζ(s, x) when 

changing α = −1/2, x �→ 2x − 1 and t �→ t/2, as we explain with more detail later. On the other hand, 
we obtain a similar function in the Euler-Dunkl case, ζE,α(s, x) (see Definition 4.8), which generalizes the 
so-called Hurwitz zeta function of Euler type, ζE(s, x) =

∑∞
n=0(−1)n/(x + n)s. Note that in this theorem 

we could assume k = 0 (which corresponds to the usual case A(0) �= 0), but we allow a more general case.

Theorem 4.1. Let {Pn(x)}∞n=0 be an Appell-Dunkl sequence with generating function G(x, t) = A(t)Eα(xt)
and suppose that A(t) has a zero of order k at t = 0. We also assume that, for all x ∈ (a, b), the integral

H(s, x) = 1
Γ(s)

∞∫
0

G(x,−t) ts−1 dt = 1
Γ(s)

∞∫
0

A(−t)Eα(−xt)ts−1 dt (4.1)

converges in the right plane Re(s) > −k to a holomophic function. Then, H(s, x) may be analytically 
continued to an entire function of s satisfying

H(−n, x) = n!
γn,α

Pn(x), n = 0, 1, 2, . . .

Proof. Suppose H(s, x) converges in the right plane Re(s) > −k for all x ∈ (a, b), as was stated in the 
hypothesis of the theorem. Given N ∈ N∪{0} with N ≥ k, the Mellin integral can be analytically continued 
to the half plane Re(s) > −N − 1 as follows. Fix r with 0 < r < R and x with a < x < b and separate the 
complete integral into three parts:

H(s, x) = 1
Γ(s)

∞∫
r

A(−t)Eα(−xt)ts−1 dt

+ 1
Γ(s)

r∫
0

(
A(−t)Eα(−xt) −

N∑
n=0

Pn(x) (−t)n

γn,α

)
ts−1 dt

+ 1
Γ(s)

r∫
0

N∑
n=0

Pn(x) (−t)n

γn,α
ts−1 dt.

In the first part, the integrand is Eα(−xt)A(−t)ts−1. Since a < x < b, it converges when t → ∞, hence 
the integral is an entire function of s, dominated on arbitrary closed vertical strips of finite width. We may 
conclude that the integral is an entire function of s.

In the second part, the integrand is the product of ts−1 with the tail of the generating series, ∑∞
n=N+1 Pn(x)(−t)n/γn,α, which, since |t| ≤ r < R, is O(tN+1) at t = 0. Thus, for Re(s) > −N − 1, 

the complete integrand is O(tN+Re(s)) at t = 0 (with the order constant depending only on x) and hence is 
integrable on [0, r] and dominated on closed vertical sub-strips of finite width of this section of the s-plane. 
Therefore the second integral is a holomorphic function of s for Re(s) > −N − 1.
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In the third part, we have

1
Γ(s)

r∫
0

N∑
n=0

Pn(x) (−t)n

γn,α
ts−1 dt = 1

Γ(s)

N∑
n=0

Pn(x) (−1)n

γn,α

r∫
0

ts+n−1 dt

= 1
Γ(s)

N∑
n=0

Pn(x) (−1)n

γn,α

rs+n

s + n
,

which is an entire function of s because of the simple pole of Γ(s) at s = −n cancels the simple zero of s +n

for n = 0, 1, 2, . . . , leaving the non-zero residue (−1)n/n!.
Finally, if s = −n with 0 ≤ n ≤ N , the 1/Γ(s) factors in front of the first two terms vanish, as well 

as every term in the sum except the one corresponding to n, where the remaining value is Pn(x)n!/γn,α
because of the residue of Γ(s) at −n = 0, 1, 2, . . . Thus H(−n, x) = Pn(x)n!/γn,α for these n and, as N ≥ k

was arbitrary, this completes the proof. �
The previous theorem is very general but needs the convergence of (4.1). In the classical case α = −1/2

stated in [24], we have E−1/2(−t) = e−t, which tends very quickly to 0 when t → ∞. This allows us to prove 
the convergence of (4.1) with very weak hypothesis for A(t). For instance, when G(x, t) is the generating 
function for the Bernoulli polynomials, (4.1) becomes

H(s, x) = 1
Γ(s)

∞∫
0

G(x,−t) ts−1 dt = 1
Γ(s)

∞∫
0

t

1 − e−t
e−xtts−1 dt

and it is clear that this integral is convergent for every x > 0 when s is in right half-plane Re(s) > 0.
But this is no longer true when α �= −1/2. Actually, let us recall that Eα(z) = ez 1F1(α+1/2, 2α+2, −2z). 

For proving the convergence of the integral we need to estimate the size of the integrand in (4.1); in particular, 
the size of the factor Eα(−xt).

With this aim, let us use the asymptotic expansions of the Kummer confluent hypergeometric function 

1F1(·, ·, z) for |z| → ∞ in the sectors

S+ = {z ∈ C : −π/2 < arg(z) < 3π/2} ,
S− = {z ∈ C : −3π/2 < arg(z) < π/2}

(see, for instance [30, p. 128]). In our case, these asymptotic expansions are, respectively, of the form

1F1

(
2α + 1

2 , 2α + 2, z
)

= Γ(2α + 2)
Γ(2α+1

2 )
ezz−α−3/2

(
1 + O

( 1
|z|

))

+ Γ(2α + 2)
Γ(2α+3

2 )
e±(2α+1)iπ/2z−α−1/2

(
1 + O

( 1
|z|

))
.

(4.2)

Notice that, in the case α = −1/2, the coefficient of the first summand is Γ(1)/Γ(0) = 0, so the first summand 
vanishes. Otherwise (for simplicity, let us assume here that the variable z is real), the “exponential parts” for 
Eα(z) = ez 1F1(α+ 1/2, 2α+ 2, −2z) in (4.2) appears as e−z in the first summand, and as ez in the second 
summand. Then, the asymptotic size e−t (for t → ∞) of the classical case α = −1/2 becomes something 
similar to Eα(−t) ∼ e|t| for α �= −1/2. In this way, instead of “a help” to prove the convergence of (4.1), 
the factor Eα(−xt) is a handicap, and a further analysis will be necessary to state the convergence of (4.1).

On the other hand, we would like to rewrite the function H(s, x) that appears in Theorem 4.1 as a series, 
just as it occurs in the classical zeta function.
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For the generating function of the Bernoulli polynomials, the Mellin transform of the G(x, −t) is, for 
x > 0 and Re(s) > 0,

H(s, x) = 1
Γ(s)

∞∫
0

G(x,−t) e−xt ts−1 dt = 1
Γ(s)

∞∫
0

t

1 − e−t
e−xt ts−1 dt

= 1
Γ(s)

∞∫
0

∞∑
n=0

e−nt e−xt ts dt = 1
Γ(s)

∞∑
n=0

∞∫
0

e−(n+x)t ts dt

= Γ(s + 1)
Γ(s)

∞∑
n=0

1
(n + x)s+1 = s

∞∑
n=0

1
(n + x)s+1

(4.3)

(a similar method can be followed for the Euler polynomials, as well as other Appell sequences; see, for 
instance, [24]). Then, H(s, x) can be given, for x > 0 and Re(s) > 0, in terms of the Hurwitz zeta function

ζ(s, x) =
∞∑

n=0

1
(x + n)s , (4.4)

so H(s, x) is the analytic continuation (in the variable s) of sζ(s + 1, x) for ζ defined in (4.4) by means 
of a series that converges in a certain domain. Or, with the same meaning, we can say that the analytic 
continuation of the function ζ(s, x) defined in (4.4) is H(s − 1, x)/(s − 1).

Let us finally note that, in the previous example related to the Bernoulli polynomials, A(−t) was written, 
essentially, as a geometric series 

∑∞
n=0 (e−t)n, and then H(s, x) was computed as a series where there was 

a way to compute each summand. The analogous behavior for the Dunkl case is much more cumbersome. 
Not only is it not possible to express the integrals by means of well-known standard functions, but also the 
summands 1/(x + n) of the series become Dunkl translations instead of ordinary translations.

4.1. The Bernoulli-Dunkl case

To adapt Theorem 4.1 to the case of the Bernoulli-Dunkl polynomials defined in (2.7), let us first note 
that Iα(t) is an even function, so the denominator in the left hand side of (2.7) can be written as

Iα+1(t) = α + 1
t

(Eα(t) −Eα(−t)). (4.5)

Then, concerning (4.1) for the Bernoulli-Dunkl case, we have the following:

Lemma 4.2. For α > −1 and x ∈ (−1, 1), the integral

H(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
Iα+1(t)

ts−1 dt = 1
(α + 1)Γ(s)

∞∫
0

Eα(−xt)
Eα(t) − Eα(−t) t

s dt

converges in the right plane Re(s) > 0 to a holomorphic function.

Proof. The convergence of the integral for t near 0 is clear, so let us analyze what happens when t → ∞. 
By using (4.2), we have, for |z| → ∞,
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Eα(−z) = e−z
1F1

(
2α + 1

2 , 2α + 2, 2z
)

= Γ(2α + 2)
Γ(2α+1

2 )
ez(2z)−α−3/2

(
1 + O

( 1
|z|

))

+ Γ(2α + 2)
Γ(2α+3

2 )
e±(2α+1)iπ/2e−z(2z)−α−1/2

(
1 + O

( 1
|z|

))
.

For simplicity, let us write it as

Eα(−z) = C1e
zz−α−3/2

(
1 + O

( 1
|z|

))
+ C±

2 e−zz−α−1/2
(

1 + O
( 1
|z|

))
.

When α = −1/2 then C1 = 0; but this case is well-known and we do not need to analyze it. Then, let us 
assume that α �= −1/2.

Now, let us suppose that x > 0. Then we have, for t → ∞ (without lost of generality we can assume 
|xt| > 1),

∣∣∣ Eα(−xt)
Eα(t) −Eα(−t) t

s
∣∣∣ = C3

ext(xt)−α−3/2tRe(s)(1 + O(|xt|−1))
ett−α−1/2(1 + O(|t|−1))

; (4.6)

this guarantees the convergence of the integral for 0 ≤ x < 1. For x < 0 we have

∣∣∣ Eα(−xt)
Eα(t) − Eα(−t) t

s
∣∣∣ = C4

e|xt||xt|−α−1/2tRe(s)(1 + O(|xt|−1))
ett−α−1/2(1 + O(|t|−1))

, (4.7)

and this guarantees the convergence of the integral for −1 < x ≤ 0.
By standard arguments on differentiation of parametric integrals, together with the above estimates, the 

function H(s, x) is holomorphic on s. �
The above lemma proves the hypothesis of Theorem 4.1 for x ∈ (−1, 1). Then, we have the following:

Theorem 4.3. Let Eα(xt)/Iα+1(t) be the generating function of Bernoulli-Dunkl polynomials. Then for x ∈
(−1, 1), the integral

H(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
Iα+1(−t) t

s−1 dt = 1
(α + 1)Γ(s)

∞∫
0

Eα(−xt)
Eα(t) − Eα(−t) t

s dt (4.8)

converges in the right plane Re(s) > 0 to a holomorphic function, which may be analytically continued to 
an entire function of s satisfying

H(−n, x) = n!
γn,α

Bn,α(x), n = 0, 1, 2, . . .

The next step is to try to write H(s, x), for Re(s) > 0, as a kind of Hurwitz function similar to (4.4), as 
in the classical Bernoulli case.

In order to compute H(s, x) we may write A(t) = 1/Iα+1(t) as a geometric series. To do that, we use 
the fact that Iα+1(t) is an even function, and we use the definition of Eα(t). By (4.5) we have that

A(t) = 1
Iα+1(t)

= t

α + 1
1

Eα(t)
1

1 − Eα(−t) = t

α + 1
1

Eα(t)

∞∑(
Eα(−t)
Eα(t)

)n

.

Eα(t) n=0
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This is valid for all t ≥ 0 and it is enough for our purposes since we just need convergence for t ∈ [0, ∞).
Finally, we have

H(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
Iα+1(t)

ts−1 dt

= 1
Γ(s)

1
α + 1

∞∑
n=0

∞∫
0

Eα(−xt)
Eα(t)

(
Eα(−t)
Eα(t)

)n

ts dt.

(4.9)

Notice that, in a similar way to the proof of Lemma 4.2, we can easily check that all the integrals in (4.9)
are convergent for x ∈ (−1, 1), and the interchange of the sum and the integral is justified. However, (4.9) is 
more complicated than (4.3); the integrals cannot be written in a closed form and we don’t obtain something 
as simple as (4.4).

In any case, we can define a kind of Hurwitz function related to the Bernoulli-Dunkl case in the following 
way (observe that, with the notation of (4.9) and (4.9), now we are changing s to s − 1):

Definition 4.4. For x ∈ (−1, 1) and Re(s) > 1, we define the Hurwitz-Dunkl zeta function as

ζα(s, x) = 1
Γ(s)

∞∑
n=0

∞∫
0

Eα(−xt)
Eα(t)

(
Eα(−t)
Eα(t)

)n

ts−1 dt. (4.10)

Also, we call

dα(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
Eα(t) ts−1 dt (4.11)

the basic Hurwitz-Dunkl term.

Then we have, for x ∈ (−1, 1) and Re(s) > 0,

H(s, x) = s

α + 1 ζα(s + 1, x), (4.12)

so we can say that the function H(s, x) of Theorem 4.1 (which exists for s ∈ C) is the analytic extension to 
the s-complex plane of the function s

α+1 ζα(s + 1, x); equivalently, we can define the analytic extension of

ζα(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
Eα(t) − Eα(−t) t

s−1 dt, Re(s) > 1 (4.13)

(which corresponds to (4.10)) as

ζα(s, x) = α + 1
s− 1H(s− 1, x), s ∈ C, (4.14)

valid for x ∈ (−1, 1).
Finally, let us see how it is possible to give an expression for ζα(s, x) (valid in the half plane Re(s) > 1) 

which, in some sense, is very similar to the series (4.4) for the classical Hurwitz zeta function ζ(s, x), where 
we have a series of summands translated by means of x �→ x +n. In the Dunkl case, we are going to find an 
expression for ζα(s, x) that, in the place of classical translations, use the Dunkl transform defined in (3.1).
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The following theorem provides an expression of the Hurwitz-Dunkl zeta function by using Dunkl trans-
lations. For simplicity, we have defined, here and in what follows, a “symmetric translation” σ1 as

σ1 = τ1τ
−1
−1

(or σ1,x = τ1,xτ
−1
−1,x to clarify that it is applied to the variable x). Notice that the composition of translation 

operators is commutative, and also the composition with inverse translations (see its expression in (3.4)), 
so we can use σn

1 = τn1 τ
−n
−1 without paying attention to the order of the operators.

Theorem 4.5. For Re(s) > 1, the Hurwitz-Dunkl zeta function can be written as

ζα(s, x) = 1
Γ(s)

∞∑
n=0

σn
1

∞∫
0

Eα(−xt)
Eα(t) ts−1 dt =

∞∑
n=0

σn
1 dα(s, x). (4.15)

Proof of Theorem 4.5. From Lemma 3.1, we have that

τn1
(
Eα(−t·)

)
(x) = Eα(−xt)Eα(−t)n,

τ
−(n+1)
−1

(
Eα(−t·)

)
(x) = Eα(−xt)/Eα(t)n+1

hold. This can be easily proved as it was stated in Lemma 3.1 by changing Eα(t·) for Eα(−t·). So, from 
Lemma 3.2 we can conclude that

τn1 τ
−(n+1)
−1

(
Eα(t·)

)
(−x) = τn1

(
Eα(−t·)
Eα(t)n+1

)
(x) = Eα(−xt) Eα(−t)n

Eα(t)n+1

= Eα(−xt)
Eα(t)

(
Eα(−t)
Eα(t)

)n

,

and Lemma 3.4 gives us that

H(s, x) = 1
Γ(s)

1
α + 1

∞∑
n=0

∞∫
0

τn1 τ
−(n+1)
−1

(
Eα(−t·)

)
(x)ts dt

= 1
Γ(s)

1
α + 1

∞∑
n=0

σn
1

∞∫
0

τ−1
−1

(
Eα(−t·)

)
(x)ts dt

= 1
Γ(s)

1
α + 1

∞∑
n=0

σn
1

∞∫
0

Eα(−xt)
Eα(t) ts dt,

and the proof is concluded. �
Let us see that the role of ζα(s, x) with the Mellin transform of Appell-Dunkl sequences is the same 

as the role of ζ(s, x) with the Mellin transform of Appell sequences. In fact, it generalizes the traditional 
Hurwitz zeta function. To see that, we observe that to transform Bernoulli polynomials into Bernoulli-Dunkl 
polynomials, we had to change x �→ (x + 1)/2 and t �→ 2t. For that, we need to undo the change to recover 
the classical Hurwitz zeta function, that means, to take α = −1/2, x �→ 2x − 1 and t �→ t/2 (although many 
times we will not change t).
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Now, let α = −1/2. Then,

d−1/2(s, x) = 1
Γ(s)

∞∫
0

e−t(x+1)ts−1 dt = 1
(x + 1)s

if x ∈ (−1, 1). In this case, τn1 (f)(x) = f(x + n) and τ−n
−1 (f)(x) = f(x + n) and hence,

ζ−1/2(s, x) =
∞∑

n=0

1
(x + 1 + 2n)s .

And finally, as we are considering Bernoulli-Dunkl polynomials, we need to change x �→ 2x − 1. Hence,

ζ−1/2(s, 2x− 1) =
∞∑

n=0

1
(2x + 1 − 1 + 2n)s = 1

2s
∞∑

n=0

1
(x + n)s = 1

2s ζ(s, x).

Furthermore, (4.14) is an integral representation of ζα(s, x) which, as expected, generalizes under these 
changes the classical integral representation of ζ(s, x):

ζ(s, x) = 1
Γ(s)

∞∫
0

e−xt

1 − e−t
ts−1 dt.

Next we summarize some of the properties of ζα(s, x) that generalize the ones for ζ(s, x); we have already 
proved most of them in the preceding sections, or they are direct consequences:

Proposition 4.6 (Properties of ζα(s, x)). For α > −1 and x ∈ (−1, 1), the function ζα(s, x) satisfies the 
following:

(i) Recurrence identities: let σ1 = τ1τ
−1
−1 ; then for Re(s) > 0,

ζα(s, x) − σ1(ζα(s, ·))(x) = dα(s, x), (4.16)

ζα(s, x) − σm
1 (ζα(s, ·))(x) =

m−1∑
n=0

σn
1 dα(s, x). (4.17)

(ii) The Dunkl derivative of ζα:

Λα,x(ζα(s, x)) = −sζα(s + 1, x). (4.18)

(iii) Relation of ζα with Bernoulli-Dunkl polynomials: for n = 0, 1, 2, . . . , we have

ζα(−n, x) = −Bn+1,α(x) (α + 1)n!
γn+1,α

. (4.19)

Now we show that when α = −1/2 and x �→ 2x − 1 we get the corresponding properties of the classical 
ζ(s, x). First, for the recurrence identities, we have σn

1 (f(x)) = f(x + 2n) so σn
1 (ζα(s, ·))(x) = ζα(s, x + 2n)

and hence, (4.16) transforms into

ζ(s, x) = ζ(s, x + 1) + x−s
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and (4.17) transforms into

ζ(s, x) = ζ(s, x + m) +
m−1∑
n=0

(x + n)−s

(see, for instance [28, 25.11.3 and 25.11.4]). Basically, the Dunkl translation σ1 is playing the role of x + 1
in the Hurwitz function.

In the case α = −1/2, we have Λ−1/2,x = d/dx, so (4.18) transforms into (see, for instance, [28, 25.11.17])

d

dx
ζ(s, x) = −sζ(s + 1, x).

We also get the classical relation with Bernoulli polynomials since

ζ−1/2(−n, 2x− 1) = −Bn+1,−1/2(2x− 1) n!
(n + 1)!

1
2 = −Bn+1(x)2n+1 1

n + 1
1
2 .

Since ζ−1/2(−n, 2x − 1) = 2nζ(−n, x), we get (see [28, 25.11.14])

ζ(−n, x) = −Bn+1(x)
n + 1 . (4.20)

4.2. The Euler-Dunkl case

This is similar to the Bernoulli-Dunkl case, but with A(t) = 1/Iα(t).

Theorem 4.7. Let Eα(xt)/Iα(t) be the generating function of Euler-Dunkl polynomials. Then for x ∈ (−1, 1), 
the integral

H(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
Iα(−t) ts−1 dt = 2

Γ(s)

∞∫
0

Eα(−xt)
Eα(t) + Eα(−t) t

s−1 dt

converges in the right plane Re(s) > 0 to a holomorphic function, which may be analytically continued to 
an entire function of s satisfying

H(−n, x) = n!
γn,α

En,α(x), n = 0, 1, 2, . . .

Proof. The statement that H(s, x) is convergent for −1 < x < 1 holds by the same reasoning we made in 
the Bernoulli-Dunkl case. Hence, by Theorem 4.1, we have H(−n, x) = n! En,α(x)/γn,α, for n = 0, 1, 2, . . .
By the same argument as in the Bernoulli-Dunkl case, we can write A(t) as a geometric series as

A(t) = 1
Iα(t) = 2

Eα(t)
1

1 + Eα(−t)
Eα(t)

= 2
Eα(t)

∞∑
n=0

(
−Eα(−t)
Eα(t)

)n

.

The special function H(s, x) is giving (when −1 < x < 1) by

H(s, x) = 1
Γ(s)

∞∫
Eα(−xt)
Iα(t) ts−1 dt = 2

Γ(s)

∞∑
n=0

∞∫
Eα(−xt)
Eα(t)

(
−Eα(−t)
Eα(t)

)n

ts−1 dt
0 0
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= 2
Γ(s)

∞∑
n=0

(−1)nσn
1

∞∫
0

Eα(−xt)
Eα(t) ts−1 dt,

which concludes the proof. �
Definition 4.8. For x ∈ (−1, 1) and Re(s) > 0, we define the Hurwitz-Dunkl zeta function of Euler type as

ζE,α(s, x) = 1
Γ(s)

∞∑
n=0

(−1)nσn
1

∞∫
0

Eα(−xt)
Eα(t) ts−1 dt. (4.21)

Finally, notice that the function H(s, x) may be extended to the entire complex s-plane and we have, for 
x ∈ (−1, 1) and Re(s) > 0,

H(s, x) = 2ζE,α(s, x).

Hence, we can consider, equivalently, that the analytic extension of

ζE,α(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
Eα(t) + Eα(−t) t

s−1 dt, Re(s) > 0 (4.22)

(which corresponds to (4.21)) is

ζE,α(s, x) = 1
2H(s, x), s ∈ C. (4.23)

Again, when α− 1/2 and x �→ 2x − 1 (now by (2.10) we make the changes to recover Euler polynomials 
from Euler-Dunkl polynomials, as we did with the Hurwitz-Dunkl zeta function) we get the function

ζE,−1/2(s, 2x− 1) = 1
2s

∞∑
n=0

(−1)n

(x + n)s = 1
2s ζE(s, x),

where ζE(s, x) is called the Hurwitz-type Euler zeta function (see, for instance, [22]). Again, ζα,E generalized 
many properties of ζE,α by the changes α = −1/2 and x �→ 2x − 1 (and sometimes also t �→ t/2). There is 
also the recurrence identity

ζE,α(s, x) + σ1(ζE,α(s, ·))(x) = dα(s, x)

which generalizes [22, (2.1)] and (4.23) is an integral representation that generalizes [36, (3.1)]. Moreover, 
it is easy to prove that the relation of ζE,α with Euler-Dunkl polynomials

ζE,α(−n, x) = 1
2En,α(x) n!

γn,α

holds for all x ∈ (−1, 1) and n = 0, 1, 2, . . . , which give, when we recover the classical Hurwitz-type Euler 
zeta function, the identity (see [22, (2.7)])

ζE(−n, x) = 1
En(x).
2
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4.3. The generalized Bernoulli-Dunkl case

In the Bernoulli-Dunkl case we had

A(t) = 1
Iα+1(t)

= t

α + 1
1

Eα(t)
1

1 − Eα(−t)
Eα(t)

.

For r a positive integer, the generalized Bernoulli-Dunkl polynomials are defined as A(t)rEα(xt) =∑∞
n=0 B

(r)
n,α(x)tn/γn,α, and we have

A(t)r =
(

t

α + 1
1

Eα(t)

∞∑
n=0

(
Eα(−t)
Eα(t)

)n
)r

.

Theorem 4.9. Let Eα(xt)/(Iα+1(t))r be the generating function of Bernoulli-Dunkl polynomials of order 
r = 1, 2, . . . Then for each x ∈ (−r, r) the integral

H(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
(Iα+1(t))r

ts−1 dt (4.24)

converges in the right plane Re(s) > r to a holomorphic function, which may be analytically continued to 
an entire function of s satisfying

H(−n, x) = n!
γn,α

B(r)
n,α(x), n = 0, 1, 2, . . .

The theorem can be easily proved by the same arguments as in Theorem 4.1 and in Subsection 4.1. The 
only thing left to prove is the convergence of H(s, x) in x ∈ (−r, r).

Proof of Theorem 4.9. Let us first analyze the convergence of the integral (4.24). We use the asymptotic 
behavior of the Kummer confluent hypergeometric function given in (4.2), and proceed as in the proof of 
Lemma 4.2. If x > 0, the “exponential part” of the integrand of H(s, x) has size e−t(x+r), so the integral 
converges if x < r. Repeating the argument for x < 0, we get the convergence in x ∈ (−r, r).

Let us use that, for r = 1, 2, . . . and |z| < 1,

( ∞∑
n=0

zn

)r

= 1
(1 − z)r =

∞∑
n=0

(
r + n− 1

n

)
zn.

Then,

A(t)r =
(

t

α + 1
1

Eα(t)

∞∑
n=0

(
Eα(−t)
Eα(t)

)n
)r

= tr

(α + 1)r
1

Eα(t)r
∞∑

n=0

(
r + n− 1

n

)(
Eα(−t)
Eα(t)

)n

.

Hence,

H(s, x) = 1
Γ(s)

∞∫
Eα(−xt)

(Iα+1(t))r
ts−1 dt
0
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= 1
Γ(s)

1
(α + 1)r

∞∑
n=0

(
r + n− 1

n

) ∞∫
0

Eα(−xt)
(Eα(t))r

(
Eα(−t)
Eα(t)

)n

ts+r−1 dt

= Γ(s + r)
Γ(s)

1
(α + 1)r

∞∑
n=0

σn
1

((
r + n− 1

n

) ∞∫
0

Eα(−xt)
(Eα(t))r

ts+r−1 dt

)
,

which proves the theorem. �
Definition 4.10. For Re(s) > 1 we define the Hurwitz-Dunkl zeta function of order r = 1, 2, 3, . . . as

ζ(r)
α (s, x) = 1

Γ(s)

∞∑
n=0

(
r + n− 1

n

)
σn

1

⎛
⎝ ∞∫

0

Eα(−xt)
(Eα(t))r

ts−1 dt

⎞
⎠ .

As in (4.11) (that is, the case r = 1), we can define the basic term

d(r)
α (s, x) = 1

Γ(s)

∞∫
0

Eα(−xt)
(Eα(t))r t

s−1 dt

and then write

ζ(r)
α (s, x) =

∞∑
n=0

(
r + n− 1

n

)
σn

1 d
(r)
α (s, x).

Notice that, as the function H(s, x) is extended to the entire complex s-plane, and for Re(s) > 0 we have

H(s, x) = (s)r
(α + 1)r ζ(r)

α (s + r, x) for Re(s) > 1 − r.

Hence, we can define the extension of ζ(r)
α (s, x) to the complex plane by using ζ(r)

α (s + r, x) = (α +
1)rH(s, x)/(s)r, i.e., by taking

ζ(r)
α (s, x) = (α + 1)rH(s− r, x)/(s− r)r, −r < x < r, s ∈ C,

which generalizes (4.14).
In the case α = −1/2, this kind of zeta functions for the classical generalized Bernoulli polynomials has 

been studied in [8, §4.4]; see also [8, §4.1] for the classical generalized Euler polynomials.

4.4. The generalized Euler-Dunkl case

Again, as we did with the generalized Bernoulli-Dunkl case, by using the generation function of the 
generalized Euler-Dunkl polynomials we have A(t) = 1/Iα(t) and

A(t)r =
(

2
Eα(t)

∞∑
n=0

(
−Eα(−t)

Eα(t)

)n
)r

.

Theorem 4.11. Let Eα(xt)/(Iα(t))r be the generating function of Euler-Dunkl polynomials of order r =
1, 2, . . . Then for each x ∈ (−r, r) the integral
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H(s, x) = 1
Γ(s)

∞∫
0

Eα(−xt)
(Iα(t))r

ts−1 dt

converges in the right plane Re(s) > 0 to a holomorphic function which may be analytically continued to an 
entire function of s satisfying

H(−n, x) = n!
γn,α

E(r)
n,α(x), n = 0, 1, 2, . . .

Proof. We only need to notice that

A(t)r = 2r

Eα(t)r
∞∑

n=0
(−1)n

(
r + n− 1

n

)(
Eα(−t)
Eα(t)

)n

,

and proceed as in Theorem 4.9. �
Definition 4.12. For Re(s) > 0 we define the Hurwitz-Dunkl zeta function of Euler type and order r ∈ N as

ζ
(r)
E,α(s, x) =

∞∑
n=0

(−1)n
(
r + n− 1

n

)
σn

1 dα(s, x).

Finally, as the function H(s, x) is extended to the entire complex s-plane, we have

H(s, x) = 2rζ(r)
E,α(s, x)

for Re(s) > 0. Hence, we can define the extension of ζ(r)
E,α(s, x) to the complex plane by

ζ
(r)
E,α(s, x) = H(s, x)/2r, −r < x < r, s ∈ C.

4.5. The generalized Hermite case

The classical Hermite polynomials Hn(x) are giving by the generating function e−t2+2tx, and they are 
orthogonal on the real line with respect to the weight e−x2 . A well known generalization of these polynomials 
is the so-called generalized Hermite polynomials of order μ > −1/2, which are orthogonal on the real line 
with respect to the weight ωμ(x) = |x|2μe−x2 , that is, they are polynomials {Hμ

n (x)}∞n=0 satisfying

∞∫
−∞

Hμ
m(x)Hμ

n (x)ωμ(x) dx = 0;

see, for instance, [2], [12, Chapters 1 and 5] or [33, p. 380, problem 25].
In [29], Rosenblum shows that these polynomials can be studied in the context of the Dunkl transform 

on the real line. This is done by means of

e−t2Eμ(2xt) =
∞∑

n=0
Hμ

n (x) t
n

n! (4.25)

with μ = α + 1/2. Except by a simple change of variable, this is an Appell-Dunkl sequence in the sense 
of (2.6).
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For these polynomials, it is easy to find the analytic extension H(s, x) such that, for n a negative integer, 
the corresponding value is Hμ

n(x), except for a multiplicative constant. Due to the factor e−t2 , which appears 
in (4.25), the extension given in Theorem 4.1 does not present any problem and is valid for x ∈ R. The 
same happens with the integral

1
Γ(s)

∞∫
0

e−t2Eμ(−2xt) dt,

which is similar to the ones that appear in Theorems 4.3 or 4.7.
That leads us to the following result.

Theorem 4.13. Let G(−t, x) = e−t2Eμ(−2xt), with μ > −1/2. Then, for x ∈ R,

H(s, x) = 1
Γ(s)

∞∫
0

e−t2Eμ(−2xt) dt

=
√
π

2sΓ( s+1
2 ) 1F1

(s
2 , μ + 1

2 , x
2
)
−

√
π

2sΓ( s2 )
x

μ + 1
2

1F1

(s
2 , μ + 3

2 , x
2
)

is an entire function of s and satisfies H(−n, x) = Hμ
n (x) for n = 0, 1, 2, . . .

In fact, we have 1/Γ( s2) = 0 when s = −2n, and 1/Γ( s+1
2 ) = 0 when s = −2n − 1 for n = 0, 1, 2, . . .

Furthermore, Γ(−n + 1
2 ) = (−1)n 22n(2n)!

n!
√
π, which means

H(−2n, x) = Hμ
2n(x) = (−1)n (2n)!

n! 1F1

(
−n, μ + 1

2 , x
2
)
,

H(−2n− 1, x) = Hμ
2n+1(x) = (−1)n (2n + 1)!

n!
x

μ + 1
2

1F1

(
−n, μ + 3

2 , x
2
)
.

This, as expected, is the same as [29, (2.1.1) and (2.2.1)].

5. Properties of the Hurwitz-Dunkl zeta functions

The aim of this section is, firstly, to provide generalization of the Riemann zeta function ζ(s) =
∑∞

n=1 1/ns

and the Euler-type zeta function ζE(s) =
∑∞

n=1(−1)n+1/ns (also known as Dirichlet eta function η(s)) in 
a Dunkl sense through the functions ζα(s, x) and ζE,α(s, x), respectively. We also provide a generalization 
in a Dunkl sense of the analytic continuation of ζ(s) (and ζE(s)), as well as the so-called reflection formula, 
and other properties concerning our Hurwitz-Dunkl zeta functions ζα(s, x), ζE,α(s, x), ζα(s) and ζE,α(s). 
A connection appears here between these functions and the function Zα(s) =

∑∞
n=1 1/jsn (and also with 

Zα+1(s)), where jn are the positive zeros of the Bessel function Jα(x). We study Zα(s) in Section 6.
In this section we will state the main results. The proofs are rather technical and require several lemmas. 

We will postpone them to Section 7.

5.1. Theorems for ζα(s, x) and ζα(s)

In this section we are going to give another way of expressing the analytic continuation of ζα(s, x) for 
Re(s) < 1, and we will give some consequences that involve the zeros of Jα+1(x).
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0• C2

C1

C3

Fig. 1. The contour C from Theorem 5.1.

It is well known (see [35, Chapter 15] or [28, §10.21]) that, for any α > −1, the zeros of the Bessel 
function Jα(x)/xα can be written as jm,α, m ∈ Z \{0}, with jm,α = −j−m,α and 0 < jm,α < jm+1,α, m ≥ 1. 
Moreover, jm,α ∼ (m + α/2 − 1/4)π + o(1/m) when m → ∞ (see, for instance, [28, 10.21.19]).

Now, we are interested in the zeros of Jα+1(x)/xα+1 so, to avoid confusion, we will denote sm,α = jm,α+1; 
in this way, we will often use sm for sm,α. Again, with this notation we have sm,α = −s−m,α and 0 < sm,α <

sm+1,α, m ≥ 1, where ism,α, m ∈ Z \ {0}, are the zeros of Iα+1(x) (or the zeros of Jα+1(ix)/(ix)α+1). For 
α = −1/2 we have sm,−1/2 = πm. Let us also note that Iα(ism,α) provides a generalization of the sign 
sequence (−1)m because I−1/2(ism,−1/2) = (−1)m.

The first result is the following, which is similar to the classical case that can be found, for instance, in [4, 
§12.4, Theorem 12.3], and the proof follows the same scheme. However, we have now the functions Eα(t), 
which are much more complicated than et, and then the proof needs some additional details. In particular, 
we require the use of our Lemma 7.1. Actually, the zeros sm,α do not explicitly appear in the statement of 
this theorem, but they will be crucial in the proof of the lemma.

Theorem 5.1. Let x ∈ (−1, 1) and define

I(s, x) = 1
2πi

∫
C

Eα(xt)
Eα(−t) −Eα(t) t

s−1 dt, (5.1)

where C is the contour shown in Fig. 1. Then I(s, x) is an entire function of s and satisfies

ζα(s, x) = Γ(1 − s)I(s, x) if Re(s) > 1, (5.2)

where ζα(s, x) is the function defined in (4.13).

Taking into account that (5.1) is valid in the entire s-plane, and that ζα(s, x) satisfies (5.2) for Re(s) > 1, 
we can define the following analytic continuation for ζα(s, x) in the entire s-plane:

ζα(s, x) = Γ(1 − s)I(s, x), (5.3)

valid for −1 < x < 1. Of course, the analytic continuation of a function is unique, so this function ζα(s, x)
is the same that we defined in (4.14). From this and by Cauchy’s residue theorem it is also possible to prove 
Theorems 5.2 and 5.3.

Theorem 5.2. The function ζα(s, x) defined in (5.3) is analytic for s ∈ C except for a simple pole at s = 1
with residue α + 1.

Taking α = −1/2 and x �→ 2x − 1, since ζ−1/2(s, 2x − 1) = ζ(s, x)/2s we get that ζ(s, x) has a simple 
pole at s = 1 with residue 1, which is what happens in the classical case (see [4, §12.5, Theorem 12.4]).

The next result was already proved in Proposition 4.6, but later we provide another way to show it, this 
time starting from (5.3) and using Cauchy’s residues theorem:
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Theorem 5.3. The function ζα(s, x) defined in (5.3) satisfies, for x ∈ (−1, 1),

ζα(−n, x) = −Bn+1(x)n! (α + 1)
γn+1,α

, n = 0, 1, 2, . . . (5.4)

Another classical result in analytic number theory is the so-called Hurwitz formula (see [4, §12.7, Theorem 
12.6] or [5, 25.13.3]), namely

ζ(1 − s, x) = Γ(s)
(2π)s

(
e−πsi/2F (x, s) + eπsi/2F (−x, s)

)
, (5.5)

where

F (x, s) =
∞∑

n=1

e2πinx

ns
, Re(s) > 1, (5.6)

is known as the Lerch (or periodic) zeta function (see [4, §12.7, equation (9), p. 257] or [5, 25.13.1]).
In the Dunkl context, this formula can be generalized as follows. The convergence of the series (5.6) is 

clear, but to prove the convergence of the corresponding series F(x, s), which we will use in the Dunkl 
context, will require some effort.

Theorem 5.4 (Hurwitz-Dunkl formula). Let α > −1 and {sm}∞m=1 be the positive zeros of Jα+1. For Re(s) >
1, the function

F(x, s) =
∞∑

m=1

Eα(xism)
Iα(ism)

1
ssm

(5.7)

converges for every x ∈ R. Moreover, for x ∈ (−1, 1) and Re(s) > 1, the Hurwitz-Dunkl zeta function 
ζα(s, x) satisfies

ζα(1 − s, x) = Γ(s)
2

(
e−πsi/2F(x, s) + eπsi/2F(−x, s)

)
. (5.8)

We call F(x, s) the Lerch-Dunkl zeta function since it plays a similar role as the Lerch zeta function F (x, s)
(but F(x, s) is not periodic). In fact, when α = −1/2 and x �→ 2x − 1, we have F(2x − 1, s) = π−sF (x, s), 
so (5.8) becomes (5.5).

Now, although the identity (5.8) is valid only for x ∈ (−1, 1), the right hand side is valid for x ∈ R, so 
we can extend the definition of ζα(1 − s, x) for Re(s) > 1 by taking

ζα(1 − s, x) = Γ(s)
2

(
e−πsi/2F(x, s) + eπsi/2F(−x, s)

)
, x ∈ R. (5.9)

Replacing 1 − s by s, we can also define, for Re(s) < 0,

ζα(s, x) = Γ(1 − s)
2

(
−ieπsi/2F(x, 1 − s) + ie−πsi/2F(−x, 1 − s)

)
, x ∈ R.

The Hurwitz-Dunkl formula gives us an expression for ζα(s, x) and x ∈ R free of the intricate integrals. 
With that, we can easily prove a “reflection formula” (but in this case that isn’t a suitable name) for ζα(s)
in a Dunkl sense that can be seen as a generalization of the reflection formula for ζ(s).

Using the notation ζ(s) = ζ(s, 1), the reflection formulas of the classical zeta function (also known as 
“Riemann’s functional equation”)
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ζ(1 − s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s), s ∈ C,

ζ(s) = 2(2π)s−1Γ(1 − s) sin
(πs

2

)
ζ(1 − s), s ∈ C,

can be proved by taking x = 1 in the Hurwitz formula (5.5) (see, for instance, [4, §12.8, Theorem 12.7]); 
for the first formula, the result is clear for Re(s) > 1, and is then valid for s ∈ C by analytic continuation. 
Actually, many properties of ζ(s) and ζ(s, x) can be seen as consequences of (5.5).

In our case, taking x = ±1 in (5.7), we get F(±1, s) =
∑∞

m=1 1/ssm, since Eα(±ism) = Iα(ism). Thus, 
we can define, for Re(s) > 1,

ζα(1 − s) = ζα(1 − s, 1), (5.10)

where ζα(1 − s, 1) is given in (5.9); of course, the same can be done for ζα(s) with Re(s) < 0 (with this 
notation, ζ−1/2(s) = ζ−1/2(s, 1) = ζ(s, 1)/2s = ζ(s)/2s). Then, we have the following:

Theorem 5.5. Let α > −1 and {sm}∞m=1 be the positive zeros of Jα+1. For Re(s) > 1 we have

ζα(1 − s) = Γ(s) cos
(πs

2

) ∞∑
m=1

1
ssm

, (5.11)

or equivalently, for Re(s) < 0,

ζα(s) = Γ(1 − s) sin
(πs

2

) ∞∑
m=1

1
s1−s
m

. (5.12)

When α = −1/2, we get 
∑∞

m=1 1/ssm = π−s
∑∞

m=1 1/ms = π−sζ(s) so, in fact, 
∑∞

m=1 1/ssm is playing 
the role of ζ(s). Hence, when α = −1/2, Theorem 5.5 provides a generalization in a Dunkl sense of classical 
reflection formulas. However, there is an important difference if we compare Theorem 5.5 with the classical 
case: the sums 

∑∞
m=1 in (5.11) and (5.12) are not the functions ζα(1 − s) and ζα(s), respectively.

Finally, by taking s = n + 1 in (5.9) we have

ζα(−n, x) = n!
2

(
e−π(n+1)i/2F(x, n + 1) + eπ(n+1)i/2F(−x, n + 1)

)
, x ∈ R;

and, on the other hand, by Theorem 5.3,

ζα(−n, x) = −Bn+1(x)n! (α + 1)
γn+1,α

, x ∈ (−1, 1).

Then, for x ∈ (−1, 1),

−Bn+1(x) (α + 1)
γn+1,α

= 1
2

(
e−π(n+1)i/2F(x, n + 1) + eπ(n+1)i/2F(−x, n + 1)

)
.

Since the above function is a polynomial, the limit as x → 1− exists and we have

−Bn+1(1)(α + 1)
γn+1,α

= cos
(
π(n + 1)

2

) ∞∑
m=1

1
sn+1
m

.

Letting n = 2k − 1, we have the following:
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Corollary 5.6. Let α > −1 and {sm}∞m=1 be the positive zeros of Jα+1. Then,

∞∑
m=1

1
s2k
m

= B2k(1)(−1)k+1

22kk! (α + 2)k−1
, k = 1, 2, 3, . . .

The previous expression for 
∑∞

m=1 1/s2k
m in terms of B2k(1) was proved in [13, Theorem 4.1] by other 

methods.

Corollary 5.7. The function ζα(s) defined in Theorem 5.5 satisfies

ζα(−n) = −Bn+1(1)n! (α + 1)
γn+1,α

, n = 1, 2, . . . (5.13)

Proof. Taking s = n = 2k, k = 1, 2, . . . , in (5.11) and using Corollary 5.6 we get (5.13) for n odd. Taking 
s = n = 2k− 1, k = 1, 2, . . . in (5.11) we then get cos (πs/2) = 0 and hence ζα(1 − n). Since −Bn+1(1) = 0
for n even, this completes the proof. �
5.2. Theorems for ζE,α(s, x) and ζE,α(s)

Here, we are going state some results for ζE(s, x), that will be similar to the results for ζE(s, x) in 
Subsection 5.1. Let us recall that jm = jm,α, m ∈ Z \ {0}, are the zeros of the Bessel function Jα(x)/xα, 
and that they can be ordered so that jm,α = −j−m,α and 0 < jm,α < jm+1,α, m ≥ 1. Moreover, ijm,α, 
m ∈ Z \ {0}, are the zeros of Iα(x) and for α = −1/2, jm,−1/2 are the zeros of I−1/2(it), namely the zeros 
of the cosine. Hence, jm,−1/2 = (m − 1/2)π for m ≥ 1.

We begin with a result that is similar to Theorem 5.1:

Theorem 5.8. Let x ∈ (−1, 1) and

IE(s, x) = 1
2πi

∫
C

h(t)ts−1 dt = 1
2πi

∫
C

Eα(xt)
Eα(−t) + Eα(t) t

s−1 dt,

where C is again the contour shown in Fig. 1 of Theorem 5.1. Then IE(s, x) is an entire function of s and 
satisfies

ζE,α(s, x) = Γ(1 − s)IE(s, x) if Re(s) > 0,

where ζE,α(s, x) is the function defined in (4.22).

Of course, this theorem again allows us to give the analytic extension for ζE,α(s, x) to the entire s-plane, 
valid for −1 < x < 1.

Now, the “Hurwitz-Dunkl formula of Euler type” is the following:

Theorem 5.9. Let α > −1 and {jm}∞m=1 be the positive zeros of Jα. For Re(s) > 1, the function

FE(x, s) =
∞∑

m=1

Eα(ijmx)
Iα+1(ijm)

1
js+1
m

converges for every x ∈ R. Moreover, for x ∈ (−1, 1) and Re(s) > 1 we have

ζE,α(1 − s, x) = −(α + 1)Γ(s)
(
e−

πi
2 (s+1)FE(x, s) + e

πi
2 (s+1)FE(−x, s)

)
. (5.14)
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In the particular case α = −1/2, we get jm = (m − 1/2)π for m ≥ 1. Also, J1/2(x) =
√

2/(πx) sin (x), 
which leads to I1/2(ijm) = (−1)m+1/jm. That means, when taking x �→ 2x − 1, we have that

FE(2x− 1, s) = 2s

πs
i

∞∑
m=1

e(2m−1)iπx

(2m− 1)s = 2s

πs
i�E(s, x),

where the notation �E(s, x) for the above series has already been used in [22, (7.1)]. Furthermore, with these 
changes, and noticing that FE(−x, s) = −FE(1 − x, s), (5.14) transforms into

1
21−s

ζE(1 − s, x) = ζE,−1/2(1 − s, 2x− 1) = 2sΓ(s)
πs

(
e−

iπs
2 �E(s, x) − e

iπs
2 �E(s, 1 − x)

)
,

which is just [22, (7.2)].
As in the case of ζα, we can use (5.14) to define ζα(1 −s, x) for Re(s) > 1 and x ∈ R, as well as ζα(s, x) for 

Re(s) < 0 and x ∈ R. In particular, taking x = 1 and defining ζE,α(s) = ζE,α(s, 1), we have the following:

Theorem 5.10. Let α > −1 and {jm}∞m=1 be the positive zeros of Jα. For Re(s) > 1 we have

ζE,α(1 − s) = −Γ(s) cos
(πs

2

) ∞∑
m=1

1
jsm

(5.15)

or equivalently, for Re(s) < 0,

ζE,α(s) = −Γ(1 − s) sin
(πs

2

) ∞∑
m=1

1
j1−s
m

.

When α = −1/2, (5.15) transforms into (see [22, (7.4)])

ζE(1 − s) = −2π−sΓ(s) cos
(πs

2

) ∞∑
m=1

1
(2m− 1)s .

Finally, the equivalent result of Corollary 5.6 for 
∑∞

m=1 1/j2k
m is the following:

Corollary 5.11. Let α > −1 and {jm}∞m=1 be the positive zeros of Jα. Then,

∞∑
m=1

1
j2k
m

= E2k−1(1)(−1)k+1

22k(k − 1)! (α + 1)k
, k = 1, 2, 3, . . .

This can be easily proved from (5.15), as in Subsection 5.1. Note that this result was also proved in [18]
in a different way.

Corollary 5.12. The function ζE,α(s) defined in Theorem 5.10 satisfies

ζE,α(−n) = 1
En(1) n!

, n = 1, 2, . . .
2 γn,α
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6. Analytic continuation of ζα(s) and ζE,α(s)

Finally, let us define, for α > −1,

Zα(s) =
∞∑

m=1

1
jsm

, Re(s) > 1. (6.1)

Of course, in a like manner we get

Zα+1(s) =
∞∑

m=1

1
ssm

, Re(s) > 1,

hence, Zα(s) is related with ζE,α(s) and Zα+1(s) with ζα(s). This function is similar to the classical Riemann 
zeta function 

∑∞
m=1 1/ms where the positive zeros {πm}∞m=1 of the sine have been changed by the zeros of 

the positive zeros of a Bessel function. Then, we will call Zα+1(s) the “Riemann-Bessel zeta function”.
In his thesis [21], Hawkins provides an analytic continuation of Zα(s). To do so, he first gets easily the 

analytic continuation for Re(s) > 0 by integration by parts, and repeating the process he is able to continue 
the function to Re(s) > −1. However, he does not go forward by this method and, instead, uses other tools. 
He ends up proving that there exists an analytic continuation of Zα(s) to the entire s-plane with simple 
poles at s = 1, −1, −3, −5, . . . but he didn’t get an explicit formula. Due to its simplicity, we now show how 
to continue Zα(s) to the region Re(s) > 0.

Theorem 6.1. The function Zα(s) − π−s

s−1 extends analytically to the region Re(s) > 0.

Proof. We start from (6.1), valid for Re(s) > 1, and decompose

Zα(s) − π−s

s− 1 =
∞∑

m=1

1
jsm

−
∞∫
1

π−s dx

xs
=

∞∑
m=1

1
jsm

−
∞∑

m=1

m+1∫
m

dx

(πx)s

=
∞∑

m=1

⎛
⎝ 1
jsm

−
m+1∫
m

dx

(πx)s

⎞
⎠ =

∞∑
m=1

m+1∫
m

(
1
jsm

− 1
(πx)s

)
dx,

again valid for Re(s) > 1. Now, let us denote

fm(s) =
m+1∫
m

(
1
jsm

− 1
(πx)s

)
dx.

If we prove that 
∑∞

m=1 fm(s) is analytic in Re(s) > 0, we will have the analytic extension of Zα(s) −
π−s/(s − 1).

Every function fm(s) is analytic in Re(s) > 0, so it is enough to see that the series converges uniformly 
on compacts in that region. Now, let us recall that the zeros {jm}∞m=1 of Jα(t) satisfy jm ∼ (m + α/2 −
1/4)π + o(1/m) (see [28, 10.21.19]), so πm − c ≤ jm ≤ πm + c for a positive constant c independent of m. 
Then, because

πx∫
u−s−1 du = 1

s

(
1
jsm

− 1
(πx)s

)
,

jm



A. Gil Asensi, J.L. Varona / J. Math. Anal. Appl. 520 (2023) 126870 29
we have
∣∣∣∣∣∣
m+1∫
m

(
1
jsm

− 1
(πx)s

)
dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣s
m+1∫
m

πx∫
jm

du

us+1 dx

∣∣∣∣∣∣
≤ |s|

m+1∫
m

πm+c2∫
πm−c1

du

|us+1| dx = |s|
m+1∫
m

πm+c2∫
πm−c1

du

u1+Re(s) dx

≤ |s|
(sm − c2 − c1)1+Re(s)

m+1∫
m

πm+c2∫
πm−c1

du dx = (c2 + c1)|s|
(jm − c2 − c1)1+Re(s) .

Consequently,

∞∑
m=1

∣∣∣∣∣∣
m+1∫
m

(
1
jsm

− 1
(πx)s

)
dx

∣∣∣∣∣∣ ≤
∞∑

m=1

C|s|
j
1+Re(s)
m

< ∞ for Re(s) > 0,

and the Weierstrass M-test ensures the uniform convergence on compacts in Re(s) > 0. �
Using the analytic continuation in the entire s-plane [21], some of the above identities can also be 

analytically continued to the entire s-plane; see also [32]. Since Hawkins didn’t get any explicit formula for 
Zα(s), we won’t get an explicit formula for ζα(s) either. Furthermore, in this way we do not obtain ζα(s)
as our ζα(s, 1), because ζα(s, x) does not exist for x = 1 in the half-plane Re(s) ≥ 1 (see Definition 4.4). In 
the same way, contrary to what happen in the classical case, we do not have ζα(s, 1) = Zα+1(s) for s ≥ 1.

Hawkins also computed the residues of Zα(s) at s = 1, −1, −3, . . . and the values of Zα(−2k) for k =
0, 1, 2, . . . They are given by (see [21, Theorem 3.5])

Ress=−2k−1(Zα(s)) = (−1)k+1

π
c2k, Zα(−2k) = (−1)k

2 c2k−1,

where ck := ck,α are given by the identity

( ∞∑
k=0

(−1)k

(2x)k (α, k)
)( ∞∑

k=0

ck
xk+2

)
=

∞∑
k=0

(−1)k

(2x)k+1 (α, k), (6.2)

with (α, k) = Γ(α+ k+ 1/2)/(k! Γ(α− k+ 1/2)) (see [21, Lemma 3.4]). To extend ζα(s), we need to change 
α �→ α+ 1 in order to correspond the coefficients ck with our Zα+1(s). Finally, Hawkins proved that ck are 
polynomials of α which vanish at α = −1/2 and α = 1/2 (see, for instance, [21, Proposition 4.2]).

With all this, we can now study the poles of ζα(s) with s ∈ C and −1/2 �= α > −1.

Theorem 6.2. We get

ζα(1 − s) = Γ(s) cos
(πs

2

)
Zα+1(s), s ∈ C, (6.3)

or equivalently

ζα(s) = Γ(1 − s) sin
(πs)

Zα+1(1 − s), s ∈ C. (6.4)
2
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In particular, ζα(s) can be analytically continued to the entire s-plane with simple poles at s = n = 1, 2, 3, . . .
(for α �= −1/2) whose residues are equal to dn−1/(2n!), where dn := dn,α = cn,α+1 with the notation of (6.2). 
Moreover, ζα(0) = −1/2.

Proof. We can analytically continue equations (5.11) and (5.12) by considering the analytic continuation 
of Zα+1(s). From the equation (6.3) the only possible poles are the ones of Γ(s), at s = 0, −1, −2, . . . , and 
the ones of Zα+1(s), at s = 1, −1, −3, . . . It is straightforward to see that when s = −2k = 0, −2, −4, . . .
we get cos(−πk)Zα+1(−2k) �= 0 and Γ(−2k) has a pole. Hence, at those values there are simple poles. The 
residue at s = −2k is

lim
s→−2k

(s + 2k)Γ(s) cos
(πs

2

)
Zα+1(s) = (−1)k

(2k)! Zα+1(−2k) = d2k−1

2(2k)! .

When s = −(2k + 1) = −1, −3, −5, . . . we prove that ζα(1 − s) has a pole at those values by a little trick 
and the L’Hôpital rule as follows:

lim
s→−2k−1

Γ(s) cos
(πs

2

)
Zα+1(s)

= lim
s→−2k−1

(s + 2k + 1)Γ(s)(s + 2k + 1)Zα+1(s)
cos

(
πs
2
)

(s + 2k + 1)2

= Ress=−2k−1(Γ(s))Ress=−2k−1(Zα+1(s)) lim
s→−2k−1

−π

4
sin

(
πs
2
)

s + 2k + 1 .

Hence, there is a pole at those values. To calculate its residues we compute

lim
s→−2k−1

(s + 2k + 1)Γ(s) cos
(πs

2

)
Zα+1(s)

= lim
s→−2k−1

(s + 2k + 1)Γ(s)(s + 2k + 1)Zα+1(s)
cos

(
πs
2
)

s + 2k + 1

= Ress=−2k−1(Γ(s))Ress=−2k−1(Zα+1(s)) lim
s→−2k−1

−π

2 sin
(πs

2

)

= (−1)k+1

(2k + 1)!
π

2 Ress=−2k−1(Zα+1(s)) = d2k

2(2k + 1)! .

Finally, we consider the case s = 1. We use Ress=1(Zα+1(s)) = 1/π. So,

lim
s→1

Γ(s) cos
(πs

2

)
Zα+1(s) = lim

s→1
(s− 1)Zα+1(s)Γ(s)

cos
(
πs
2
)

s− 1

= Ress=1(Zα+1(s)) lim
s→1

cos
(
πs
2
)

s− 1 = −1/2. �
Once we have extended ζα(s) to the entire s-plane (with simple poles at s = 1, 2, 3, . . . ), we use the 

continuations of equations (6.3) and (6.4), both valid for s ∈ C, in order to get

Zα+1(s)Zα+1(1 − s) = ζα(1 − s)ζα(s)
Γ(1 − s)Γ(s) sin(πs/2) cos(πs/2) = 2

π
ζα(1 − s)ζα(s). (6.5)

From that, a simple verification leads us to the following functional equation.
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Corollary 6.3. The function

Φ(s) =
√

2
π

ζα(s)
Zα+1(s)

satisfies the functional equation Φ(s) = 1/Φ(1 − s).

Next we study the analytic continuation of ζE,α(s) which is rather similar to ζα(s).

Theorem 6.4. We get

ζE,α(1 − s) = −Γ(s) cos
(πs

2

)
Zα(s), s ∈ C, (6.6)

or equivalently

ζE,α(s) = −Γ(1 − s) sin
(πs

2

)
Zα(1 − s), s ∈ C. (6.7)

In particular, ζE,α(s) can be analytically continued to the entire s-plane with simple poles at s = n =
1, 2, 3, . . . (for α �= ±1/2) whose residues are equal to −cn−1/(2n!). Moreover, ζE,α(0) = −1/2.

Finally, let us mention that, having Zα(s) defined in 0 < Re(s) < 1 (Theorem 6.1, whose proof provides 
a convergent series to evaluate Zα(s) in this region), one can wonder where the zeros of these functions are. 
Hawkins did an analysis of the zeros of Zα(s) and provided some results involving zero free regions [21, 
Section 2] (see also [1]). In addition, many of the graphical or numerical methods for finding the zeros of 
ζ(s) in the critical strip (see, for instance, [6,7] and the references therein) can be adapted to the case of 
Zα(s). It is then easy to find zeros of Zα(s) that do not satisfy Re(s) = 1/2. However, as far as we know, 
a further analysis of the zeros of Zα(s) is yet to be done, but doesn’t seem to be straightforward at first 
glance. Is there a deeper theory behind this problem?

7. Proofs of the results of Section 5

In this section we prove the theorems of Subsections 5.1 and 5.2. In Subsection 7.1, we begin by proving 
results concerning the Hurwitz-Dunkl zeta function ζα(s, x) stated in Subsection 5.1; in Subsection 7.2, and 
with less details, we prove the corresponding results for ζE,α(s, x) stated in Subsection 5.2.

7.1. The Dunkl zeta function case

Our goal is to prove Theorem 5.1, and then use it to prove Theorems 5.2, 5.4 and 5.5. For that, some 
preliminary results are needed.

Lemma 7.1. Let {sm}∞m=1 be the positive zeros of Jα+1(t) and let S = C \ {0, ±is1,±is2, . . . } denote the 
region that remains when we remove from the t-plane the origin and all zeros of Iα+1(t), as in Fig. 2. Then 
for x ∈ [−1, 1] \ {0}, the function

g(t) = Eα(xt)
Eα(−t) − Eα(t)

is bounded on compact subsets of S and compact subsets of x ∈ [−1, 1] \ {0}. Furthermore, if α < 1 + 1/2, 
then for x = 0 the function g(t) is bounded on compact subsets of S.
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0

is1

−is1

is2

−is2

Fig. 2. A compact subset of the region S from Lemma 7.1.

Proof. We use arguments similar to those of [18, §2], and reproduce most of them for the sake of completeness 
(actually, here it is somewhat simpler because [18] uses α ∈ C and here we have the standard α > −1 of 
the Dunkl context). To get started, let us take a large circle D = {z ∈ C : |z| = A} of radius A with the 
condition that none of the points ism, m ∈ Z \ {0}, must lie on D. The poles of g(t) inside D are ism, with 
|sm| < A, and all of them are simple. Now, we prove that the value of A can be chosen arbitrarily large and 
such that there exists some constant c > 0 independent of A (but depending on α) satisfying

|Jα(t)| ≥ c eIm(t)/|t|1/2 (7.1)

for t ∈ D. For that, we proceed based on what is done in [35, §15.41, p. 498]. First, we denote H(1)
α (t) and 

H
(2)
α (t) as the Bessel functions of the third kind. We use the equality

2Jα(t) = H(1)
α (t) + H(2)

α (t), (7.2)

and, in addition, the fact that the Bessel functions of the third kind satisfy the estimates

H(1)
α (t) =

(
2
πt

)1/2

ei(t−
1
2απ− 1

4π)
(
1 + η1,α(t)

)
, (7.3)

H(2)
α (t) =

(
2
πt

)1/2

e−i(t− 1
2απ− 1

4π)
(
1 + η2,α(t)

)
, (7.4)

were η1,α(t) and η2,α(t) are functions of order O(1/t) for large |t| (see [35, §15.4, p. 496]). Therefore,

1
2

(
2

π|t|

)1/2

e− Im(t) ≤
∣∣∣H(1)

α (t)
∣∣∣ ≤ 2

(
2

π|t|

)1/2

e− Im(t),

1
2

(
2

π|t|

)1/2

eIm(t) ≤
∣∣∣H(2)

α (t)
∣∣∣ ≤ 2

(
2

π|t|

)1/2

eIm(t),

for |t| large enough. This, together with (7.2), gives

2|Jα(t)| ≥ 1
2

(
2

π|t|

)1/2

e| Im(t)| − 2
(

2
π|t|

)1/2

e−| Im(t)|

= 1
2

(
2

π|t|

)1/2

e| Im(t)|
(
1 − 4e−2| Im(t)|

)

for |t| large enough, which proves (7.1) if | Im(t)| ≥ 1. On the two arcs of D with | Im(t)| ≤ 1, according 
to (7.2), (7.3) and (7.4), the problem reduces essentially to get a lower bound for | cos(t − 1απ − 1π)|, 
2 4
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which can be done by simply choosing A so that to avoid the zeros of the cosine function. This proves (7.1). 
Furthermore, (7.2), (7.3) and (7.4) also give

|Jα(t)| ≤ C e| Im(t)|/|t|1/2

for |t| large enough, with a constant C > 0 depending only on α. Therefore, for any compact set K ⊂
[−1, 1] \ {0} the radius A can be chosen with the additional property that there exists C > 0 such that, for 
any t ∈ D and any x ∈ K,

|Jα(tx)| ≤ C e| Im(tx)|/|tx|1/2, (7.5)

|Jα+1(tx)| ≤ C e| Im(tx)|/|tx|1/2. (7.6)

Using (7.1), (7.5) and (7.6), we get, for x ∈ K and t ∈ D,

∣∣∣∣ Eα(xt)
Eα(−t) − Eα(t)

∣∣∣∣ =
∣∣∣∣Eα(tx) (α + 1)

Iα+1(t)t

∣∣∣∣ =
∣∣∣∣ (α + 1)Iα(tx)

Iα+1(t)t
+ xIα+1(tx)

2Iα+1(t)

∣∣∣∣
=

∣∣∣∣Jα(itx)i + Jα+1(itx)
2xαJα+1(it)

∣∣∣∣ ≤ c̃
e| Im(xit)|/|xit|1/2
|x|αe| Im(it)|/|it|1/2 = c̃

e(|x|−1)|Re(t)|

|x|α−1/2

for some constant c̃ depending only on α and K. This proves the result for x ∈ [−1, 1] \ {0}. Finally, let us 
study the particular case x = 0. As Eα(0) = 1, it follows that

|g(t)| =
∣∣∣∣ α + 1
Iα+1(t)t

∣∣∣∣ ≤ c̃
|t|α−1−1/2

e|Re(t)| .

Since we can choose t such as |t| → ∞ and Re(t) is constant, to ensure that g(t) is bounded at x = 0 on 
compact subsets of S we have to consider that α < 1 + 1/2. �

We now have the tools for the next step:

Proof of Theorem 5.1. For simplicity, let us denote

g(t) = Eα(xt)
Eα(−t) − Eα(t) .

The contour C in Fig. 1 is composed of three parts, C1, C2 and C3. We take C2 as a positively oriented 
circle of radius 0 < c < s1 (where s1 is the first zero of Jα+1(x)/xα+1) about the origin. This avoids C2
passing through a zero of g(t). On the other hand, C1 and C3 are the lower and upper edges of a “cut” in 
the t-plane along the negative real axis, traversed as shown in Fig. 1. Then,

2πiI(s, x) =

⎛
⎝∫
C1

+
∫
C2

+
∫
C3

⎞
⎠ g(t)ts−1 dt. (7.7)

We consider an arbitrary compact disk |s| ≤ M and prove that the integrals along C1 and C3 converge 
uniformly on every such disk. Since the integrand is an entire function of s, this will prove that I(s, x) is 
entire.

We have t = re−πi on C1, t = reπi on C3 (with r varying from c > 0 to ∞) and g(t) = g(−r). Also, let 
us denote σ = Re(s). Along C1 and C3, for r ≥ 1,
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|ts−1| = rσ−1|e±πi(σ−1+iy)| = rσ−1e±πy ≤ rM−1eπM .

Hence on either C1 or C3, for r ≥ 1,

∣∣g(t)ts−1∣∣ ≤ rM−1eπM |g(−r)| .

Following the proof of Lemma 7.1, we find that g(−r) is bounded by

c̃
e(|x|−1)r

|x|α−1/2 .

That means |g(t)ts−1| ≤ ArMe(|x|−1)|r| for some constant A depending on M and x. Since the integral ∫∞
c

rMe(|x|−1)r dr converges when c > 0 and −1 < x < 1, this shows the convergence along C1 and C3 and 
hence, I(s, x) is entire.

Now, we compute I(s, x) by (7.7), taking into account that t = ceiθ (with −π ≤ θ ≤ π) on C2. Let us 
take

2πiI(s, x) =
c∫

∞

rs−1e−πisg(−r) dr

+
π∫

−π

cs−1eiθ(s−1)g(ceiθ)iceiθ dθ +
∞∫
c

rs−1eπisg(−r) dr.

The sum of the integrals along C1 and C3 is equal to

∞∫
c

rs−1g(−r)(eπis − e−πis) dr = 2i sin(sπ)
∞∫
c

rs−1g(−r) dr

=: 2i sin(sπ)I1(s, c),

and the integral along C2 is equal to

ics
π∫

−π

eiθsg(ceiθ) dθ =: icsI2(s, c).

Dividing by 2i, we get

πI(s, x) = sin(sπ)I1(s, c) + cs

2 I2(s, c).

If we take c → 0, we notice that I1(s, c) → Γ(s)ζα(s, x) if σ > 1, where ζα(s, x) is the function defined 
in (4.13), so it only remains to prove that I2(s, c) → 0 as c → 0.

Notice that g(t) is analytic in |t| < s1 except on the simple pole at t = 0. Hence g(t)t is analytic 
everywhere on |t| < s1 and so it is bounded here, say g(t) ≤ A/|t| for some constant A > 0 and |t| = c > 0. 
Therefore we have

|I2(s, c)| ≤
cσ

2

π∫
e−yθ A

c
dθ ≤ Aeπ|y|cσ−1.
−π
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If σ > 1 and c → 0, we find I2(s, c) → 0. In conclusion, for σ > 1,

πI(s, x) = sin(sπ)Γ(s)ζα(s, x),

and finally, using that Γ(s)Γ(1 − s) = π/ sin(πs), we get (5.2). �
Let us give the proof of Theorem 5.2, where we show that the unique singularity of ζα(s, x), such as 

defined in (5.3), is a simple pole at s = 1.

Proof of Theorem 5.2. Since I(s, x) is entire, the only possible singularities of ζα(s, x) are the poles of 
Γ(1 − s), that is, the points s = 1, 2, 3, . . . But ζα(s, x) is analytic for s > 1, so s = 1 is the only possible 
pole of ζα(s, x).

If s is any integer, say s = n, the integrand in the contour integral for I(s, x) takes the same values on 
C1 as on C3, and hence the integrals along C1 and C3 cancel, leaving, by Cauchy’s residue theorem,

I(n, x) = 1
2πi

∫
C2

Eα(xt)
Eα(−t) − Eα(t) t

n−1 dt = Rest=0

( Eα(xt)
Eα(−t) − Eα(t) t

n−1
)
.

In particular, when s = 1 we have

I(1, x) = Rest=0

( Eα(xt)
Eα(−t) −Eα(t)

)
= − lim

t→0

tEα(xt)(α + 1)
Iα+1(t)t

= −(α + 1).

To find the residue of ζα(s, x) at s = 1 we compute the limit

lim
s→1

(s− 1)ζα(s, x) = − lim
s→1

(1 − s)Γ(1 − s)I(s, x) = −I(1, x) lim
s→1

Γ(2 − s) = α + 1.

This proves that ζα(s, x) has a simple pole at s = 1 with residue α + 1. �
Now that Theorem 5.1 is proved, we can obtain the expression of ζα(−n, x), for n = 0, 1, 2, . . . related 

to the Bernoulli-Dunkl polynomials:

Proof of Theorem 5.3. Evaluating at s = −n in (5.1) we get ζα(−n, x) = n! I(−n, x). Applying Cauchy’s 
residue theorem, we have

I(−n, x) = Rest=0

(
Eα(xt)

Eα(−t) −Eα(t) t
−n−1

)
= Rest=0

(
−(α + 1) Eα(xt)

Iα+1(t)
t−n−2

)

= −(α + 1)Rest=0

(
t−n−2

∞∑
m=0

Bm,α(x)
γm,α

tm

)

= −(α + 1) lim
t→0

(
t−n−1

∞∑
m=0

Bm,α(x)
γm,α

tm

)
= −(α + 1)Bn+1,α(x)

γn+1,α
. �

Now we are ready to prove the convergence of the Lerch-Dunkl zeta function F(x, s) defined in (5.7), 
and the Hurwitz-Dunkl formula:

Proof of Theorem 5.4. We begin by proving the convergence of (5.7), with Re(s) > 1, for x ∈ R. For real 
values of the variable, we have

Jα(t)2 + Jα+1(t)2 = 2 (1 + o(1)), t → ∞,

πt
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0•

isN•

isN+1•

−isN•

−isN+1•

Fig. 3. The contour C(N) from (7.8).

so limn s
1/2
n |Jα(sn)| =

√
2/π, and consequently

|Iα(ism)| ∼ Cs−α−1/2
m , t → ∞.

Moreover, |Eα(xism)| ≤ C|xsm|−α−1/2 by (4.2). Then,
∣∣∣∣Eα(xism)
Iα(ism)

1
ssm

∣∣∣∣ ≤ C|x|−α−1/2s−s
m ,

and this guarantees the absolute convergence of (5.7).
To prove (5.8), let us consider the contour integral

IN (s, x) = 1
2πi

∫
C(N)

Eα(xt)
Eα(−t) − Eα(t) t

s−1 dt, (7.8)

where C(N) is the loop shown in Fig. 3. We now denote σ = Re(s).
First we prove that limN→∞ IN (s, x) = I(s, x) if σ < 0. For this it suffices to show that the integral along 

the outer circle tends to 0 as N → ∞.
On the outer circle we have t = Reiθ, −π ≤ θ ≤ π, hence

|ts−1| = |Rσ−1eπi(σ+iy)| = Rσ−1e−yπ ≤ Rσ−1eπ|y|.

Since the outer circle lies in the set S of Lemma 7.1, the integrand is bounded by ARσ−1eπ|y|, where A is 
the bound for g(t) implied by Lemma 7.1; hence, the integral is bounded by 2πARσeπ|y|. This tends to 0
as R → ∞ if σ < 0. Therefore, replacing s by 1 − s, we see that

lim
N→∞

IN (1 − s, x) = I(1 − s, x), if σ > 1.

Since

Eα(xt)
Eα(−t) −Eα(t) t

−s = −Eα(xt)(α + 1)
Iα+1(t)

t−s−1,

the poles of g(t)t−s are just the zeros of Iα+1(t), say ism, m ∈ Z \ {0} (we don’t take into account the pole 
at t = 0 because C(N) doesn’t contain it). We compute IN (1 −s, x) explicitly by Cauchy’s residue theorem. 
We have

IN (1 − s, x) = −
m=N∑
m=−N

R(m) = −
m=N∑
m=−N

Rest=ism

(
Eα(xt)

Eα(−t) −Eα(t) t
−s

)
. (7.9)
m�=0 m�=0
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Now, if m > 0,

−R(m) = lim
t→ism

(t− ism)Eα(xt)(α + 1)
Iα+1(t)

t−s−1

= Eα(xism)(ism)−s−1(α + 1) lim
t→ism

(t− ism)
Iα+1(t)

= Eα(xism)(ism)−s−1(α + 1) 1
I ′
α+1(ism) .

Now, we compute I ′
α+1(ism) as follows. First, let us write Iα(z) = 2αΓ(α + 1)Iα(z)/zα, where Iα is the 

modified Bessel function of the first kind and order α, see [35,28]. We will use the identities (see, for instance, 
[28, 10.29.2])

I ′α(z) = Iα+1(z) + α

z
Iα(z) (7.10)

and

I ′α(z) = Iα−1(z) −
α

z
Iα(z). (7.11)

By (7.10) we have

I ′
α(z) = 2αΓ(α + 1)

(
I ′α(z)
zα

− α
Iα(z)
zα+1

)
= z

2(α + 1) Iα+1(z), (7.12)

and by (7.11) (with α + 1 instead of α) we deduce that

I ′
α+1(z) = 2α+1Γ(α + 2)

(
I ′α+1(z)
zα+1 − (α + 1)Iα+1(z)

zα+2

)

= 2α+1Γ(α + 2)
(
Iα(z)
zα+1 − 2(α + 1)Iα+1(z)

zα+2

)

= 2(α + 1)
z

(Iα(z) − Iα+1(z)).

Hence, I ′
α+1(ism) = 2(α+1)

ism
Iα(ism). Therefore we get, for m = 1, 2, . . . ,

−R(m) = 1
2
Eα(xism)
Iα(ism) (ism)−s. (7.13)

Analogously, for m = −1, −2, . . . , we can compute −R(m) the same way as before, but taking into account 
that s−m = −sm and knowing that Iα(t) is an even function of t. In this case, we get

−R(m) = 1
2
Eα(−xism)
Iα(ism) (−ism)−s. (7.14)

By (7.13) and (7.14) we are able to compute (7.9). Indeed,

IN (1 − s, x) = i−s

2

N∑
m=1

Eα(xism)
Iα(ism)ssm

+ (−i)−s

2

N∑
m=1

Eα(−xism)
Iα(ism)ssm

.

Writing i−s = e−πs/2 and (−i)−s = eπs/2 and taking N → ∞ we get
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I(1 − s, x) = 1
2

(
e−πsi/2

∞∑
m=1

Eα(xism)
Iα(ism)ssm

+ eπsi/2
∞∑

m=1

Eα(−xism)
Iα(ism)ssm

)
.

Since ζα(1 − s, x) = Γ(s)I(1 − s, x), if we call F(x, s) =
∑∞

m=1
Eα(xism)
Iα(ism)ssm

we finally get the Hurwitz-Dunkl 
formula (5.8). �

The Hurwitz-Dunkl formula gives us an expression for ζα(s, x) free of the intricate integrals. With it, we 
can easily prove Theorem 5.5.

Proof of Theorem 5.5. Taking x = 1 in the Hurwitz-Dunkl formula (5.8), we get F(1, s) =
∑∞

m=1 1/ssm, 
since Eα(±ism) = Iα(ism). Hence,

ζα(1 − s) = ζα(1 − s, 1) = Γ(s)
2

∞∑
m=1

1
ssm

(
e−πsi/2 + eπsi/2

)
= Γ(s) cos

(πs
2

) ∞∑
m=1

1
ssm

.

Changing 1 − s for s we get the equivalent expression in terms of sin(x). �
7.2. The Euler-type Dunkl zeta function case

Now we prove the analogous results for ζE,α(s, x) and ζE,α(s).

Lemma 7.2. Let {jm}∞m=1 be the positive zeros of Jα(t) and let S = C \ {0,±ij1,±ij2, . . . }. Then for 
x ∈ [−1, 1] \ {0}, the function

h(t) = Eα(xt)
Eα(−t) + Eα(t)

is bounded on compact subsets of S and compact subsets of x ∈ [−1, 1] \ {0}. Furthermore, if α < 1/2, then 
for x = 0 the function h(t) is bounded on compact subsets of S.

Proof. We start again by taking a large circle D = {z ∈ C : |z| = A} of radius A with the only condition 
that none of the points jm, m ∈ Z \ {0}, must lie on D. The poles of h(t) inside D are jm, with |jm| < A, 
and all of them are simple. For any compact set K ⊂ [−1, 1] \ {0} the radius A can be chosen with the 
additional property that there exist c, C > 0 such that, for any t ∈ D and x ∈ K, equations (7.1), (7.5)
and (7.6) are satisfied. Hence, we have

∣∣∣∣ Eα(xt)
Eα(−t) + Eα(t)

∣∣∣∣ =
∣∣∣∣Eα(tx)
2Iα(t)

∣∣∣∣ =
∣∣∣∣Iα(tx)
2Iα(t) + xtIα+1(tx)

4(α + 1)Iα(t)

∣∣∣∣
=

∣∣∣∣Jα(itx)i + Jα+1(itx)
2xαJα(it)

∣∣∣∣ ≤ c̃
e(|x|−1)|Re(t)|

|x|α−1/2

for some constant c̃ depending only on α and K. This proves the result for x ∈ [−1, 1] \ {0}. Finally, we 
consider the particular case x = 0. As Eα(0) = 1, it follows that

|h(t)| =
∣∣∣∣ 1
2Iα(t)

∣∣∣∣ ≤ c̃
|t|α+1/2

e|Re(t)| ,

which is bounded, when |t| ≥ A, if α < 1/2. Hence, for x = 0, h(t) is bounded on S if α < 1/2. �
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Proof of Theorem 5.8. The proof is identical to the one of Theorem 5.1 but using the bound of Lemma 7.2
instead. �
Proof of Theorem 5.9. The convergence of FE(x, s), for x ∈ R, can be proved as in the case of Theorem 5.4, 
this time with |Iα+1(jm)| ∼ C|jm|−α−1−1/2, so

∣∣∣∣ Eα(ijmx)
Iα+1(ijm)

1
js+1
m

∣∣∣∣ ≤ C|x|−α−1/2j−s
m ,

and the converges is again for Re(s) > 1.
To prove (5.14), let us now consider

IN (s, x) = 1
2πi

∫
C(N)

Eα(xt)
Eα(−t) + Eα(t) t

s−1 dt

with C(N) the loop of Fig. 3. On the outer circle the integrand is bounded by ARσ−1eπ|y|, where A is 
the bound for h(t) implied by Lemma 7.2; hence, the integral is bounded by 2πARσeπ|y|. If σ < 0 the 
integral IN (s, x) → 0 along the outer circle of C(N) when R → ∞. Hence, replacing s for 1 − s, we get 
limN→∞ IN (1 − s, x) = IE(1 − s, x) for σ > 1. We compute IN (1 − s, x) by Cauchy’s residue theorem. Let 
m = 1, 2, . . . We compute the residue at t = ijm using (7.12):

−R(m) = −Rest=ijm

(
Eα(xt)
2Iα(t) t

−s

)
= − lim

t→ijm
(t− ijm)

(
Eα(xt)
2Iα(t) t

−s

)

= −Eα(ijmx)
2I ′

α(ijm) (ijm)−s = − (α + 1)Eα(ijmx)
Iα+1(ijm) (ijm)−s−1.

Also, when m = −1, −2, . . . , we have

−R(m) = − (α + 1)Eα(−ijmx)
Iα+1(−ijm) (−ijm)−s−1.

Then,

IN (1 − s, x) = −
N∑

m=−N
m�=0

R(m) = −
N∑

m=−N
m�=0

(α + 1)Eα(ijmx)
Iα+1(ijm) (ijm)−s−1.

Letting N → ∞, we get (5.14). �
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