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Abstract. The hourly price for the electric energy that will 
be settled in a day-ahead market constitutes very valuable 
information if it could be known in advance by the agents 
(producers, retailers and large consumers) operating in that 
market. This paper presents the comparison of the results 
obtained with a set of short-term electricity price forecasting 
models applied to the day-ahead hourly price forecasts in the 
Iberian Electricity Market. The studied set include artificial 
neural networks, adaptive neuro-fuzzy inference systems and 
support vector machines. The structure of the three kind of 
forecasting models were optimized by means of a genetic 
algorithm which also selected the input variables used by the 
forecasting model among a set of available input variables. The 
forecasting results obtained for an out-sample data test are quite 
similar for the best models of each kind, but with a slight better 
performance of the adaptive neuro-fuzzy system. 
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1.  Introduction 
 
The deregulation process carried out in the electric 
industry and the introduction of competitive markets 
have changed the monopolistic and government-
controlled power sectors. In most of the developed 
countries electricity is now traded under market rules 
although its singular characteristics make it different 
from other commodities markets [1].  

 
The development of short-term electricity price 
forecasting (STEPF) models has been a very active 
research field in the last 15 years because the hourly price 
for the electric energy that will be settled in the pool 
constitutes very valuable information if it could be 
known in advance: any agent involved in the electricity 
market could use the forecasts to prepare his/her bids 
strategically in order to obtain the maximum profit. An 
accurate price forecast for an electricity market has a 
definitive impact on the bidding strategies and even on 
the price negotiation of bilateral contracts [2]. 

 
One of the biggest problem we have faced in order to 
design our STEPF models is the extreme price volatility 

and the remarkable price spikes in the Iberian electricity 
market, as it is showed in the Figure 1. The high 
proportion of outliers (unusual prices) is a consequence 
of a lesser degree of competition in the Iberian Electricity 
Market (compare with other markets), which in turn 
makes this market less predictable. 
 

 
 

Fig. 1. Hourly prices for Janurary- February of 2015. 
 
Tens of STEPF models have been described in the 
international literature [1]. The used techniques include 
traditional time series ones as autoregressive integrated 
moving average (ARIMA) [2], or artificial intelligence 
based ones as artificial neural networks (ANNs) [3, 4] 
and fuzzy inference systems (FIS) [5]. In general, most of 
the published papers are focused on the description of the 
forecasting technique. Only a few of published works 
include the analysis of the explanatory variables used to 
build the forecasting models [6]. 
 
This paper presents the comparison of the results 
obtained with a set of STEPF models applied to the day-
ahead hourly price forecasts in the Iberian Electricity 
Market (MIBEL). The compared models include 
multilayer perceptron (MLP) neural networks, adaptive 
neuro-fuzzy systems (ANFIS), and support vector 
machines (SVM). The structure of the studied models is 
optimized by means of the application of a genetic 
algorithm which allows the selection of the input variable 
from the set of available ones (feature selection) and the 
value of the parameters that define the forecasting model.  
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2.  Available input variables 
 
The day-ahead hourly price forecasting can be influenced 
by different kinds of explanatory variables [6]: 

 
1) Actual recorded hourly electricity prices. 
2) Chronological variables: hour, week day, 

holiday, week number and month number. 
3) Actual recorded hourly demands and hourly 

power generations aggregated by generation 
type. 

4) Hourly weather forecasts, including wind speed, 
solar irradiance and temperature. 

5) Power system hourly variable forecasts: power 
demand forecasts, wind power forecasts, solar 
power forecasts, hydropower forecasts, 
independent cogeneration forecasts, thermal 
power forecasts, etc. 

6) Power market restriction variables: unavailable 
capacity for power generation, reserves of power 
generation and interconnection, volume of 
electric energy allocated in other electricity 
markets, and electricity futures market and 
bilateral contracts.  

 
From the set of the above mentioned variables, in our 
work we have used the first three sets and the fifth one. 
The data corresponding to the actual recorded electricity 
prices were downloaded from the market’s operator 
(OMIE) and the recorded demands and power 
generations were downloaded from the ENTSOE website 
(European Network of Transmission System Operators 
for Electricity) as well as the information regarding to the 
forecast power demands, and solar and wind energy 
production forecast for the two countries involved in the 
MIBEL, Spain and Portugal. We have not used in the 
work described in the paper weather forecasts such as 
temperature, radiation, wind speed, etc, since these 
forecasts has been already considered by the own 
transmission system operators (REE in Spain and REN in 
Portugal) to predict the demand and the wind power and 
solar power generations in their systems. 
 
All the data used to build and compare the STEPF 
models correspond to the year 2015 and the first three 
months of 2016. Some of the records for this period 
weren’t complete: only 9971 hourly records including 
values for all the input variables were available. 
 
3. Studied short-term price forecasting 

models 
 
Three families of artificial intelligence based models 
have been chosen in our comparative study: MLP neural 
networks, ANFIS and SVM for regression. The 
developed models, for each one of the families, were 
optimized: the structure and the input variables used are 
selected by means of a genetic algorithm. So, the number 
of neurons in the hidden layers of the MLPs, the number 
of membership functions and rules for the ANFIS, or the 
parameters defining the support vector regression model 
(cost, epsilon and gamma parameters) are elected 

according to the optimization process. Also the input 
variables used by the models are chosen from the set of 
available input variables.  
 
A.  Genetic algorithms  
 
Genetic algorithms (GAs) can fit inside the class of 
stochastic search methods [7]. While most of these 
methods operate on a single solution, GAs operate on a 
population of solutions. The basic idea, inspired by 
biological evolutionary processes, is that the genetic 
content of a population potentially contains the solution, 
or a better solution to a given problem of adaptation. The 
application of GAs is mostly focused on large, complex 
and little understood search spaces. The basic idea of a 
GA is as follows: initially generate a set with some of the 
possible solutions or individuals, called the population; 
once the initial population is created, it will evolve 
according to the evaluation of each individual, obtaining 
new individuals (generations) associated with better 
solutions. 
 
The information associated with an individual is 
composed of indivisible parts called chromosomes. Each 
chromosome has many genes, which correspond to 
separate parameters of the problem. To work with these 
genes in a computer program it is necessary to encode 
them in a numerical or alphanumeric string. During the 
evaluation the gene is decoded and becomes a series of 
parameters of the problem whose solution is intended to 
optimize. The solution is then achieved using these 
parameters and a score is calculated depending on how 
that solution is close to the best solution. This score is 
called fitness. As soon all the individuals from a 
population are evaluated, they reproduce using the 
genetic operators according their scores. The genetic 
operators allow the exchange of genetic material (genes) 
between individuals (crossover) or the spontaneous 
change of one or more genes in an individual (mutation). 
The result of the application of the genetic operators is 
the creation of a new population (new generation). The 
general performance of a GA is shown in Figure 2. 
 

 

Fig. 2. Flowchart of a general Genetic Algorithm. 
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Two important parameters for the GA are: 
 
• Population size: it must be sufficient to ensure the 

diversity of solutions and have to grow more or less 
with the number of genes in the chromosome. 

• Termination condition: the most common are the 
achievement of a fitness value or the ending of a 
preset number of generations. The latter will be the 
termination condition in our study. 

 
A GA based optimization process was carried out with all 
the studied models of this paper in order to obtain the 
best STEPF model corresponding to each family. The 
process selects the input variables used by the model and 
the parameters that defined each model. 
 
B.  Adaptive neuro-fuzzy systems 
 
Fuzzy inference techniques provide a method for fuzzy 
modeling process. In addition, once a fuzzy inference 
system is built, it can be trained in a similar manner to 
artificial neural networks, constituting an adaptive neuro-
fuzzy system (ANFIS) [8]. In an ANFIS, the training 
process adapts the parameters of membership functions 
and fuzzy rules, and the weights of each rule obtaining a 
better match between the output of the ANFIS and the 
desired output. The training process of an ANFIS is 
carried out using back propagation and least squares 
techniques, which give the system the ability to learn. 
 
In order to reduce the number of rules of the inference 
system, we used subtractive clustering (SC) [9]. SC is a 
technique that estimates the centers of groups in a set of 
data. SC assumes that each point-data is a center of a 
potential group and it is assigned a potential based on the 
density of points (data) that surround it. The algorithm 
selects the point-data with the greatest potential as first 
group, and then deletes the potential of the points-data 
close to that first group center. Then, the algorithm 
selects the point-data with the largest potential remnants 
as the next center of group and returns to destroy the 
potentials of data in its area of influence. And so on.  
 
The iterative cycle ends when the potential of all points 
falls below a threshold. The SC algorithm needs four 
parameters: the value of the radius that defines the 
influence (or neighborhood), the value of the radius that 
defines the area of reduction of potential when a center is 
chosen, a factor that represents the threshold for 
acceptance as a center (are accepted those possible 
centers with potential superior to the first center 
multiplied by this factor), and another factor that 
represents the threshold of rejection as a center. 
 
C.  Support Vector Machines 
 
SVMs are a set of related methods for supervised 
learning, applicable to classification and regression 
problems. SVMs are able to learn with only a small 
number of free parameters, robust against outliers, and 
computational efficient [10]. In recent years SVMs have 
been shown as a powerful modelling tool used for many 
machine learning tasks and has been widely applied in 

different research fields. Although SVMs were initially 
proposed for classification problems, they were 
generalized for regression problems using the ɛ-intensive 
loss function [11]. The underlying idea in the SVM 
regression model is to find a function that presents at 
most ε deviation from the target values while being as 
flat as possible. Under that methodology, a SVM 
regression model can be defined by three parameters: ε, 
which define the radius of a tube around the regression 
function in which errors are ignored, C (called as cost) 
which represents a tradeoff between the prediction error 
and the tube’s flatness, and γ is the width of the Gaussian 
function used as kernel. Parameters ε, C and γ account 
for a significant effect on the SVM regression model, so 
their values must be carefully chosen. 
 
D.  Multilayer perceptrons.  
  
Multi-layer perceptrons (MLPs) are the most widely used 
network architecture in artificial neural networks [12]. A 
MLP consists of multiple layers of neurons (processing 
elements) with each neuron fully connected to all the 
neurons in the following layer. A MLP comprises at least 
three layers: an input layer, a hidden layer, and an output 
layer. A MLP network with a hidden layer is able to 
approximate any smooth nonlinear input-output mapping 
with an arbitrary degree of accuracy if a sufficient 
number of neurons is used in the hidden layer, and it is 
able to match the input-output mapping using two or 
more hidden layers [13]. 
 
In this work we have used two hidden layers MLPs 
trained with the back-propagation with momentum 
method [12]. The transfer function for the neurons of the 
hidden layer was the hyperbolic tangent function and the 
linear function for the neuron of the output layer. The 
number of neurons in the hidden layers, the learning 
factor and momentum for each layer and the selection of 
the input variables must be properly chosen in order to 
obtain the best forecasting model. 
 
4. Available input variables 
 
One of the most important tasks in developing a model, 
is the selection of relevant input variables. Unfortunately, 
there is no systematic method to follow. However, an 
acceptable practical solution is the iteration process of 
trial and error, where some new variables are added or 
other irrelevant are subtracted for a better model. In this 
context, the theory of linear regression can provide 
relevant information. So, automatic pruning methods are 
proposed that make it possible, starting from a model 
containing all possible input variables, those irrelevant 
are discarded by a sensitivity analysis. 
 
A different approach is the one that has been followed in 
this work. The optimization process was controlled by a 
GA, which selected the input variables used for the 
model being optimized from all available input variables. 
The available input variables, related to the MIBEL 
electricity market, were the following: 
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E1.- Day. 
E2.- Month. 
E3.- Weekday (monday, tuesday…).  
E4.- Hour.  
E5.- Biomass energy generation (D-1).  
E6.- Fossil Coal energy generation (D-1). 
E7.- Fossil Gas energy generation (D -1).  
E8.- Fossil oil energy generation (D -1). 
E9.- Hydro energy generation (D-1).  
E10.- Nuclear energy generation (D-1).  
E11.- Other non-renewable energies (D-1). 
E12.- Solar energy generation (D-1).  
E13.- Wind energy generation (D-1). 
E14.- Total energy generation (D-1).  
E15.- Total energy generation (D-6).  
E16.- Global energy generation forecast (D+1).  
E17.- Scheduled Consumption forecast (D+1).  
E18.- Renewable energy generation forecast (D+1). 
E19.- Solar energy generation forecast (D+1). 
E20.- Wind energy generation forecast (D+1). 
E21.- Market price  (€ / MWh) (D-1). 
E22.- Market price (€ / MWh) (D-6). 
  
All the STEPF models developed in this work presented 
as output the marginal price, in Euros/MWh, fixed by the 
market for the hour h of the day D+1. The forecast is 
supposedly carried out in the first hours of the day D and, 
since the marginal prices for all the hours of that day 
were fixed in the previous one (D-1), all those prices are 
known, as well as  the prices fixed for the same day to the 
forecasted one in the previous week (day D-6). The 
inputs E5 to E11 corresponded to the energy generated at 
the hour h in the previous days. The input variables E16 
to E20 corresponded to forecasted values for the hour h 
of the day D+1, but they are known in the day D. 
 
5. Model performance evaluation 
 
To develop the STEPF models described in this paper, 
we utilized recorded values for the MIBEL 
corresponding to the year 2015 and the first three months 
of the year 2016. The recorded data were divided into an 
in-sample data set used for training, and an out-sample 
data set used for testing and comparing the forecasting 
models. The out-sample data set was composed by 
complete weeks extracted along the two years of data in 
order to have a good representation of the different price 
behaviors along the year. The in-sample and out-sample 
data sets were defined as follows: 
 
• In-sample data set: all the hours of the days in 2015 

and three first months of 2016 except those included 
in the out-sample data set, totalizing 7909 cases 
(hours). 

• Out-sample data set: all the hours of the weeks with 
numbers 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 in 2015, 
and weeks numbers 2, 7, and 12 in 2016, totalizing 
2062 cases (hours). 

 
Several measurements are used to examine the accuracy 
of the forecasting results. The most common 
measurement used to evaluate the performance is the 

mean absolute percentage error (MAPE). MAPE 
represents the average of the relation between the 
absolute prediction error and the real value, as it is 
expressed in (1) 
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where N represents the total of cases (hours), t an hour 
index, Yt the real value for the hour t and Pt the 
forecasted one. 
 
Another common measurement is the root of the mean 
square error (RMSE), expressed in (2) 
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In general, for forecasting models of electric variables, 
the MAPE is a good performance indicator, however 
used in STEPF models can be disorienting: if the actual 
price value is small, as usually happen during night 
hours, the MAPE will increase considerably even if the 
difference between actual and forecasted values is small. 
In addition, if the forecasted value is small and actual 
value is large, the absolute percentage error will be near 
100%. In order to avoid the adverse effect of very small 
prices, another error indicator called AMAPE was 
defined in the international literature (3). It is very 
similar to MAPE, but the divisor is the mean of the actual 
value on a daily basis (T=24), weekly basis (T=168), etc.  
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Fig. 3. Actual and forecasted available prices for four 
days in the out-sample data set. 

 
As an example, in figure 3 are shown the actual and 
forecasted price available values for four days belonging 
to the out-sample data set. The STEPF model adequately 
follows the actual market behavior in the first 38 hours, 
but when an abrupt change in the actual price takes place 
(hours 38 to 44 in the figure), the forecasted values don’t 
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follow the actual values correctly, shooting considerably 
the measured error. Hence, the importance of AMAPE 
indicator to evaluate the STEPF models [14]. 
 
6.  Adopted solution 
 
The MLP STEPF models were built using the software 
Neurosolutions [15]. This software includes the 
optimization process ruled by GA. The in-sample data set 
was randomly divided into two subsets, the first one with 
75% of the data as the training data set, and the second 
subset with the remaining 25% as a cross-validation data 
set. The MLP to be optimized was defined with two 
hidden layers, with the selection of any of the available 
input variables, and with the selection of the learning 
factor and momentum factor for the two hidden layers 
and the output layer of the neural network. The number 
of epochs for each network was fixed in 2000, although 
the training process stopped when the error began to 
increase with the cross-validation data set. The fitness of 
the GA was inversely proportional to the mean square 
error with the data of the training data set. The final MLP 
obtained (best STEPF model with a MLP structure) had 
35 neurons in both hidden layer and used 17 of the 
available input variables, as it is shown in Table I. Figure 
4 shows the mean square error with the training data set 
obtained with the best MLP model in each generation: 
the optimal model was obtained approximately in the 
17th generation, and although the evolution of the GA 
continued up to 50 generations, no better models were 
obtained. 
 

 
Fig. 4. Mean square error for the training data set for the 

best MLP model in each generation. 
 
The ANFIS STEPF model was built using the software 
Matlab [16]. The optimization process was programmed 
and the ANFIS models were built and trained with 
functions of the fuzzy library. Initially all the available 
input data were normalized to values between 0 and 1 in 
order to apply the SC technique, which means that the 
range of values of all the data in each dimension (input in 
this case) was the same. The only parameter taken into 
account in the optimization process was the radius of 
influence defined for the SC, which could take values 
between 0 and the square root of the number of inputs 
used by the model. For this algorithm were taken 

constant threshold values of acceptance and rejection, 
with values of 0.15 and 0.5, respectively. The radius that 
defines the reduction potential was fixed in 25% greater 
than the radius of influence.  
 
The structure used for the chromosome, which contains 
all the information necessary for the creation of the 
ANFIS model was divided into two parts: the first part is 
composed of 22 binary digits (with values 0 or 1) 
corresponding each one to the available input variable 
with the same index (the n digit represented to the input 
variable En); the second part was a string with eight 
digits each one with values from 0 to 9. In the binary 
part, a digit with value 1 meant that the corresponding 
input variable was used by the model, otherwise a value 0 
meant that the corresponding input variable wasn’t used 
by the model. The last 8 digits of the chromosome 
(second part) represented the value of the radius of 
influence for the SC algorithm to be applied to the data 
corresponding to the selected (with the previous binary 
digits) input variables. The numerical value of this radio 
was obtained by multiplying the numeric value 
represented by those 8 digits by the square root of the 
number of the selected input variables and 1e-8. Thus, if 
the chromosome contains the numeric string  
"011000100000010011001122371901" it meant that the 
input variables selected for the ANFIS model were E2, 
E3, E7, E14, E17, E18, E21 and E22 and the value of the 
radius of influence for the subtractive algorithm was 
0.63277292. The number of individuals and the number 
of generations was fixed in 50, and we applied elitism 
(the best individual was copied from the previous 
generation), obtained the 90% of the individuals of the 
new generation applying the crossover operator and the 
remaining to complete the population with mutation. The 
fitness function was inversely proportional to the RMSE 
obtained with the training data set. The characteristics of 
the best ANFIS model obtained after the optimization 
process are reflected in Table I and Table II. 
 
Lastly, we used a very similar approach in the 
optimization of the SVM regression model. In this case 
we used the software R [17] with a library called 
“e1071”. The structure of the chromosome was similar to 
the used for the ANFIS model, although in this case the 
second part of the chromosome had 24 digits, 8 for each 
one of the parameters to be optimized, ε, C and γ. In 
order to build the SVM model, the eight digits containing 
the information for the ε parameter were multiplied by 
1e-8 (what lead to values in the range 0 to 1), multiplied 
by 1e-5 (values in the range 0 to 1000) for the parameter 
C, and multiplied by1e-7 (values in the range 0 to 10) for 
the parameter γ. The number of individuals and the 
number of generations was fixed also in 50, we applied 
elitism, obtained the 90% of the individuals of the new 
generation applying the crossover operator and the 
remaining to complete the population with mutation. The 
fitness function was inversely proportional to the RMSE 
obtained with the complete in-sample data set using 5-
folds cross validation. The characteristics of the best 
SVM regression model obtained after the optimization 
process are reflected in Table I and Table II. 
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All the models had the same output variable, the forecast 
of the hourly electricity price settled by the MIBEL 
(Spanish price) corresponding to the hour h of the next 
day. Since one of the available input variables include 
information about the hour corresponding to the 
forecasting horizon, the same model can be used for all 
the hours of the day. 
 

TABLE I.- Variables selected for the STEPF models 
after the optimization process. 

 
Model Selected input variables 
MLP E1, E2, E3, E4, E6, E8, E9, E10, E11, E14, E15, E16, 

E18, E19, E20, E21, E22 (17 inputs) 
SVM E1, E3, E4, E5, E6, E7, E8, E9, E11, E15, E16, E17,

E18, E19, E20, E21, E22 (17 inputs) 
ANFIS E1, E3, E4, E6, E8, E10, E11, E13, E17,  E18, E20, 

E21 (12 inputs) 
 

TABLE II.- Parameters of the STEPF models obtained 
after the optimization process. 

 
Model Parameters 
MLP 35 neurons in both hidden layers. Different learning 

factors and momentun factors for the two hidden 
layers and the output layer. 

SVM ε: 0.07413692 
C: 880.34909 
γ: 0.1094617 

ANFIS Radius of influence: 0.29854766 (what led to four 
membership functions and 4 rules) 

 
Finally, the tree best STEPF models, one per each one of 
the studied families, were used to forecast the data 
corresponding to the out-sample data set. The forecasting 
results are presented in Table 3, where we can appreciate 
a better performance of the ANFIS based model, with a 
RMSE and AMAPE indicators with slightly lower values 
that those corresponding to the SVM regression model. 
 
TABLE III. Forecasting results with the out-sample data 

set. 
 

Model RMSE 
(€/MWh) MAPE AMAPE 

MLP 6.16 19.14% 10.26% 
SVM 5.77 17.12% 9.59% 

ANFIS 5.76 17.91% 9.49% 
 
7. Conclusions 
 
This paper presents the comparison of the results 
obtained with three models for electricity price forecast. 
The models were applied to the MIBEL. The models 
correspond to the best one build using three popular 
families: MLP neural networks, ANFIS, and SVMs for 
regression. The STEPF models were optimized by means 
of a genetic algorithm which allowed the selection of 
proper value of the parameters that define the model 
(number of neurons, number of membership functions, or 
parameters of the support vector regression model) and 
the selection of the input variables used by the model 
chosen from the set of available input variables. The 
available input variable included past days hourly 

electricity prices, chronological information, generation 
forecasts and past values of load demand and power 
generations in the region covered by the MIBEL 
(mainland of Spain and Portugal). 

 
All the models achieved satisfactory forecasting results 
when applied to the real life data, with AMAPE error 
around 10%, allowing their use by any agent involved in 
the MIBEL. The STEPF model with the lowest AMAPE 
error for the out-sample data set was the ANFIS model, 
but with a very close value to the obtained by the best 
SVM regression model. 
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