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Abstract: The aroma of wine is traditionally analyzed by sensory methods or by using gas chro-
matography; both analytical methodologies are slow and expensive and do not allow continuous
monitoring. For this reason, interest in rapid methods has increased in recent times. Electronic noses
(e-noses) stand out for their high sensitivity, speed, low cost, and little or no sample preparation.
They present, however, low selectivity, which requires advance analytical methods to distinguish
compounds. Here, we present a low-cost e-nose device for the analysis and identification of distinct
varieties of wine. Chemical analysis data are compared to e-nose data through a principal compo-
nent analysis (PCA) and a k-means clustering algorithm to establish relationships between varieties
of wines and the e-nose classification capability. The results show that e-nose technology found
significant differences between the analyzed samples, and furthermore, classifying the samples in
accordance with the chemical analysis classification. The maximal accuracy obtained was 100% using
the k-means algorithm for binary classification with N = 21 samples. Thus the potential of e-nose
technology was shown in the wine industry for the identification and classification of wine varieties
or quality.

Keywords: electronic nose; viticulture; physicochemical properties; PCA analysis; volatile organic
compounds (VOCs)

1. Introduction

The composition of wine is mainly ethanol and water. However, over 20 compounds
influence the basic flavor of wine, and many other compounds present in wines are respon-
sible for the specific characteristics of each wine and its aromas. These aroma compounds
(ACs) may or may not be present and differ in concentrations in different wines which
makes them have a specific aroma profile [1]. To date, over 700 ACs have been identified,
which is strong evidence for the complexity of a wine [2]. Many ACs are volatile chemical
compounds (VCCs) which are present in the complex gas mixtures of some foods and
beverages, including wine [3]. Thus, this gives us a way of characterizing wines by their
aromas. The task of discriminating wine by its aroma is not easy, requires expert knowledge
and training, and is a slow and expensive process.

Here is where e-noses play an important role, introducing an improvement to other
techniques such as sensory methods or gas chromatography. E-nose technology is based
on an array of non-specific sensors. They react to gases and generate distinct signals which,
after been processed for feature extraction, can be used to identify compounds and for
classifying odor emitting samples. Thus, e-noses are capable of detecting complex mixtures
of volatile compounds present in gas samples. These VCC mixtures generate a combined
response in the sensors and create an odor pattern. Employing data analyses such as
principal component analysis (PCA), cluster analysis, and classification techniques such as
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artificial neural networks (ANN) or support vector machines (SVM), this technology has
the potential to accurately classify samples by their odor [4]. Wine is one more of the many
potential uses that e-noses have.

Many studies on wine analysis using e-noses have mainly focused on the detection
of wine spoilage thresholds [5–7], the discrimination of wines by their aromas [8–10], or
early detection by monitoring the wine production process [5]. All the devices used to
perform these studies have been designed on the same basis: a sample chamber, a gas
extraction device (air pump, fan), a sensing chamber, a sensor array, and a computer. Many
modifications may be applied to this configuration, such as air or sample heating steps, gas
compression or expansion valves, or varying the volume of the sampling chambers.

In this report, an e-nose prototype based on eight metal oxide MQ sensors was used
to analyze and characterize wine samples from La Rioja (Spain). Repeatability and repro-
ducibility of the device was also studied, as well as long-term device drift. A PCA analysis
was used to group the wine samples, and a comparative study was conducted using basic
chemical analysis of the wine to back up the results from the e-nose prototype. We show
the potential capability of this device to discriminate wine samples similar to a chemical
analysis, decreasing the analysis cost and expertise needed to carry out the analysis and
characterization.

2. Materials and Methods

The wine samples were kept at temperatures between 4 and 8 ◦C. To prevent deterio-
ration, the samples were sealed in dark glass bottles to prevent oxidation, light damage,
and contamination by recipient material. A total of 10 samples were analyzed and coded as
follows: 43D, F1F, 200D, 203D, 9F, P2F, 248D, 252D, 11F, and 42F. In this case, three different
varieties of Rioja Spanish wine types were selected: 43D and F1F are corresponding to the
Graciano variety; 200D, 203D, 9F, and P2F corresponded to the Grenache variety; 248D,
252D, and 11F corresponded to the Tempranillo variety; and the sample with the code
42F corresponded to Mazuelo variety. All the samples were obtained from the harvest of
2019. For each variety, 5 and 6 samples were selected. The main objective was to detect
the differences of varieties among wines by means of the described e-nose prototype. To
compare the analysis carried out by the e-nose, a ground truth knowledge about the sam-
ples was obtained by performing a basic chemical analysis. From this data, information
could be extracted that provided independent information about the samples but could
also be used for a comparative analysis by performing cross-correlations with the e-nose
data. The main chemical analyses were as follows: First, the quantity of ethanol in the
wine (percentage) was determined by distillation/densitometry. Distillation of a wine
sample separates the volatile from the non-volatile components. The alcohol content of the
resulting distillate can then be readily measured using a density meter. Moreover, volatile
acidity determination (gr·L−1) can be determined using the Cash still method. Next, the
total acidity in the wine (gr·L−1 of tartaric acid) was determined. Then, the pH values of
the obtained samples were determined. The next analysis was the obtention of reducing
sugars by means of a refractometer or a hydrometer. The obtention of malic acid was
another analysis of the samples (gr·L−1) performed by using enzymatic measurement,
which involved the conversion of malic acid using a specific enzyme. It can be monitored
directly by measuring the absorbance (344 nm) resulting from the generation of a by-
product of the reaction (NADH). The quantity of CO2 in wine was also obtained (mg·L−1)
by employing a carbodoseur. The quantity of anthocyanin was calculated (mg·L−1). In
addition, the temperature of saturation (TSAT, in ◦C) was determined to test wine stability.
It uses conductivity to measure the amount of tartrate that can be absorbed by a wine
at room temperature. These analyses are very common in viticulture. All the previous
cited analyses have been done by means of FTIR, a multiparametric analytical technique.
Fourier transform infrared (FTIR) is a spectroscopic analysis technique that uses a part of
the electromagnetic spectrum. Specifically, wavelengths between 2500 nanometers (nm)
and 25,000 nm, which is the “mid-infrared” region, and thus, the term FTIR. Although
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the abbreviation FTIR is, generally, the name of a mathematical technique used to convert
numerical data into useful results, this term has also been popularized to describe this
analytical technique.

We based our knowledge of the samples on how they correlated to this information. As
our goal was to compare the samples and study similarities and differences between them.
To do so we use as a baseline a chemical analysis. We compared the data from the e-nose
by means of clustering and the data form chemical analysis. By doing so we can study how
the samples are related by the enose and see if these rela-tions has correspondence with the
chemical relation between them.

An electronic nose (EN) device was used to perform the analysis of each sample.
This electronic nose prototype included a simple sample delivery system (sample

chamber where samples are deposited, along with an air pump or fan), a sensor array, and
a data processing unit or microcontroller (Arduino Nano microcontroller with USB serial
connection). This EN prototype was based on an array of eight MOS sensors (MQ-135,
MQ-2, MQ-3, MQ-4, MQ-5, MQ-7, MQ-8, and MQ-9) fabricated by Hanwei Electronics
Co., Ltd. (Zhengzhou, China). These sensors have resistances (RL) which change their
values depending on the gas mixture present in them. Varying the voltage across these
resistances introduces modulation of the heating of the sensor. The device works with a
microcontroller Arduino Nano to generate the voltage signals introduced in the sensors
and measure the responses from these, along with an analog circuit comprising a DAC
and operational amplifiers to effectively control the heating of the sensors. Datasheets for
some sensors (MQ7 and MQ9 in particular) recommend switching between two heater
voltages (5.0 V and 1.4 V) on a 60 + 90 s cycle, with the sensor response at the end of the
90 s interval. This can significantly improve sensitivity as it is now possible to perform
sensor detection at different operating temperatures. This device is built to be capable
of varying the voltage introduced to the sensors. In this experiment, the voltage was
varied sinusoidally with a period of 128 s, with values ranging from 1.6 V to 4.8 V, and a
total of 256 steps in each period. The device has a glass chamber where the samples are
introduced, connected by 6 mm PVC tubing through PG7 nylon glands to a separate PP5
(food grade polypropylene) detection chamber containing the sensor assembly. Another
tube returns to the sample chamber, completing a hermetically sealed circuit. To normalize
the outputs of the MQ sensors, 50 kΩ trim potentiometers were used as load resistors, with
potentiometer values adjusted until sensor channels gave a voltage difference smaller than
100 mV, at least half an hour after introducing the sample. In addition to balancing the
impedance characteristics that each sensor has, this also provides a degree of normalization
to counteract the variability that occurs in sensor manufacturing.

A calibration process was needed in order to define the parameters for the experiment,
which included: stabilization time (SBT) of the sensor previous to the start of the experi-
ments, sensing time (ST) which represents the time that the sensors will be exposed to the
sample, cleaning time (CT) which represents the time that passes between the extraction of
a sample and the introduction of another, overall time (OVT = ST + CT) which is the time
needed for the analysis of a whole sample, and the maximum number of analysis (MNA)
which we have estimated to be: MNA = (300−SBT)/OVT. This last value is established for
the overall time of the experiment to be less than five hours so that high drift processes do
not strongly affect the results. Table 1 shows the mean values of the parameters used for
each of the 5 experiments carried out.
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Table 1. Values of the parameters used for each of the 5 experiments carried out.

Experiment
Number SBT ST CT OVT MNA Number of

Analysed Samples

1 16.67 8 30 38 5 4
2 26.67 8 30 38 5 3
3 18.33 8 30 38 5 3
4 23.33 8 30 38 5 7
5 28.45 8 30 38 5 5

Mean and
satardard values 22.69 ± 4.58 - - - - 4.4 ± 1.5

A total of 5 experiments were carried out on different dates. One experiment was on
14 April 2021, two experiments were on 19 April 2021, another experiment was on 20 April
2021, and the last experiment was on 23 May 2021. The dates were chosen to be able to
compare the performance of the device when: a few days had passed, it was used more
than once in one day, when used on consecutive days, and when left for long periods of
time (one month) without being used. A total of 21 analyses were performed, both the
order and the number of repetitions per sample were randomly chosen; it was assured that
all 10 samples were analyzed at least once.

The experiments were carried out in a clean and disinfected environment. Aliquot
samples of 1 mL of wine were taken from the bottles, placed in a 135 mL glass chamber, and
heated at room temperature for 15 min. The bottles were rapidly closed and reintroduced in
the refrigerator to avoid deterioration of the samples. The chambers were then introduced
in the e-nose to do the analysis.

The device includes self-developed software capable of connecting the device to the
computer to: realize both the data acquisition during the analysis, generate the Excel files
containing the data of each of the experiments, and to perform the analysis of the raw data
for feature extraction.

Figure 1 shows the response for sensors MQ2 and MQ135 to wine sample 43D along
with the voltage signal introduced into the sensors. This graph includes the heating time
from Point 1 to Point 2025, the analysis time from 2026 to 3129, and the cleaning time from
3130 until the end. It can be seen how the sensor responses are deformed following the
introduction of the sample, and how they recover after its extraction. Similar graphs are
observed across all samples.
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Figure 1. Response for sensors MQ2 and MQ135 to wine sample 43D along with the voltage signal
introduced into the sensors.

To analyze the raw data, the first step was to perform a discrete Fourier transform
(DFT) for each one of the cycles of the signal introduced. To do so, we used the software we
developed. The signal introduced had a period of 128 s and the sampling frequency of the
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device was set to 2 Hz. Thus, we obtained 256 values for each cycle which were then passed
through the Matlab FFT function to obtain the cosine and sine coefficients, along with
5 harmonics including the DC component for each coefficient. This calculation was carried
out for the response of each one of the sensors, obtaining 2 coefficients × 5 harmonics ×
8 sensor = 80 values representing each cycle. A typical representation of the coefficients
is shown in Figure 2, where each value in the plot corresponds to the calculation of the
DFT for a single cycle of a specific sensor and harmonic. The names for each coefficient
are constructed in the following way: sensor name (MQX) + coefficient (sine or cosine) +
harmonic (1–5).
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Figure 2. Typical representation of the coefficients of each sensor.

A PCA was carried out to observe and to cluster the samples attending to this data.
The PCA and representation were executed using the MATLAB software version R2020a.
The data were stored in a matrix that was then normalized and decomposed into principal
components (PCs). To perform further analysis using PCA, we could only use one of
the cycles; therefore, we had to select which cylce should be used. The hypothesis that
initially occurred to us was that, during the analysis time, the sensors were saturated due
to the strong smell of the wine and the high presence of ethanol, thus, we thought that the
cycles in this phase would not carry relevant information. By observation of the raw data,
we presented the idea that the start of the cleaning time would indeed carry much more
information as the odor was slowly diluted when the sample was withdrawn. Therefore,
we thought that this phase would be the one carrying most of the relevant information.

3. Results
3.1. Data Clustering
3.1.1. Chemical Clustering

Results of the chemical analysis are shown in Table 2.

Table 2. Results of the chemical analysis.

Sample Ethanol Volatile Total Ac. PH Reductor Malic Acid CO2 Anthocyane TSAT

44D 111 14.15 0.54 5.52 3.75 1.87 −0.14 848.74 14.3 47.02
43D 112 13.97 0.5 5.48 3.69 2.15 −0.22 772.37 14.39 47.3
F1F 131 14.87 0.51 5.45 3.47 3.56 −0.09 403.42 14.34 45.37

200 D 031 15.68 0.36 5.88 3.57 1.64 0.2 569.9 14.07 40.14
203 D 032 15.15 0.45 5.57 3.61 1.72 0.03 682.5 14 38.56

9 F 033 15.16 0.46 6.44 3.27 1.25 0.2 360.8 14.08 42.41
P2 F 134 15.7 0.4 7.05 3.15 1.59 0.37 472.33 13.85 38.74

248 D 021 14.98 0.52 5.35 3.93 1.97 0.11 677.38 14.15 45.98
252 D 022 14.69 0.51 5.28 3.85 1.78 −0.07 696.93 14.23 43.11
11F 023 14.6 0.51 4.88 3.53 1.79 −0.12 387.77 14.03 34.07
42 F 041 15.39 0.39 5.89 3.42 1.98 0.05 541.47 14.13 44.13
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PCA data are represented using a 2D plot in Figure 3. It uses the two first PCs and the
samples are represented by a different color and shape according to the group they belong
to. This clustering is observed with a chemical analysis, and it was compared to the results
of the e-nose analysis.
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It can be seen from Figure 3 that the samples can be classified into two separate groups,
corresponding to the letter they carry in their names, namely Groups F and D. The sample
P2F should be another group but data shows that it is very similar to Group F group.

3.1.2. Enose Data Clustering

With the data from the DFT analysis, a PCA was realized to observe the clustering that
the e-nose could find between the samples. To do so, the 80 coefficients of a whole cycle
were selected to represent each sample. A 21 × 80 matrix containing the 21 analyses was
constructed to apply PCA using the MATLAB software version R2020a. To respond to the
hypothesis of which cycle should be selected for the analysis, we generated the PCA of the
fourth cycle after the introduction of the sample, which was thought to be saturated, and
four more PCAs for each of the following cycles which are the cycles in the cleaning time
phase. The results of the PCA for each cycle k are shown in Figures 4–8.
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sample. A k-means clustering algorithm was used to divide the dataset into two groups, a
red group and a blue group. Considering that the analysis of each sample was carried out
more than once, the samples were labeled with a subindex according to the number of the
repetition they correspond to. This cycle does not group samples in an accurate manner,
neither does a clear differentiation between groups F and D, as the accuracy obtained
is 85.71%.

Continuing with Cycle 1 and following the same methodology as for the previous
figure, Figure 5 was generated. Here, groups D and F are now more clearly separated but
there is still some overlap between some repetitions of samples D252 and F42. Figure 3,
with the chemical data, also shows that the overlap between groups is produced by sample
F42. Sample grouping is still not very clear and the accuracy obtained is 90.48%.

Continuing with Cycle 2 and following the same methodology as for the previous
figure, Figure 6 was generated. As cycles advance, both the sample grouping and separation
between groups F and D continue to be clearer. This was selected as the best cycle, which
obtained 100% accuracy in the classification. It can also be seen that there is more variation
carried by the PCs.

Continuing with Cycle 3 and following the same methodology as for the previous
figure, Figure 7 was generated. Even though groups overlap by using k-means clus-
tering algorithms, giving a 89.50% accuracy, visual differentiation between the groups
can be established. In addition, sample grouping becomes more relevant, but still not
completely clear.

Later cycles, as in Figure 8, are thought not to be very relevant as the sample’s odor
would be too diluted by the passage of time, which could lead to air interference. The
accuracy obtained is 76.19%.

4. Discussion

Figure 1, which represents the PCA grouping of the chemical data, shows that the
samples can be separated into group F which is colored red and group D which is colored
blue. It can also be observed that group D shows more similarities between its members,
while group F is sparser. In general, the similarity between all the samples is high, which
makes it difficult to observe significant differences between the samples.

Even though samples could not be classified independently, the e-nose classified the
samples in a similar way that the chemical analysis would with a maximal accuracy of
100% obtained through the k-means clustering algorithm. It is to be to expected that if the
samples are chemically similar, the e-nose device will not be able to differentiate them. For
example if we look at group D, we can see that the data points are more concentrated in the
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enose clustering, which can also be observed in the chemical clustering. Thus this will be
seen as a group and we can not distinguish each sample from others inside the group.

Moreover, it was shown that the analysis time of the samples influences the results
of the classification. Thus, showing the need for a calibration step in order to establish
analysis times and the influence of the sample on the device. It was seen that, for wine
samples, the use of cycles obtained minutes after the retrieval of the sample improved
the classification results. However, the accuracy decreased again in later cycles, thus, a
selection method for the correct cycle was needed.

These results show the potential that e-noses could have in the wine industry. Some of
its purposes could be, for example, as a tool to detect fraudulent wine labeling. By having
enough data of the different types of wine to be checked or to be classified attending to
their quality, among other factors, we could perform this kind of controls.

This method introduces a reliable way for classifying wines. As compared with
other methods such as sensory analysis, it brings an enormous improvement in objectivity,
reduces costs, and opens the door to the possibility of analysis of a large number of samples
due to its reduce time and cost expenses. In addition, by comparing it with chemical
analysis or more sophisticated techniques such as gas chromatography, an e-nose analysis
is much simpler, reduces the costs, does not require trained or qualified specialists, and can
be use for monitoring processes.

In general, this method provides a tool to complement the use of other techniques as
well as covering aspects that others cannot achieve.
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