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Abstract. The hourly price for the electric energy that will
be settled in a day-ahead market constitutes veityable
information if it could be known in advance by thgents
(producers, retailers and large consumers) operatinthat
market. This paper presents the comparison of dwilts
obtained with a set of short-term electricity pricgecasting
models applied to the day-ahead hourly price fascan the
Iberian Electricity Market. The studied set includgificial
neural networks, adaptive neuro-fuzzy inferencetesys and
support vector machines. The structure of the tlkied of
forecasting models were optimized by means of aefjen
algorithm which also selected the input variablesduby the
forecasting model among a set of available inputbées. The
forecasting results obtained for an out-sample tietaare quite
similar for the best models of each kind, but véthlight better
performance of the adaptive neuro-fuzzy system.
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1. Introduction

The deregulation process carried out in the electri
industry and the introduction of competitive masket
have changed the monopolistic and government-
controlled power sectors. In most of the developed
countries electricity is now traded under markeesu
although its singular characteristics make it défe
from other commodities markets [1].

The development of short-term electricity price
forecasting (STEPF) models has been a very active
research field in the last 15 years because thdyhprice
for the electric energy that will be settled in theol
constitutes very valuable information if it coulde b
known in advance: any agent involved in the eleityri
market could use the forecasts to prepare his/fds b
strategically in order to obtain the maximum profin
accurate price forecast for an electricity markas fa
definitive impact on the bidding strategies andreoa
the price negotiation of bilateral contracts [2].

One of the biggest problem we have faced in order t
design our STEPF models is the extreme price Vityati

and the remarkable price spikes in the Iberiantebtity
market, as it is showed in the Figure 1. The high
proportion of outliers (unusual prices) is a consage

of a lesser degree of competition in the IberiagcEicity
Market (compare with other markets), which in turn
makes this market less predictable.

Iberian Market Prices
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Fig. 1. Hourly prices for Janurary- February of 201

Tens of STEPF models have been described in the
international literature [1]. The used techniquesiude
traditional time series ones as autoregressivagiiated
moving average (ARIMA) [2], or artificial intelligece
based ones as atrtificial neural networks (ANNS)4B,
and fuzzy inference systems (FIS) [5]. In generaist of

the published papers are focused on the descripfitme
forecasting technique. Only a few of published vgork
include the analysis of the explanatory variablssduto
build the forecasting models [6].

This paper presents the comparison of the results
obtained with a set of STEPF models applied todidne
ahead hourly price forecasts in the Iberian Eleityri
Market (MIBEL). The compared models include
multilayer perceptron (MLP) neural networks, adepti
neuro-fuzzy systems (ANFIS), and support vector
machines (SVM). The structure of the studied models
optimized by means of the application of a genetic
algorithm which allows the selection of the inpatiable
from the set of available ones (feature selectang the
value of the parameters that define the forecastiadel.



2. Available input variables

The day-ahead hourly price forecasting can be énited
by different kinds of explanatory variables [6]:

1) Actual recorded hourly electricity prices.

2) Chronological variables: hour, week day,
holiday, week number and month number.

3) Actual recorded hourly demands and hourly
power generations aggregated by generation
type.

4) Hourly weather forecasts, including wind speed,
solar irradiance and temperature.

5) Power system hourly variable forecasts: power
demand forecasts, wind power forecasts, solar
power forecasts, hydropower forecasts,
independent cogeneration forecasts, thermal
power forecasts, etc.

6) Power market restriction variables: unavailable
capacity for power generation, reserves of power
generation and interconnection, volume of
electric energy allocated in other electricity
markets, and electricity futures market and
bilateral contracts.

From the set of the above mentioned variables,un o
work we have used the first three sets and thie ifte.

The data corresponding to the actual recordedraliégt
prices were downloaded from the market's operator
(OMIE) and the recorded demands and power
generations were downloaded from the ENTSOE website
(European Network of Transmission System Operators
for Electricity) as well as the information regargito the
forecast power demands, and solar and wind energy
production forecast for the two countries involhiadhe
MIBEL, Spain and Portugal. We have not used in the
work described in the paper weather forecasts sich
temperature, radiation, wind speed, etc, since ethes
forecasts has been already considered by the own
transmission system operators (REE in Spain and REN
Portugal) to predict the demand and the wind pcavet
solar power generations in their systems.

All the data used to build and compare the STEPF
models correspond to the year 2015 and the firgteth
months of 2016. Some of the records for this period
weren’t complete: only 9971 hourly records incluglin
values for all the input variables were available.

3. Studied short-term price forecasting
models

Three families of artificial intelligence based netsl
have been chosen in our comparative study: MLPaheur
networks, ANFIS and SVM for regression. The
developed models, for each one of the families,ewer
optimized: the structure and the input variablesduare
selected by means of a genetic algorithm. So, timeber

of neurons in the hidden layers of the MLPs, thmiper

of membership functions and rules for the ANFISthar
parameters defining the support vector regressioden
(cost, epsilon and gamma parameters) are elected

according to the optimization process. Also theutnp
variables used by the models are chosen from thefse
available input variables.

A. Genetic algorithms

Genetic algorithms (GAs) can fit inside the clads o
stochastic search methods [7]. While most of these
methods operate on a single solution, GAs openata o
population of solutions. The basic idea, inspireg b
biological evolutionary processes, is that the tjene
content of a population potentially contains théuson,

or a better solution to a given problem of adaptatirhe
application of GAs is mostly focused on large, ctemp
and little understood search spaces. The basicdtiea
GA is as follows: initially generate a set with soof the
possible solutions or individuals, called the paioh;
once the initial population is created, it will dve
according to the evaluation of each individual,adfihg
new individuals (generations) associated with Ibette
solutions.

The information associated with an individual is
composed of indivisible parts called chromosomeshE
chromosome has many genes, which correspond to
separate parameters of the problem. To work wigseh
genes in a computer program it is necessary todenco
them in a numerical or alphanumeric string. Durihg
evaluation the gene is decoded and becomes a sdries
parameters of the problem whose solution is intdride
optimize. The solution is then achieved using these
parameters and a score is calculated dependingpan h
that solution is close to the best solution. Thisrs is
called fitness. As soon all the individuals from a
population are evaluated, they reproduce using the
genetic operators according their scores. The g@enet
operators allow the exchange of genetic materiahég)
between individuals (crossover) or the spontaneous
change of one or more genes in an individual (nariat
The result of the application of the genetic opmais

the creation of a new population (new generatidime
general performance of a GA is shown in Figure 2.
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Fig. 2. Flowchart of a general Genetic Algorithm.



Two important parameters for the GA are:

e Population size: it must be sufficient to ensure th
diversity of solutions and have to grow more osles
with the number of genes in the chromosome.

* Termination condition: the most common are the
achievement of a fitness value or the ending of a
preset number of generations. The latter will be th
termination condition in our study.

A GA based optimization process was carried out ait

the studied models of this paper in order to obtam
best STEPF model corresponding to each family. The
process selects the input variables used by theehaodi

the parameters that defined each model.

B. Adaptive neuro-fuzzy systems

Fuzzy inference techniques provide a method foryuz
modeling process. In addition, once a fuzzy infeeen
system is built, it can be trained in a similar manto
artificial neural networks, constituting an adaptiveuro-
fuzzy system (ANFIS) [8]. In an ANFIS, the training
process adapts the parameters of membership fasctio
and fuzzy rules, and the weights of each rule abtgia
better match between the output of the ANFIS ara th
desired output. The training process of an ANFIS is
carried out using back propagation and least sguare
techniques, which give the system the ability tore

In order to reduce the number of rules of the mfiee
system, we used subtractive clustering (SC) [9].iS€
technique that estimates the centers of groupssiet &f
data. SC assumes that each point-data is a cehir o
potential group and it is assigned a potential thasethe
density of points (data) that surround it. The &tpmn
selects the point-data with the greatest poteatsafirst
group, and then deletes the potential of the palata
close to that first group center. Then, the alponit
selects the point-data with the largest potengatmants
as the next center of group and returns to dediney
potentials of data in its area of influence. Ancbso

The iterative cycle ends when the potential ofpalints
falls below a threshold. The SC algorithm needsr fou
parameters: the value of the radius that defines th
influence (or neighborhood), the value of the radiat
defines the area of reduction of potential wheeter is
chosen, a factor that represents the threshold for

acceptance as a center (are accepted those possible

centers with potential superior to the first center
multiplied by this factor), and another factor that
represents the threshold of rejection as a center.

C. Support Vector Machines

SVMs are a set of related methods for supervised
learning, applicable to classification and regmssi
problems. SVMs are able to learn with only a small
number of free parameters, robust against outlizns,
computational efficient [10]. In recent years SVR&ve
been shown as a powerful modelling tool used fonyna
machine learning tasks and has been widely apjtied

different research fields. Although SVMs were ity
proposed for classification problems, they were
generalized for regression problems usingetiensive
loss function [11]. The underlying idea in the SVM
regression model is to find a function that presest
most ¢ deviation from the target values while being as
flat as possible. Under that methodology, a SVM
regression model can be defined by three parameters
which define the radius of a tube around the respes
function in which errors are ignore@, (called as cost)
which represents a tradeoff between the predictivar
and the tube’s flatness, apds the width of the Gaussian
function used as kernel. Parameter< andy account
for a significant effect on the SVM regression mpde
their values must be carefully chosen.

D. Multilayer perceptrons.

Multi-layer perceptrons (MLPs) are the most widesed
network architecture in artificial neural netwoii]. A
MLP consists of multiple layers of neurons (proasss
elements) with each neuron fully connected to hd t
neurons in the following layer. A MLP comprisedesdst
three layers: an input layer, a hidden layer, andwatput
layer. A MLP network with a hidden layer is able to
approximate any smooth nonlinear input-output magpi
with an arbitrary degree of accuracy if a suffitien
number of neurons is used in the hidden layer, iasl
able to match the input-output mapping using two or
more hidden layers [13].

In this work we have used two hidden layers MLPs
trained with the back-propagation with momentum
method [12]. The transfer function for the neurofshe
hidden layer was the hyperbolic tangent functiod dre
linear function for the neuron of the output lay@he
number of neurons in the hidden layers, the legrnin
factor and momentum for each layer and the seleatfo
the input variables must be properly chosen in otde
obtain the best forecasting model.

4. Available input variables

One of the most important tasks in developing a ehod
is the selection of relevant input variables. Unfoately,
there is no systematic method to follow. Howevar, a
acceptable practical solution is the iteration pssc of
trial and error, where some new variables are added
other irrelevant are subtracted for a better molethis
context, the theory of linear regression can previd
relevant information. So, automatic pruning methaos
proposed that make it possible, starting from a ehod
containing all possible input variables, thosel@&vant
are discarded by a sensitivity analysis.

A different approach is the one that has beeniahbin
this work. The optimization process was controligda
GA, which selected the input variables used for the
model being optimized from all available input zdnles.
The available input variables, related to the MIBEL
electricity market, were the following:



El.- Day.

E2.- Month.

E3.- Weekday (monday, tuesday...).

E4.- Hour.

E5.- Biomass energy generation (D-1).

E6.- Fossil Coal energy generation (D-1).

E7.- Fossil Gas energy generation (D -1).

E8.- Fossil oil energy generation (D -1).

E9.- Hydro energy generation (D-1).

E10.- Nuclear energy generation (D-1).

E11.- Other non-renewable energies (D-1).
E12.- Solar energy generation (D-1).

E13.- Wind energy generation (D-1).

E14.- Total energy generation (D-1).

E15.- Total energy generation (D-6).

E16.- Global energy generation forecast (D+1).
E17.- Scheduled Consumption forecast (D+1).
E18.- Renewable energy generation forecast (D+1).
E19.- Solar energy generation forecast (D+1).
E20.- Wind energy generation forecast (D+1).
E21.- Market price (€/MWh) (D-1).

E22.- Market price (€ / MWh) (D-6).

All the STEPF models developed in this work presént
as output the marginal price, in Euros/MWh, fixgdthe
market for the hour h of the day D+1. The foredast
supposedly carried out in the first hours of thg Baand,
since the marginal prices for all the hours of tHay
were fixed in the previous one (D-1), all thosecesi are
known, as well as the prices fixed for the sametddhe
forecasted one in the previous week (day D-6). The
inputs E5 to E11 corresponded to the energy gestedt
the hour h in the previous days. The input varislié6
to E20 corresponded to forecasted values for the ho
of the day D+1, but they are known in the day D.

5. Model performance evaluation

To develop the STEPF models described in this paper
we utilized recorded values for the MIBEL
corresponding to the year 2015 and the first tmeaths

of the year 2016. The recorded data were dividem an
in-sample data set used for training, and an oopsa
data set used for testing and comparing the fotiacas
models. The out-sample data set was composed by
complete weeks extracted along the two years & ofat
order to have a good representation of the diftepeice
behaviors along the year. The in-sample and oupkam
data sets were defined as follows:

* In-sample data set: all the hours of the days 520
and three first months of 2016 except those inaude
in the out-sample data set, totalizing 7909 cases
(hours).

» Out-sample data set: all the hours of the weekl wit
numbers 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 k620
and weeks numbers 2, 7, and 12 in 2016, totalizing
2062 cases (hours).

Several measurements are used to examine the agcura
of the forecasting results. The most common
measurement used to evaluate the performance is the

mean absolute percentage error (MAPE). MAPE
represents the average of the relation between the
absolute prediction error and the real value, ass it
expressed in (1)

MAPE = = z "Ry

t=1 t

100 (1)

whereN represents the total of cases (hoursgn hour
index, Y; the real value for the hour and P; the
forecasted one.

Another common measurement is the root of the mean
square error (RMSE), expressed in (2)

1 N
RMSE = NZ( Py )
t=

In general, for forecasting models of electric &blés,
the MAPE is a good performance indicator, however
used in STEPF models can be disorienting: if theac
price value is small, as usually happen during tigh
hours, the MAPE will increase considerably evethd
difference between actual and forecasted valusmal.

In addition, if the forecasted value is small arudual
value is large, the absolute percentage errorheilhear
100%. In order to avoid the adverse effect of v@amnall
prices, another error indicator called AMAPE was
defined in the international literature (3). It iery
similar to MAPE, but the divisor is the mean of #etual
value on a daily basig€24), weekly basisTE168), etc.
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Fig. 3. Actual and forecasted available pricesdor
days in the out-sample data set.

As an example, in figure 3 are shown the actual and
forecasted price available values for four day®hgihg

to the out-sample data set. The STEPF model addguat
follows the actual market behavior in the first B8urs,

but when an abrupt change in the actual price tpleee
(hours 38 to 44 in the figure), the forecasted ealdon’t



follow the actual values correctly, shooting coesably
the measured error. Hence, the importance of AMAPE
indicator to evaluate the STEPF models [14].

6. Adopted solution

The MLP STEPF models were built using the software
Neurosolutions [15]. This software includes the
optimization process ruled by GA. The in-sampleadst
was randomly divided into two subsets, the firs¢ ovith
75% of the data as the training data set, and ¢hersl
subset with the remaining 25% as a cross-validatia
set. The MLP to be optimized was defined with two
hidden layers, with the selection of any of theilatde
input variables, and with the selection of the hiag
factor and momentum factor for the two hidden layer
and the output layer of the neural network. The lpeim
of epochs for each network was fixed in 2000, altjfo
the training process stopped when the error began t
increase with the cross-validation data set. Ttregis of
the GA was inversely proportional to the mean sguar
error with the data of the training data set. TihalfMLP
obtained (best STEPF model with a MLP structure) ha
35 neurons in both hidden layer and used 17 of the
available input variables, as it is shown in Tableigure

4 shows the mean square error with the training dat
obtained with the best MLP model in each generation
the optimal model was obtained approximately in the
17th generation, and although the evolution of @&
continued up to 50 generations, no better modele we
obtained.
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Fig. 4. Mean square error for the training datd@ethe
best MLP model in each generation.

The ANFIS STEPF model was built using the software
Matlab [16]. The optimization process was programime
and the ANFIS models were built and trained with
functions of the fuzzy library. Initially all thevailable
input data were normalized to values between Olamd
order to apply the SC technique, which means that t
range of values of all the data in each dimensigouf in
this case) was the same. The only parameter taken i
account in the optimization process was the raditis
influence defined for the SC, which could take eslu
between 0 and the square root of the number oftsnpu
used by the model. For this algorithm were taken

constant threshold values of acceptance and refgcti
with values of 0.15 and 0.5, respectively. The uadhat
defines the reduction potential was fixed in 25%ager
than the radius of influence.

The structure used for the chromosome, which costai
all the information necessary for the creation bé t
ANFIS model was divided into two parts: the firsirpis
composed of 22 binary digits (with values 0 or 1)
corresponding each one to the available input kbeia
with the same index (the digit represented to the input
variable H); the second part was a string with eight
digits each one with values from 0 to 9. In thealyn
part, a digit with value 1 meant that the corresog
input variable was used by the model, otherwisalaes0O
meant that the corresponding input variable wagséd

by the model. The last 8 digits of the chromosome
(second part) represented the value of the radfus o
influence for the SC algorithm to be applied to tiaa
corresponding to the selected (with the previousatyi
digits) input variables. The numerical value ofsthadio
was obtained by multiplying the numeric value
represented by those 8 digits by the square rodhef
number of the selected input variables and le-8s[Tt
the chromosome contains the numeric string
"011000100000010011001122371901" it meant that the
input variables selected for the ANFIS model weg& E
E3, E7, E14, E17, E18, E21 and E22 and the valuleof
radius of influence for the subtractive algorithmasw
0.63277292. The number of individuals and the numbe
of generations was fixed in 50, and we appliedsetit
(the best individual was copied from the previous
generation), obtained the 90% of the individualsthef
new generation applying the crossover operatorthad
remaining to complete the population with mutati®he
fitness function was inversely proportional to RREISE
obtained with the training data set. The charasties of
the best ANFIS model obtained after the optimizatio
process are reflected in Table | and Table II.

Lastly, we used a very similar approach in the
optimization of the SVM regression model. In these
we used the software R [17] with a library called
“e1071". The structure of the chromosome was sintda
the used for the ANFIS model, although in this ctee
second part of the chromosome had 24 digits, &&oh
one of the parameters to be optimizedC andy. In
order to build the SVM model, the eight digits @ining
the information for thee parameter were multiplied by
le-8 (what lead to values in the range 0 to 1) tiplidd

by 1e-5 (values in the range 0 to 1000) for theaeter
C, and multiplied byle-7 (values in the range 0@p for
the parametery. The number of individuals and the
number of generations was fixed also in 50, we iagpl
elitism, obtained the 90% of the individuals of thew
generation applying the crossover operator and the
remaining to complete the population with mutati®he
fithess function was inversely proportional to REISE
obtained with the complete in-sample data set uSing
folds cross validation. The characteristics of thest
SVM regression model obtained after the optimizatio
process are reflected in Table | and Table II.



All the models had the same output variable, thedast

of the hourly electricity price settled by the MIBE
(Spanish price) corresponding to the hour h of ribgt
day. Since one of the available input variableduihe
information about the hour corresponding to the
forecasting horizon, the same model can be usedilfor
the hours of the day.

TABLE |.- Variables selected for the STEPF models
after the optimization process.

Model
MLP

Selected input variables
E1l, E2, E3, E4, E6, E8, E9, E10, E11, E14, E15,
E18, E19, E20, E21, E22 (17 inputs)
E1, E3, E4, E5, E6, E7, ES8, E9, E11, E15, EHB/
E18, E19, E20, E21, E22 (17 inputs)
E1, E3, E4, E6, E8, E10, E11, E13, EIH18, E2C
E21 (12 inputs)

SVM

ANFIS

TABLE Il.- Parameters of the STEPF models obtained
after the optimization process.

Model
MLP

Parameters
35 neurons in both hidden layefBifferent learnin
factors and momentun factofsr the two hidde
layers and the output layer.
€. 0.07413692
C: 880.34909
v: 0.1094617
Radius of influence: 0.2985476@hat led to fou
membership functions and 4 rules)

SVM

ANFIS

Finally, the tree best STEPF models, one per eaehob
the studied families, were used to forecast thea dat
corresponding to the out-sample data set. The dstag
results are presented in Table 3, where we careajape

a better performance of the ANFIS based model, aith
RMSE and AMAPE indicators with slightly lower vakie
that those corresponding to the SVM regression inode

TABLE lll. Forecasting results with the out-samplgta

set.
RMSE
Model (EMWh) MAPE AMAPE
MLP 6.16 19.14% 10.26%
SVM 5.77 17.12% 9.59%
ANFIS 5.76 17.91% 9.49%

7. Conclusions

This paper presents the comparison of the results
obtained with three models for electricity pricedcast.
The models were applied to the MIBEL. The models
correspond to the best one build using three popula
families: MLP neural networks, ANFIS, and SVMs for
regression. The STEPF models were optimized by mean
of a genetic algorithm which allowed the selectioh
proper value of the parameters that define the imode
(number of neurons, number of membership functions,
parameters of the support vector regression maated)
the selection of the input variables used by thedeho
chosen from the set of available input variableke T
available input variable included past days hourly

electricity prices, chronological information, geagon
forecasts and past values of load demand and power
generations in the region covered by the MIBEL
(mainland of Spain and Portugal).

All the models achieved satisfactory forecastingutes
when applied to the real life data, with AMAPE erro
around 10%, allowing their use by any agent invalire
the MIBEL. The STEPF model with the lowest AMAPE
error for the out-sample data set was the ANFIS ehod
but with a very close value to the obtained by blest
SVM regression model.
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