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Abstract
Automatic yield monitoring and in-field robotic harvesting by low-cost cameras require 
object detection and segmentation solutions to tackle the poor quality of natural images 
and the lack of exactly-labeled datasets of consistent sizes. This work proposed the appli-
cation of deep learning for semantic segmentation of natural images acquired by a low-
cost RGB-D camera in a commercial vineyard. Several deep architectures were trained and 
compared on 85 labeled images. Three semi-supervised learning methods (PseudoLabe-
ling, Distillation and Model Distillation) were proposed to take advantage of 320 non-anno-
tated images. In these experiments, the DeepLabV3+ architecture with a ResNext50 back-
bone, trained with the set of labeled images, achieved the best overall accuracy of 84.78%. 
In contrast, the Manet architecture combined with the EfficientnetB3 backbone reached the 
highest accuracy for the bunch class (85.69%). The application of semi-supervised learning 
methods boosted the segmentation accuracy between 5.62 and 6.01%, on average. Further 
discussions are presented to show the effects of a fine-grained manual image annotation on 
the accuracy of the proposed methods and to compare time requirements.

Keywords Semantic segmentation · Semi-supervised learning · Grape bunches · Natural 
images · Agricultural robot sensing

Introduction

Sustainability is a crucial goal that involves ecological, economic and social concerns to 
impact the health of present and future societies. Scientific progress has developed new 
automatic tools to assist the human workforce by integrating artificial intelligence and 
robotics to meet such high-level needs. These efforts affect all production fields but, signifi-
cantly, agriculture, whose improvement needs to face sustainability-related topics, such as 

 * R. Marani 
 roberto.marani@stiima.cnr.it

1 Department of Mathematics and Computer Science, University of La Rioja, Logroño, Spain
2 Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National 

Research Council of Italy, Bari, Italy

http://orcid.org/0000-0002-5599-903X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11119-022-09929-9&domain=pdf


2002 Precision Agriculture (2022) 23:2001–2026

1 3

finite resource management, yield optimization and pest control. In general, every sustain-
able goal can require actual crop monitoring by implementing low-cost technologies (cam-
eras) and reliable methodologies (machine and deep learning techniques) in engineered 
solutions (Saleem et al., 2021). These requirements translate into the need for developing 
image acquisition and processing systems for extracting helpful information for the farmer. 
At a low level, systems must identify specific targets by applying semantic inference mech-
anisms, including image classification or segmentation.

In general, crop monitoring without physical contact of the targets can be clustered in 
remote and proximal sensing, depending on the sensor-plant distance and, thus, the level 
of details of the achievable information. Remote sensing typically refers to aerial imaging 
from satellites, unmanned aerial vehicles (UAVs) or airplanes. UAVs are equipped with 
imaging sensors, such as hyperspectral, LIDAR and RGB cameras (Adão et al., 2017; Kim 
et  al., 2019), to compute vegetation indicators, e.g. the normalized difference vegetation 
index (NDVI) or canopy size and volume (Zhou et al., 2020) or to create semantic maps 
of the fields (Dyson et  al., 2019; Guo et  al., 2018; Osco et  al., 2021; Wu et  al., 2019; 
Yang et al., 2020a). In proximal sensing, acquisitions are taken from the ground, close to 
the target, and with more details. Typical sensors include color, hyperspectral and infrared 
(IR) thermal cameras and LIDAR (Das et al., 2015; Tian et al., 2020a), targeted to object 
segmentation, fruit counting, phenotype analysis, plant classification and disease monitor-
ing (Jiang et al., 2019; Ma et al., 2017; Yang et al., 2020b). In proximal sensing, data can 
be collected in structured and well-controlled environmental contexts, such as greenhouses 
(Afonso et al., 2020; Sa et al., 2016), or under excellent acquisition conditions, typically 
manual, with high-resolution sensors (Mack et  al., 2017). Referring to extensive crops, 
the practical implementation of proximal sensing is achievable through agricultural robots 
working in-field. However, any approach to extensive monitoring must face the actual 
problems of in-field raw image data (natural images), such as low resolution, motion blur-
ring, occlusions and uncontrolled lighting conditions.

The processing of natural images captured from ground robotic platforms, and more 
specifically the semantic segmentation of images, has been proposed mainly for weed 
detection (Bosilj et al., 2020; Knoll et al., 2018; Milioto et al., 2018; Wang et al., 2020a), 
even sharing the same input dataset (Chebrolu et  al., 2017) and a common process-
ing background, centered on deep learning (LeCun et al., 2015). More specifically, input 
images, which are often reported in terms of NDVI, are processed by convolutional neural 
networks (CNNs) for pixel or area classification, trained from scratch or by applying trans-
fer learning (Tan et al., 2018). Deep learning is often used to segment objects of interest, 
such as fruits, leaves, infrastructures (wires and poles) and single branches (Naranjo-Torres 
et  al., 2020; Wosner et  al., 2021). In horticulture, several methodologies have been pre-
sented for monitoring fruit orchards through flower classification for thinning (Tian et al., 
2020b), fruit classification for automatic harvesting (Gao et al., 2020) and segmentation of 
supporting infrastructures, such as wires (Song et al., 2021).

Automatic procedures for object segmentation are even more attractive in those areas 
of horticulture of high added value, such as viticulture (Barriguinha et  al., 2021). Here, 
monitoring at the plant scale allows vine-growers to understand possible spatial variabili-
ties and find fine-tuned solutions. For instance, Majeed et al. (2020) presented a ResNet 
deep residual network and region-based convolutional neural network to detect green 
shoots in grapevine canopies and precisely segment the trajectories of cordons for thinning 
purposes. Grape cluster and canopy segmentation using an artificial neural network and a 
genetic algorithm on images of a publicly available dataset (Berenstein et al., 2010) were 
proposed by Behroozi-Khazaei and Maleki (2017), while Santos et al. (2020) presented a 
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comparison of three neural networks for instance segmentation of grape clusters tested on 
their public dataset (Embrapa Wine Grape Instance Segmentation Dataset - WGISD) of 
RGB images captured from a mobile robot.

In any of the cases above, all sensors are standard RGB cameras, which provide a 
flat 2D representation of the targets. In contrast, RGB-D cameras, able to produce three-
dimensional (3D) colored models of the crops, can give more information, helpful for fruit 
monitoring and counting (Fu et al., 2020a). Several technologies, including complex set-
ups of dedicated 3D cameras (Barnea et al., 2016; Gongal et al., 2016) or integrated low-
cost consumer-grade cameras, such as the Microsoft Kinect v1 and v2 cameras (Redmond, 
WA, USA) (Fu et al., 2020b; Nguyen et al., 2016; Paulus et al., 2014; Tao & Zhou, 2017; 
Zhang et  al., 2018), have been used for plant phenotyping, fruit counting and automatic 
robotic harvesting. Even low-cost stereo cameras, such as those of the Intel Realsense 
family (R200 and D4xx, Santa Clara, CA, USA), have gained attention in fruit detection 
and plant phenotyping (Milella et al., 2019) since they can effectively model the outdoors 
without suffering from illumination variability due to sunlight (Kuan et al., 2019). Several 
works processing color images acquired by the Intel RealSense R200 and D435 for object 
segmentation have been presented (Kang & Chen, 2020; Marani et al., 2021; Wang et al., 
2020b). Although RGB-D cameras help yield monitoring, output color images are often 
of low quality and resolution due to the actual scope of such low-cost cameras, which are 
mainly designed for robot navigation, mapping and manipulation. Natural image segmenta-
tion from color data is still an open problem since its effective solution enables the effec-
tive use of the depth channel.

In this scenario, this paper extends previous work by Heras et al. (2021) for the exact 
segmentation of plant leaves and wooden structures (trunks, branches, canes, etc.), arti-
ficial infrastructures (poles, ropes, cables, etc.) and fruits. Here, multiple network archi-
tectures were compared to find the best solution for natural image segmentation. Even a 
refined ground truth was considered to further improve the quality of segmentation. The 
original contribution of the paper is manifold:

1. The analysis of three semi-supervised learning models to contrast the small size of the 
annotated dataset by taking advantage of unlabeled images;

2. A detailed comparison of several pre-trained deep neural networks (architectures and 
backbones) for processing images of low-quality, affected by blurring and compression 
artifacts, as captured by consumer-grade devices mounted onto moving agricultural 
vehicles;

3. A statistical analysis to identify significant differences among the deep learning models 
studied and the semi-supervised learning methods;

4. A comprehensive discussion on the quality of manual image annotation and how it can 
affect segmentation.

Materials and methods

Input dataset

This work tackled the problem of segmentation of single natural images captured in-field 
by the low-cost consumer-grade Intel Realsense R200 camera (Santa Clara, CA, USA). 
Semantic segmentation is the classification of every pixel of an image among target classes 
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of interest. In viticulture, segmenting specific targets, such as leaves, fruits, wooden struc-
tures (trunks, branches, canes, etc.) and artificial infrastructures (poles, ropes, cables, etc.) 
can be the key for yield monitoring and robotic harvesting.

Several techniques for natural image segmentation were tested on the dataset by 
Marani et  al., (2019, 2021). This dataset consists of 405 color images acquired by the 
Intel Realsense R200 in a vineyard in Switzerland (Räuschling, (N47° 14′ 27.6″, E8° 48′ 
25.2″)). The camera was mounted on a moving agricultural tractor (Niko Caterpillar, Bühl/
Baden, Germany) and acquired lateral views of the line of the grape plants at a distance 
between 0.8 and 1 m. Under those conditions, every image covered a horizontal field of 
view between 0.9 and 1.2 m to completely frame every plant in a single image. The trac-
tor moved within lines at an average speed of 1.5 m/s. Image frame rate was then tuned 
according to the robot speed and the horizontal field of view of the camera to frame the 
same plant in at least three consecutive captures. A camera frame rate of 5 Hz was enough 
to produce image overlaps, corresponding to about 0.3 m. The image resolution was lim-
ited to 640 × 480 pixels to match the maximum resolution of the depth data stream. It is 
worth noticing that, although video sequences were produced to create overlaps, the pro-
posed implementations did not take advantage of object tracking strategies, like the one of 
Santos et al. (2020). All methodological approaches considered images individually, with-
out managing multiple detections of the same elements. A sample image of the dataset is 
shown in Fig. 1.

As shown in Fig. 1, the resulting images are poor in detail and clearness. As the effect of 
the movement of the tractor and the low quality of both camera sensor and optics, images 
suffer from blurring, soft hue and weak contrast. Moreover, the JPEG compression further 
decreased the quality of the acquisition. For example, the inset of Fig. 1 shows how similar 
the appearance of the foreground grape bunches and the background small leaves are.

The automatic segmentation of natural images is achieved by representing them in 
more descriptive and discriminative feature spaces, learned from actual images, where 
pixels having similar semantic attributes can be grouped and labeled in different classes. 

Fig. 1  a A sample color image acquired by the Intel Realsense R200. b and c are magnifications of the area 
enclosed by the yellow and cyan boxes, respectively
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A set of annotated images is thus required to train the model and then evaluate the seg-
mentation results on ground truth.

Manual annotation is a complex, time-demanding and tedious task. For this reason, 
annotation is typically limited to a small subset of all the images acquired in-field. How-
ever, unlabeled images were captured under the same experimental conditions and could 
give further information to tune the training of the networks using semi-supervised 
approaches.

The whole dataset of 405 natural color images from the Intel Realsense R200 camera 
was thus split into two sets of 85 manually annotated images and 320 unlabelled images. 
The 20–80 proportion was chosen to give more evidence to the improvement of results 
due to the semi-supervised approaches.

Within these lines, images were processed to segment five classes of interest:

• Bunch: bunches of white grapes;
• Pole: supporting infrastructure made of concrete or metal poles;
• Wood: canes, cordons and trunks of the plant;
• Leaves: canopy leaves of the grape; and,
• Background: the remaining objects framed by the camera, such as the ground, the 

sky and far grape lines.

Manual annotation was performed twice on the same images to produce two sets of 
labels:

• Bunch/leaves-detection-oriented (BLDO) labels: BLDO labels were the same as in 
Milella et  al. (2019) and Marani et  al., (2019, 2021) and were mainly focused on 
the bunch and leaves segmentation. The corresponding ground truth was obtained 
for each image, giving different priority levels to each class. First, bunches were 
annotated as closed objects, even if their appearance slightly differed from what was 
expected as the effect of a crossing object or image artifacts. Then, plant leaves, 
poles and wooden structures were annotated with the same strategy but with decreas-
ing priority levels. The background was the last labeled class, enclosing the remain-
ing pixels; and,

• Object-segmentation-oriented (OSO) labels: OSO labels were created for an object 
segmentation task, as typically referred to in the corresponding literature. Annota-
tion gave equal priority to every class to label objects as they appeared in the image.

An insight into the difference between the two kinds of labels is shown in Fig.  2. 
Specifically, all wooden structures or supporting infrastructures, i.e. poles, have more 
weight and are better detailed since they are no longer included in the leaves class. In 
the following lines, all analyses were run on BLDO labels for enabling the comparison 
with previous results in Marani et al., (2019, 2021). Then, further experiments on the 
best models, trained by OSO labels, are presented to discuss the importance of manual 
labeling for accurate segmentation results.

The whole datasets, made of in-field natural images and corresponding labels (BLDO 
and OSO), can be downloaded for further comparative tests at the following webpage: 
https:// github. com/ ispst iima/ S3Cav Viney ardDa taset.

Once the dataset and its annotations have been presented, the following subsections 
detail the network architectures and the semi-supervised algorithms.

https://github.com/ispstiima/S3CavVineyardDataset
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Semantic segmentation models

As stated in the previous section, the 85 labeled images, split into training and test sets, 
were used to set up and evaluate the deep segmentation architectures. The training set was 
used to fine-tune several deep-learning segmentation architectures (Razavian et al., 2014) 
to produce inference on natural images in the form of output masks. With more details, 
13 architectures, summarized in Table 1, were trained. All the selected architectures were 
based on either fully convolutional networks (FCN) (Long et al., 2015) or encoder-decoder 
networks (Ronneberger et al., 2015).

FCN architectures extract features from a given image using a backbone of convolu-
tional layers and generate an initial coarse classification map. The classification map is a 
spatially reduced version of the original image. Then, deconvolutional layers restore the 

Fig. 2  Annotations of the image in Fig.  1a: a bunch/leaves-detection-oriented labels as in Marani et  al., 
(2019, 2021); b object-segmentation-oriented labels, resulting in a fine refinement of the BLDO labels in 
(a)

Table 1  Segmentation 
architectures and backbones 
employed in this work

Segmentation architecture Backbones

Bisenet Resnet18, Resnet34
CGNet CGNet
ContextNet ContextNet
DeepLabV3+ EfficientNet-B3, Resnet50, Resnext50
DenseApp DenseApp
FPENet FPENet
HRNet W30
Manet EfficientNet-B3, Resnest50, Resnet50
LedNet Resnet50
PAN EfficientNet-B3, Resnet50
OCNet Resnet50
Unet EfficientNet-B3, Resnest50, Resnet50
Unet++ EfficientNet-B3, Resnest50, Resnet50
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original resolution of the classification map to output the final segmentation mask. The 
main two drawbacks of this architecture are the loss of information when working with 
high-resolution images and its speed. For tackling the high-resolution problem, in the 
HRNet architecture (Sun et al., 2019), high-resolution representations were maintained 
by connecting high-to-low resolution convolutions in parallel and repeatedly conducting 
multi-scale fusions across parallel convolutions. Atrous convolutions were instead used 
in the DenseApp architecture (Yang et al., 2018) to face the same resolution issue. For 
tackling the problem of the high time requirements, the ContextNet architecture (Poudel 
et al., 2018) used factorized convolution, network compression and pyramid representa-
tion, while the CGNet architecture (Wu et al., 2018) employed a context-guided block.

In the encoder-decoder architectures, the encoder is usually made of several convolu-
tional and pooling layers responsible for extracting the features and generating an initial 
coarse prediction map. In these architectures, the encoder is known as the backbone. 
The decoder, commonly composed of convolution, deconvolution and/or unpooling lay-
ers, is responsible for further processing the initial prediction map, increasing its spatial 
resolution gradually and generating the final prediction. The Unet architecture (Ron-
neberger et al., 2015) was the first network to propose an encoder-decoder architecture 
to perform semantic segmentation in medical contexts. From that seminal work, several 
variants have been proposed to address the two main limitations of the Unet architecture 
that are the same as previously mentioned for the FPN architecture: the loss of infor-
mation when working with high-resolution images and its speed. Regarding the issues 
related to the use of images of high-resolution:

• the DeepLabV3+ (Chen et  al., 2018) architecture introduced the notion of atrous 
convolutions to extract features at an arbitrary resolution;

• the PAN architecture (Li et al., 2018) adopted global attention upsample module to 
squeeze high-level context and embedded it into low-level features as guidance;

• the FPENet architecture (Liu & Yin, 2019) defined a MEU module that used atten-
tion maps to embed semantic concepts and spatial details to low-level and high-level 
features; and,

• the Unet++ architecture (Zhou et al., 2018) redesigned the connection between the 
encoder and the decoder components of the architecture.

Referring to the speed issue:

• the Bisenet architecture (Yu et al., 2018) proposed a fast downsampling strategy to 
obtain a sufficient receptive field; and,

• the LedNet architecture (Wang et al., 2019) employed an attention pyramid network 
in the decoder.

All the aforementioned architectures are based on convolutional operations. In addi-
tion, two other architectures based on the attention mechanism, namely OCNet (Yuan & 
Wang, 2018) and Manet (Li et al., 2020), were considered.

All the architectures with their respective backbones presented in Table  1 were 
trained using the PyTorch (Paszke et al., 2019) and FastAI (Howard & Gugger, 2020) 
libraries on an Nvidia RTX 2080 Ti GPU (Santa Clara, CA, USA). The procedure pre-
sented in Howard and Gugger (2020) was employed to set the learning rate for the dif-
ferent architectures. Also, early stopping was applied in all the architectures to avoid 
overfitting.
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After training, all the models were then evaluated on the test set of 25 annotated images 
using the mean segmentation accuracy of the c-th class  (MSAc):

where  TPc is the number of true positives, i.e. correct pixel labels over the entire popula-
tion of the c-th class  (nobs,c) (Marani et al., 2021).

All the code necessary for training the models is available at https:// github. com/ ancas 
ag/ Grape Bunch Segme ntati on.

Semi‑supervised learning methods

As stated in the previous section, the dataset contains 320 additional unlabeled images. 
In this case, semi-supervised learning approaches can help the training phase by adding 
more information from unlabeled images. For this reason, three semi-supervised learning 
approaches were employed: PseudoLabeling (Lee, 2013), Distillation (Hinton et al., 2015) 
and Model distillation (Bucilua et al., 2006). Figure 3 presents a sketch of each of these 
semi-supervised learning methods.

The pseudoLabeling approach consists of two steps: given a deep learning architecture, 
a first model is trained using that architecture on a manually labeled dataset to make pre-
dictions in an unlabeled dataset; secondly, the manually and automatically-labeled datasets 
are combined to train a new model using the same previous architecture. This pseudola-
beling approach was applied to all the architectures presented in the last section (Table 1).

The distillation approach is similar to pseudolabeling, but in the second step, the trained 
model might have a different underlying architecture than the model trained on the first 
step. In this case, all the models of Table 1 were trained using the training procedure pre-
sented in the previous sections, but only the best model was used for generating the auto-
matically labeled dataset. Then, both sets (manually and automatically labeled) were com-
bined to re-train all the architectures in Table 1.

Finally, model distillation differs from the distillation approach in producing the auto-
matically labeled dataset. Instead of using a single model for making predictions in an 
unlabeled dataset, predictions are generated from an ensemble of models. In this approach, 
the five models with the best total MSA produced the predictions on the unlabeled dataset, 
which were then combined to create single images. Finally, as in the previous approaches, 
the manually and automatically-labeled datasets were used to train all the architectures pre-
sented in the last section.

Experimental study

In addition to searching for the best-performing model, a statistical study was conducted 
to determine whether the results obtained with the different semi-supervised learning 
approaches were statistically significant. To this aim, several null hypothesis tests were 
performed using the methodology presented by García et  al (2010) and Sheskin (2011). 
In order to choose between a parametric or a non-parametric test to compare the mod-
els, three conditions were checked: independence, normality and heteroscedasticity. If all 
three conditions were satisfied, the use of a parametric test was appropriate (Garcia et al., 
2010). This study fulfilled the independence condition since each semi-supervised learning 

(1)MSAc = mean

{

TPc

nobs,c
,∀image ∈ Dataset

}

https://github.com/ancasag/GrapeBunchSegmentation
https://github.com/ancasag/GrapeBunchSegmentation
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approach was independent of the others. Normality was checked by the Shapiro–Wilk test 
(Shapiro & Wilk, 1965), where the null hypothesis consisted of the normal of the data. 
Finally, the heteroscedasticity was checked by the Levene test (Levene, 1960), where the 
null hypothesis was that the results are heteroscedastic.

Fig. 3  Schemes of the semi-supervised approaches presented in this analysis: a pseudolabeling, b distilla-
tion and c model distillation. Yellow, blue and green arrows refer to the processes of dataset union between 
manual and automatically labeled datasets, model training on the corresponding training set and prediction 
of the input images with the model crossed by the arrow, respectively. The models enumerated from 1 to N 
represent the architectures and backbones of Table 1
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Since more than two training approaches were compared, an ANOVA test was used 
when parametric conditions were fulfilled, while a Friedman test was used otherwise (She-
skin, 2011). In both cases, the null hypothesis was that all the training approaches had 
the same performance. After checking which method was statistically better than the oth-
ers, a post-hoc procedure was employed to address the multiple hypothesis testing among 
the different approaches. A Holm post-hoc procedure (Holm, 1979), in the non-parametric 
case, or a Bonferroni-Dunn post-hoc procedure (Sheskin, 2011), in the parametric case, 
was used for detecting the significance of the multiple comparisons (Garcia et al., 2010; 
Sheskin, 2011) and whether the p-values should be corrected and adjusted. The level of 
confidence of the experimental analysis was set to 0.05. In addition, the size effect was 
measured using Cohen’s d (Cohen, 1969) and Eta Squared (Cohen, 1973).

Results and discussion

The performance of the trained networks (both by applying and without applying the semi-
supervised learning methods) was first evaluated considering an independent test set of 
25 images. Performance was first assessed using the BLDO labels to compare the results 
with those in Marani et al. (2021), where several classification networks (namely, AlexNet, 
GoogleNet, VGG16 and VGG19) were implemented to construct probability maps from 
image patches generated using a sliding window. Then, the best models were trained and 
tested using the OSO labels to show the influence of manual annotation on the segmenta-
tion results. Finally, the time performance on inference time of the different architectures 
was analyzed.

Evaluation of the semi‑supervised learning methods

All but two deep segmentation networks trained without semi-supervised learning meth-
ods, see Table 2, outperformed the approach presented in Marani et  al. (2021). Namely, 
the total MSA (average of the five  MSAc values) of the best segmentation model improved 
by more than 15%, and the bunch MSA more than 5%. It is worth mentioning that the 
approach presented in Marani et al. (2021) was aimed to help only the segmentation of the 
bunch class. For this reason, the improvement in the segmentation of the bunch class was 
lower than the one of the other classes, which was much more considerable.

If the segmentation networks were compared, there were four networks (DeepLabV3+-
ResNext50, Manet-EfficientnetB3, Manet-Resnest50 and Unet++-ResNet50) with a total 
MSA of over 84%. Among them, the DeepLabV3+-ResNext50 showed better segmentation 
accuracy than the other networks. With the focus on the bunch class, the DeepLabV3+-
ResNext50 and the Manet-EfficientnetB3 networks shined before the others achieving an 
MSA over 85% for that class. The Pan-Resnet50 model produced the best segmentation of 
the leaves, while the Unet++-ResNet50 model outperformed the others for the pole class 
and the Manet-Resnest50 model for the wood class. This illustrates the importance of test-
ing different architectures since they focus on various aspects of the images. Therefore, 
they can be employed with different aims. For instance, if the final objective is measuring 
the production of grape bunches, DeepLabV3+-ResNext50 or Manet-EfficientnetB3 mod-
els should be used since they provided the best accuracy for the bunch class. In contrast, 
if this segmentation aims at trimming, Manet-Resnest50 model should be used since it 
offered the best accuracy for the wood class.
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In addition to the raw numbers, several conclusions can be drawn by observing the seg-
mentations of the best model for each class in Fig. 4. For the same image, even if all the 
models achieved a mean bunch segmentation accuracy of over 80%, only the Manet-Effi-
cientnetB3 model could detect three of the four grape bunches. In addition, some leaves 
partially occluded the last bunch, making segmentation difficult since that region was seg-
mented as either background or leaves by all the models.

The impact of the different semi-supervised learning methods for the networks studied 
is provided in Table 3—the results of the semi-supervised methods for each class are in 
the appendix. At the same time, Fig. 5 shows the effects of applying these approaches on 
the segmentation mask output of the DeepLabV3+-ResNext50, which produced the best 
total MSA with plain training. From Fig. 5, it can be noticed that the segmentations made 
by using the semi-supervised learning methods were less noisy than those produced by 
the original models. This happens because the semi-supervised methods helped to smooth 
the predictions. It is also worth mentioning that training using semi-supervised learning 

Table 2  Mean segmentation accuracy (percentage) computed on test images of the deep learning models 
trained by the manually labeled dataset

Results in bold are the best

Network Background Leaves Pole Bunch Wood Total

AlexNet 76.91 74.32 54.86 74.80 66.77 69.52
GoogleNet 69.61 72.80 51.55 74.41 59.09 65.49
VGG16 76.71 74.82 76.46 73.73 47.13 69.77
VGG19 80.53 68.99 76.05 80.58 36.97 68.63
Bisenet-ResNet18 86.26 73.27 82.43 81.99 82.75 81.60
Bisenet-ResNet34 83.46 77.55 83.80 83.54 84.01 82.93
CgNet 84.80 73.46 82.03 82.10 82.34 81.33
ContextNet 81.18 75.85 82.48 82.21 82.60 81.42
DeepLabV3+-EfficientnetB3 82.92 79.04 84.15 83.75 84.46 83.31
DeepLabV3+-ResNext50 85.23 80.67 85.31 85.09 85.85 84.78
DeepLabV3+-ResNet50 79.59 68.30 78.25 78.02 78.54 77.13
DenseApp 87.21 67.29 79.19 78.84 79.72 78.59
FPENet 15.05 39.10 28.87 28.28 28.63 28.49
HRNet 90.42 73.93 83.37 83.24 83.93 83.08
LedNet 82.89 69.93 80.35 80.13 80.28 79.20
Manet-EfficientnetB3 84.63 80.19 85.36 85.69 85.45 84.69
Manet-Resnest50 84.48 79.74 85.01 84.67 86.02 84.42
Manet-Resnet50 81.07 78.98 84.85 84.51 85.17 83.63
OCNet 82.67 76.69 82.65 82.59 83.45 82.06
Pan-EfficientnetB3 81.33 76.45 82.28 82.11 82.51 81.44
Pan-Resnet50 79.95 82.09 84.45 84.04 84.72 83.58
Unet-EfficientnetB3 84.94 70.93 82.27 82.04 82.62 81.09
Unet-Resnest50 86.93 66.02 80.18 80.04 80.64 79.15
Unet-Resnet50 87.91 73.20 82.68 82.29 83.76 82.20
Unet++-EfficientnetB3 87.18 76.72 83.83 83.85 84.59 83.49
Unet++-ResNest50 20.76 71.58 50.68 50.61 50.85 50.03
Unet++-ResNet50 85.40 78.92 85.57 84.60 85.22 84.35
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methods could help detect objects, like grape bunches in the pseudolabeling approach of 
Fig. 5, that were not previously seen by the models trained only with the manually anno-
tated data.

With more details, the pseudolabeling approach produced a mean improvement of 
5.62% (with a standard deviation of 13.04%). Only four networks got worse results using 
this training approach while, in some cases, namely for the FPENet model in Fig. 6, the 
improvement was over 55%. In Fig.  6, grape bunches and other objects that were not 
segmented with the initial FPENet model were correctly detected using the FPENet ver-
sion trained with the pseudolabeling approach. Similarly, the distillation method pro-
duced a mean improvement of 6.01% (with a standard deviation of 12.91%), with only 
two networks having worse results. Finally, the model distillation method also considerably 
improved the performance of the models (a mean of 5.80% with a standard deviation of 
12.90%). However, this improvement was slightly lower than the distillation approach.

As stated before, a statistical analysis was performed to determine significant dif-
ferences among the training procedures. Since the normality condition was not fulfilled 
(Shapiro–Wilk’s test W = 0.313172; p = 0.000000), Friedman’s non-parametric test 
was employed to compare the training procedures. Friedman’s test performed a ranking 
of the training procedures under comparison (see Table  4), assuming as null hypothesis 
that all the models have the same performance. In this case, significant differences arised 

Input 
image

Ground 
Truth

Pan-
Resnet50
(Leaves)

Unet++-
ResNet50
(Pole)

Manet-
Efficientn
etB3
(Bunch)

Manet-
Resnest50
(Wood)

Fig. 4  Example of the segmentation results using the best model for each class
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(F = 15.66; p < 8.48e−8) with a large size effect eta squared 0.13. The distillation method 
produced the best models. Moreover, looking at the standard deviation values of Table 4, 
the performance variability produced by the distillation approach is considerably reduced 
compared with plain training. Consequently, models can be trained more efficiently but can 
lead to poor results if only manually annotated data is used.

Table 5 shows the results of the application of the Holm algorithm to compare the con-
trol training procedure (winner, based on distillation) with all the other training approaches, 
adjusting the p-value. Results proved significant differences between the semi-supervised 
learning procedures and the plain training approach, while all the semi-supervised learning 
methods produced the same outcomes. The size effect was also taken into account using 
Cohen’s d, and, as shown in Table 5, it is medium or large when the winning approach was 
compared with the rest of the models.

In summary, semi-supervised learning methods provided a considerable boost to all seg-
mentation models without requiring the annotation of additional images. Providing precise 
annotations was a time-consuming task, and, therefore, reducing the annotation load could 
help the adoption of deep learning methods. However, deep learning models can only learn 
what is provided in the annotations. For segmentation tasks in agriculture, several small 
objects are annotated as background, making unfeasible their automatic segmentation, even 

Table 3  Total mean segmentation accuracy (percentage) from applying the different semi-supervised learn-
ing procedures to label the testing images

The result in bold is the best.

Network Plain training Pseudolabeling Distillation Model distillation

Bisnet-ResNet18 81.60 83.91 84.00 81.60
Bisnet-ResNet34 82.93 84.10 83.78 83.63
CgNet 81.33 82.90 83.54 83.14
ContextNet 81.42 78.59 83.44 83.24
DeepLabV3+-EfficientnetB3 83.31 84.82 84.96 84.82
DeepLabV3+-ResNext50 84.78 85.45 85.45 85.86
DeepLabV3+-ResNet50 77.13 85.54 85.49 85.49
DenseApp 78.59 83.64 83.47 82.89
FPENet 28.49 83.52 83.68 83.28
HRNet 83.08 84.89 85.07 85.19
LedNet 79.20 83.70 84.72 84.65
Manet-EfficientnetB3 84.69 85.54 85.54 85.54
Manet-Resnest50 84.42 83.75 84.57 83.75
Manet-Resnet50 83.63 83.43 82.85 83.43
OCNet 82.06 83.05 82.46 82.43
Pan-EfficientnetB3 83.58 85.39 83.39 83.42
Pan-Resnet50 81.44 81.97 83.57 83.62
UNet-EfficientnetB3 81.09 83.69 84.87 83.69
UNet-Resnest50 79.15 85.37 85.37 85.37
UNet-Resnet50 82.20 85.06 85.06 85.06
Unet++-EfficientnetB3 83.49 82.12 84.45 84.45
Unet++-ResNest50 50.03 85.26 85.26 85.26
Unet++-ResNet50 84.35 85.66 85.37 85.66
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Fig. 5  Example of the segmentation results using DeepLab v3+-ResNext50 with the four training strategies
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Fig. 6  Example of the segmentation results using the FPENet with plain training and using pseudolabeling
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applying semi-supervised learning methods. This could be solved by a more fine-grained 
annotation, implementing object-segmentation-oriented (OSO) labels, as show in the next 
section.

Evaluations with OSO labels

As described in the “Input dataset” subsection, a different annotation scheme was followed 
to produce more refined labels suitable for object segmentation models (OSO labels). 
These labels were used to train the same segmentation models of Table 1, following the 
plain training approach. The new results of the different architectures trained with the OSO 
labels are shown in Table 6.

Several models achieved a total MSA of over 85%, including DeepLabV3+-ResNet50, 
Pan-Resnet50, HRNet and all the versions of the Unet and Unet++ architectures. The best 
overall model was HRNet, with a total MSA of 85.91%. This model also obtained the best 
accuracy for the leaves, pole and bunch classes. In contrast, the best models for segmenting 
wood and the background were based on the Unet++ architecture. The outstanding results 
of the HRNet model were due to the design of its architecture, which aggregated the output 
representations at four different resolutions, thus allowing models to provide a precise seg-
mentation of objects with different scales.

Segmentation maps in Fig. 7 help draw additional conclusions about the models trained 
with the BLDO and OSO labels. For the same image, the best overall model trained with 
the BLDO labels (DeepLabV3+-ResNext50 using model distillation) and the best model 
trained with the OSO labels (HRNet using plain training) could both segment grape 
bunches and leaves. However, the segmentation of smaller objects, such as small wooden 
fragments, was much better when models were trained with OSO labels. In contrast, BLDO 
labels were not accurate enough to train a model of such small objects, even using any 
semi-supervised learning approach.

Whether it is better to produce a dataset with a coarse annotation that is later com-
bined with semi-supervised learning methods or a dataset with a fine-grained annota-
tion depend on the final aim of the trained models. Production monitoring or vegetation 

Table 4  Friedman’s test for the 
mean Total MSA of the training 
methods

Training technique Mean Total MSA (std) Friedman’s test 
average ranking

Plain training 78.37 (12.63) 1.2246
Pseudolabelling 83.97 (1.58) 2.7518
Distillation 84.36 (0.91 3.2808
Model distillation 84.15 (1.14) 2.7427

Table 5  Adjusted p-values with Holm and Cohen’s d

Control technique: Distillation

Training technique Z value p-value Adjusted p-value Cohen’s d

Pseudolabelling 0.992945 0.320737 0.625041 0.2966
Model distillation 1.00995 0.312521 0.625041 0.2011
Plain training 3.85956 0.00011359 0.000340771 0.6570
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indices estimation require the segmentation of the main objects of the images (bunches 
and leaves), achievable even with coarse datasets carrying information about their appear-
ance. However, tasks like trimming or robot harvesting require more precise segmentation 
to interact with the environment appropriately. Here, it was mandatory to invest more time 
and effort in producing a fine-grained annotation of the images.

Time inference performance

This comparative study ended with the analysis of the inference time of the models since 
producing segmentation in a reasonable time is as crucial as obtaining precise results. This 
will enable their actual implementation for accurate yield monitoring and robot harvest-
ing in almost real-time. The inference times of each model using an Nvidia RTX 2080 Ti 
GPU and an Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz are shown in Fig. 8. It is worth 
noticing that the inference time was independent of the training method or the dataset used 
to construct the models as it only depends on the selected architecture. The DeepLabV3+-
ResNext50 model, which obtained the best accuracy with BLDO labels, could process 
100 images in 26.1  ms using a GPU and 315 with a CPU; whereas the HRNet model, 
which obtained the best accuracy with the OSO labels, processed 100 images in 26.3 ms 

Table 6  Mean segmentation accuracy (percentage) computed on test images of the deep learning models 
trained on the dataset of OSO labels

Results in bold are the best

Network Background Leaves Pole Bunch Wood Total

Bisenet-ResNet18 74.45 71.24 79.37 79.47 81.92 78.32
Bisenet-ResNet34 82.01 78.27 83.72 83.66 86.11 83.33
CgNet 83.01 77.46 83.76 83.87 85.47 83.26
ContextNet 78.05 78.55 82.97 83.20 85.21 82.38
DeepLabV3+-EfficientnetB3 87.35 77.43 84.52 84.48 85.85 84.21
DeepLabV3+-ResNext50 84.11 81.1 85.25 85.13 86.65 84.85
DeepLabV3+-ResNet50 86.66 79.47 85.31 85.31 86.65 85.02
DenseApp 81.53 75.47 82.05 82.23 84.39 81.70
FPENet 66.56 69.72 74.27 74.34 76.55 73.29
HRNet 85.41 82.56 86.21 86.31 87.25 85.91
LedNet 78.47 76.84 82.89 82.55 85.02 81.97
Manet-EfficientnetB3 84.63 80.19 85.36 85.69 85.45 84.69
Manet-Resnest50 80.33 55.19 71.54 71.07 72.88 70.59
Manet-Resnet50 82.94 76.84 84.03 83.91 85.95 83.35
OCNet 82.96 73.12 81.49 81.55 84.02 81.15
Pan-EfficientnetB3 82.21 81.40 85.03 85.12 86.30 84.53
Pan-Resnet50 86.02 79.73 85.39 85.56 86.82 85.09
Unet-EfficientnetB3 86.89 79.38 85.39 85.51 86.78 85.12
Unet-Resnest50 88.06 79.72 85.75 85.82 87.14 85.56
Unet-Resnet50 86.90 80.31 85.57 85.67 86.78 85.35
Unet++-EfficientnetB3 87.29 79.60 85.71 85.81 87.30 85.49
Unet++-ResNest50 88.28 79.99 86.03 86.03 87.25 85.78
Unet++-ResNet50 87.27 80.88 85.84 85.81 86.73 85.56
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using a GPU and 118 ms with a CPU. The best model at inference time was the Context-
Net model, which segmented 100 images in 11.6 ms using a GPU and 68.9 ms using a 
CPU. This model also provided the best trade-off between accuracy and inference time. 

Original 
image

OSO 
labels

Prediction by 
DeepLabV3+
-ResNext50 
using model 
distillation 
with BLDO 
labels

Prediction 
by HRNet 
using plain 
training 
with OSO 
labels

Fig. 7  Comparison of the results obtained with the best model trained on the BLDO labels (DeepLabV3+-
ResNext50 using model distillation) and the best model (HRNet) trained on the refined OSO labels

Fig. 8  Inference time (in milliseconds) for 100 images of each segmentation model using CPU and GPU
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Therefore, ContextNet would be the preferred model to be implemented in-field for real-
time processing.

Future work

Future works will address the use of infrared and depth streams returned by the proposed 
cameras as input of the proposed models or as the object of investigation for accurate yield 
monitoring. Moreover, hardware-aware models or quantization methods will be explored 
to integrate the segmentation models in low-cost devices used in-field. The more signifi-
cant amount of feeding information will lead to better segmentation results and even to the 
direct regression of crop productivity.

Conclusions

Analyzing natural images captured by moving robotic platforms is a key point for yield 
monitoring at the plant level. Its actual implementation requires low-cost sensors, such as 
RGB-D cameras, able to provide detailed information about both appearance and volume 
of the targets, e.g. the whole plants or single fruits. As a first step in using these data, reli-
able software methods are mandatory to process low-quality color images and give helpful 
knowledge to the farmers.

In the scenario of viticulture, this paper presented:

• several deep learning architectures for the segmentation of natural color images 
acquired in vineyards by the Intel Realsense R200 stereo camera;

• three semi-supervised approaches to improve segmentation accuracy by taking advan-
tage of a set of unlabeled images, thus avoiding the need for a large dataset of labeled 
images, whose annotation can be time-demanding; and

• a comprehensive discussion on the need for high-detailed manual annotation for 
improving environmental awareness.

Results showed that the DeepLabV3+ -ResNext50 model, trained by the set of labeled 
images, achieves the best MSA of 84.78% (average of the MSAs of all the target classes), 
whereas the Manet-EfficientnetB3 model reaches the MSA of the bunch class (85.69%) 
under the same training conditions. On average, the application of semi-supervised learn-
ing methods boosted MSAs between 5.62 and 6.01%. In particular, the model distillation 
semi-supervised approach improved the total MSA of the DeepLabV3+-ResNext50 model 
to 85.86%. However, other architectures, such as the FPENet, benefit more than 55% in 
MSA from the semi-supervised approaches, which de facto enabled the creation of appro-
priate models. Finally, also time-efficiency was investigated, proving that the Context-
Net model almost halved the inference time of the DeepLabv3+-ResNext50 model at the 
expense of a slight worsening of the total MSA, which in the case of the distillation semi-
supervised learning procedure, reaches 83.44%.

A final comparison of models trained with two label sets, oriented at bunch/leaves 
detection and object segmentation, was presented to show the effect of manual annota-
tion. Specifically, coarse labels can be efficiently used to model objects of large sizes, such 
as grape bunches or leaf clusters, making them suitable for production monitoring and 
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vegetation indices estimation. In contrast, those applications requiring the exact environ-
mental awareness, such as robotic harvesting or trimming, must use more detailed labels to 
create exhaustive segmentation models.

Appendix

This appendix reports the mean segmentation accuracies for each class varying the semi-
supervised learning methods, extending the results of Table 3. Tables 7, 8 and 9 refer to 
pseudolabeling, distillation and model distillation, respectively.

Table 7  Mean segmentation accuracy computed on test images of the deep learning models trained by 
using the pseudolabeling semi-supervised method

Results in bold are the best

Network Background Leaves Pole Bunch Wood Total

Bisenet-ResNet18 83.59 79.92 84.5 84.32 85.09 83.91
Bisenet-ResNet34 85.29 79.09 84.58 84.57 85.18 84.1
CgNet 87.83 75.02 83.37 83.28 83.85 82.9
ContextNet 87.21 67.29 79.19 78.84 79.72 78.59
DeepLabV3+-EfficientnetB3 82.29 83.11 85.37 85.22 85.85 84.82
DeepLabV3+-ResNext50 86.43 81.74 85.82 85.61 86.31 85.45
DeepLabV3+-ResNet50 83.36 83.79 85.93 85.92 86.62 85.54
DenseApp 84.93 78.45 84.13 84.32 84.54 83.64
FPENet 81.25 79.53 84.6 84.37 84.7 83.52
HRNet 87.34 79.94 85.16 85.26 85.64 84.89
LedNet 85.85 77.83 84.18 84.33 84.62 83.7
Manet-EfficientnetB3 87.56 80.66 85.94 85.89 86.35 85.54
Manet-Resnest50 83.73 77.51 84.54 84.74 85.35 83.75
Manet-Resnet50 88.93 75.74 83.84 83.71 84.21 83.43
OCNet 82.85 79.32 83.59 83.43 84.1 83.05
Pan-EfficientnetB3 84.9 82.96 85.92 85.6 86.1 85.39
Pan-Resnet50 85.84 74.12 82.78 82.41 83.08 81.97
Unet-EfficientnetB3 89.29 75.73 84.16 83.92 84.58 83.69
Unet-Resnest50 85.89 82.36 85.63 85.57 86.13 85.37
Unet-Resnet50 82.5 83.08 85.43 85.23 86.68 85.06
Unet++-EfficientnetB3 79.79 77.12 83.31 83.09 83.68 82.12
Unet++-ResNest50 86.01 81.36 85.69 85.54 86.18 85.26
Unet++-ResNet50 87.15 82.01 85.87 85.8 86.43 85.66
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Table 8  Mean segmentation accuracy computed on test images of the deep learning models trained by 
using the distillation semi-supervised method

Results in bold are the best

Network Background Leaves Pole Bunch Wood Total

Bisenet-ResNet18 82.36 81.61 84.55 84.25 85.1 84
Bisenet-ResNet34 82.8 80.73 84.34 84.08 84.84 83.78
CgNet 87.13 76.91 83.97 93.92 84.48 83.54
ContextNet 82.59 80.03 83.92 84.04 84.41 83.44
DeepLabV3+-EfficientnetB3 82.45 83.21 85.52 85.36 86.02 84.96
DeepLabV3+-ResNext50 86.43 81.74 85.82 85.61 86.31 85.45
DeepLabV3+-ResNet50 83.52 83.16 86.23 85.78 86.51 85.49
DenseApp 85.44 78.54 83.91 83.76 84.32 83.47
FPENet 81.5 79.69 84.79 84.51 84.82 83.68
HRNet 89.01 78.22 85.32 85.47 85.93 85.07
LedNet 85.63 80.56 85.15 85.07 85.64 84.72
Manet-EfficientnetB3 87.56 80.66 85.94 85.89 86.35 85.54
Manet-Resnest50 84.62 80.47 85.66 84.78 85.33 84.57
Manet-Resnet50 78.79 79.33 84.05 83.82 84.42 82.85
OCNet 83.66 77.58 82.86 83 83.49 82.46
Pan-EfficientnetB3 80.62 80.72 84.18 84.07 84.63 83.39
Pan-Resnet50 82.69 79.34 84.31 84.37 84.75 83.57
Unet-EfficientnetB3 88.58 78.37 85.33 85.14 85.78 84.87
Unet-Resnest50 85.89 82.36 85.63 85.57 86.13 85.37
Unet-Resnet50 82.5 83.08 85.43 85.23 86.68 85.06
Unet++-EfficientnetB3 88.82 77.83 84.77 84.76 85.22 84.45
Unet++-ResNest50 86.01 81.36 85.69 85.54 86.18 85.26
Unet++-ResNet50 85.89 82.33 85.63 85.57 86.13 85.37
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Table 9  Mean segmentation accuracy computed on test images of the deep learning models trained by 
using the model distillation semi-supervised method

Results in bold are the best

Network Background Leaves Pole Bunch Wood Total

Bisenet-ResNet18 86.26 73.27 82.43 81.99 82.75 81.6
Bisenet-ResNet34 81.77 81.14 84.23 84.09 84.72 83.63
CgNet 87.3 75.8 83.62 83.54 84.11 83.14
ContextNet 82.62 79.77 83.68 83.87 84.2 83.24
DeepLabV3+-EfficientnetB3 82.75 82.69 85.41 85.19 85.88 84.82
DeepLabV3+-ResNext50 84.88 83.24 86.3 86.3 86.72 85.86
DeepLabV3+-ResNet50 84.06 83.17 85.9 85.88 86.52 85.49
DenseApp 84.38 78.22 83.27 83.23 83.85 82.89
FPENet 78.61 81.2 84.46 84.2 84.46 83.28
HRNet 88.94 78.51 85.43 85.61 86.06 85.19
LedNet 84.35 81.28 85.09 85.08 85.26 84.65
Manet-EfficientnetB3 87.56 80.66 85.94 85.89 96.35 85.54
Manet-Resnest50 83.73 77.51 84.54 84.74 85.35 83.75
Manet-Resnet50 88.93 75.74 83.84 83.71 84.21 83.43
OCNet 81.88 79.6 82.8 82.64 83.47 82.43
Pan-EfficientnetB3 82.6 79.3 84.14 84.11 84.49 83.42
Pan-Resnet50 80.78 80.88 84.49 84.29 84.79 83.62
Unet-EfficientnetB3 89.29 75.73 84.16 83.92 84.58 83.69
Unet-Resnest50 85.89 82.36 85.63 85.57 86.13 85.37
Unet-Resnet50 82.5 83.08 85.43 85.23 86.68 85.06
Unet++-EfficientnetB3 88.82 77.83 84.77 84.76 85.22 84.45
Unet++-ResNest50 86.01 81.36 85.69 85.54 86.18 85.26
Unet++-ResNet50 87.15 82.01 85.87 85.8 86.43 85.66
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