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Abstract: Microbial diversity in vineyards and in grapes has generated significant scientific interest.
From a biotechnological perspective, vineyard and grape biodiversity has been shown to impact
soil, vine, and grape health and to determine the fermentation microbiome and the final character of
wine. Thus, an understanding of the drivers that are responsible for the differences in vineyard and
grape microbiota is required. The impact of soil and climate, as well as of viticultural practices in
geographically delimited areas, have been reported. However, the limited scale makes the identifica-
tion of generally applicable drivers of microbial biodiversity and of specific microbial fingerprints
challenging. The comparison and meta-analysis of different datasets is furthermore complicated by
differences in sampling and in methodology. Here we present data from a wide-ranging coordinated
approach, using standardized sampling and data generation and analysis, involving four countries
with different climates and viticultural traditions. The data confirm the existence of a grape core
microbial consortium, but also provide evidence for country-specific microbiota and suggest the
existence of a cultivar-specific microbial fingerprint for Cabernet Sauvignon grape. This study puts
in evidence new insight of the grape microbial community in two continents and the importance of
both location and cultivar for the definition of the grape microbiome.

Keywords: meta taxonomics; mycobiome; vine cultivar; wine grape

1. Introduction

Phylogenetic surveys through targeted amplicon sequencing have, in the past five
years, generated valuable insights into global microbial diversity, including that of vine-
yards (bark, fruit, leaves, and soils) and different vine cultivars. These studies show
that natural microbial communities significantly impact grape and soil health, while also
strongly influencing oenological processes and the organoleptic character of wine [1,2].
The data suggest that vineyard and grape microbiomes are significant contributors to
“terroir”, a concept that is highly valued in the global wine industry and refers to all the
elements, anthropic and natural, that provide wines with regionally distinct aromatic and
taste profiles [3]. A better understanding of the factors that impact microbiome distribution
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and microbial biodiversity is therefore essential to better harness natural ecosystems for
quality wine production.

Studies thus far have revealed the impact of both anthropic and natural environmental
factors in vineyard and grape microbial biodiversity. In particular, the data show that
species richness and diversity are influenced by vineyard management systems [4–7],
while different ecological niches within a vineyard are characterized by diverse microbial
populations [5,8–10]. Other data suggest that vineyard location as well as grape varietal
might be strong determinants of microbial community composition [11–14]. However,
the extent to which these factors might shape microbial community structures could vary
depending on the spatial distances considered [9,15]. For instance, differences between
cultivar microbiome compositions might be more pronounced at a local level than over
larger scales [9,13,14]. Varietal features such as grape bunch compactness as well as
berry skin thickness have been highlighted as factors that could contribute to cultivar
differences [13], while microclimatic conditions and vineyard geographical orientation,
as well as geographical coordinates, were highlighted as important drivers of regional
distinctions in grape microbial community structures [11,14].

A microbiomics approach allows us to investigate and evaluate bacterial and fungal di-
versity of different samples. Apart from a huge study on the global topsoil microbiome [13],
examples in wine science have been focused on the microbial diversity of vineyards (bulk,
fruit, leaves, and soil) and cultivars.

Bahram et al. (2018) [13] evaluated the microbiome of vineyard topsoil and showed
that the genetic diversity among bacterial species is highest in temperate habitats and the
geographic distance impacts less strongly than environmental variables on the microbial
gene composition. Indeed, they also demonstrated that fungi and bacteria show a global
niche differentiation directly correlated with external factors (i.e., rainfall and soil pH).

Different single-cultivar studies analyzed intra-varietal microbial differences within
smaller [6,8,10,16] or larger [4,5,9,15,17,18] areas, focusing on bacterial [8,10] or
fungal [6,9,15–19] composition, or analyzing both groups of microorganisms [4,5]. In par-
ticular, some works estimated the differences in microbial biodiversity linked to vineyard
management and spatial or biological niches (bulk, fruit, leaves, and soil) [5,8–10,15,17–19].
The results demonstrated that species richness and biodiversity are influenced by viticul-
tural practices [4–6,16], and operational taxonomic units (OTU) peculiar to specific farming
system were described [6,19]. Moreover, different niches are characterized by a diverse
microbial population [5,8–10]. The data suggest that dissimilarity in fungal community
composition increases with spatial distance. Several studies have highlighted regional
differences in fungal communities: Taylor et al. (2014) [15] reported that the species richness
of grape-associated fungal communities (species counts) shows regional differentiation
in New Zealand, while species abundances is relatively stable. Data by Liu et al. [17]
suggest regional patterns in Pinot Noir grape musts in six regions in Southern Australia. In
particular, Saccharomyces cerevisiae and grapevine-associated species (such as Aureobasidium)
appeared in different abundances, with distances between vineyards ranging from 5 km to
400 km. The data suggest that weather and soil properties affect the must fungal diversity,
confirming what has been reported in other large-scale studies where mainly precipitation
and C/N ratios could be considered predictors of soil fungal richness and community com-
position. Finally, Li et al. [18] reported distribution patterns of fungal communities at the
regional level in Chinese wines from Marselan grape. The results showed that some fungi
could be considered regional biomarkers because their relative abundance changed across
six regions. These fungal biomarkers included dominant (i.e., Alternaria, Aureobasidium,
Rhodotorula, and Cladosporium), low abundant (i.e., Aspergillus, Papiliotrema, and Phoma),
and phytopathogenic (i.e., Colletotrichum, Botrytis, and Aspergillus) genera.

However, to date, few studies based on sequencing techniques have directly compared
grape microbial communities associated with different cultivars at small (<100 km) and
large (>100 km) geographical scales [11–14,20]. Recently, in order to provide evidence for
microbial contributions to wine terroir, Liu et al. [20] analyzed the fungal distribution associ-



J. Fungi 2022, 8, 1034 3 of 25

ated with Pinot Noir and Chardonnay vineyards located within a 12 km radius in Australia.
Although the two varieties were characterized by a specific fungal signature in terms of
genus abundance, a set of ubiquitous fungi belonging to Aureobasidium, Cladosporium, Sac-
charomyces, and Rhodotorula genera were identified in both cultivars. The study revealed that
geographical origin had a greater impact on the fungal community than grape variety, with
Pinot Noir showing a stronger geographical differentiation than Chardonnay. On the other
hands, studies carried out considering larger distances (>100 km) revealed that different
wine-producing regions possess distinct, distinguishable fungal microbiota. Bokulich et al.
(2014) [11] investigated fungal and bacterial communities in Chardonnay, Cabernet Sauvi-
gnon, and Zinfandel must samples across California. As for the grape-associated fungi,
Capnodiales (including Cladosporium spp.) and Penicillium were significantly more abundant
in Chardonnay; Dothideomycetes, Agaricomycetes, Tremellomycetes, Microbotryomycetes, and
Saccharomycetaceae in Cabernet Sauvignon; and Eurotiomycetes (Aspergillus), Leotiomycetes,
and Saccharomycetes (mainly Starmerella bacillaris ex. Candida zemplinina) in Zinfandel. While
the fungal taxonomic dissimilarity remained highly stable over two years, a wide variation
in the index was found in individual wine-growing regions, demonstrating that the grape
variety played a significant role in shaping the biogeography of microbial communities.
However, the study relied on the sampling of musts within wineries, and other elements
such as harvesting practices will have significantly influenced the data.

Bacterial and fungal communities appeared separated comparing two completely
different fruit species, apple and blackcurrant, in two geographical regions. Within the
same fruit samples, the blackcurrant-associated microbial population resulted as greatly
different, considering the geographical origin, while in apple samples the dissimilarity was
greater among fungal populations than the bacterial ones [19].

The purpose of this work was to evaluate the variability of grape microbiota on a global
scale in differently distributed varietals: a varietal that has been globally planted, Cabernet
Sauvignon, and several varietals whose distribution is restricted, or mostly restricted, to
one specific country or region. Four different areas of the world were chosen for this
analysis. To further investigate the local variance, for each country an average of four
sampling sites for each variety were analyzed. To the best of our knowledge, this is the
first work with an “international vs. local approach” that explores the variability of distant
geographic places contemporarily and deals with them by decreasing the differences in
the experimental approach, which would sometime limit the possibility of comparisons
between such datasets.

2. Materials and Methods
2.1. Grape Sampling and DNA Extraction

Samples were collected at four different regions: three from Europe and one from
South Africa. The wine regions were La Rioja in Spain, Tuscany in Italy, Kakheti in Georgia,
and Stellenbosch in South Africa. In each region, different localizations were selected for
sampling, five in the case of La Rioja, four from Italy and Georgia, and three from South
Africa. From each localization, samples were collected from Cabernet Sauvignon grapes
and from a second, locally prominent or unique cultivar, referred to as local cultivar (or
others). The local cultivars were Tempranillo in La Rioja, Sangiovese in Tuscany, Rkatsiteli
in Kakheti, and Chenin Blanc in Stellenbosch (Table A1). The two prerequisites for the
selection of location were: (1) vineyards of both cultivars in the same region had to be in
close spatial proximity, ideally adjacent, thus sharing climatic conditions; (2) they had to be
subjected to similar agricultural and agronomic practices. In particular, the wine estates
included in the study carried out an integrated pest management (IPM) farming method for
the rational control of harmful organisms for plants. Differences in the number of sample
localization are due to the difficulties in finding vineyards fulfilling these conditions. From
each vineyard, clusters were harvested from random plants, in equal numbers, from the
sunny and shaded sides of the row. The entire vineyard area was covered, and a total
amount of 10 kg of grapes was collected. Undamaged samples, healthy bunches from both
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sides of the panel (i.e., bunches that receive morning and afternoon sun) were collected. In
the lab, 5 kg of grapes were hand destemmed, crushed in a sterile bag, and the resulting
juice homogenized. Fifty milliliters of juice sample was centrifuged at 8500× g for 10 min.
The pellet was washed three times with a 50 mL EDTA-PVP solution (0.15 M NaCl, 0.1 M
EDTA, 2% (w/v) Polyvinylpyrolidone), followed by 3 washes with 50 mL TE buffer (10 mM
Tris-HCl pH 7.5, 1 mM EDTA pH 8). After these steps, the pellet was frozen at −80 ◦C
until DNA extraction. Genomic DNA was extracted from approximately 500 mg of pellets
following the soil DNA extraction kit instructions (PowerSoil DNA Isolation Kit, Qiagen,
Hilden, Germany; Mo Bio and SurePrep Soil DNA Isolation Kit, Fisher Scientific, Waltham,
MA, USA).

2.2. Sequencing Library Construction

Amplification of the ITS1-5.8S rDNA-ITS2 was performed using fusion primers based
on the BITS/B58S3 primer pair designed by Bokulich and Mills (2013) [21] and Nextera
platform-specific adaptor sequences, according to Setati et al. (2015) [6]. The PCR was
performed in 25 µL reactions containing 1 × Ex-Taq buffer, 0.2 mM dTNPs, 0.25 µM of each
primer, and 100 ng DNA template (with a 260/280 ratio ≥ 1.8). Triplicate reactions were
performed for each DNA sample. Cycling conditions consisted of an initial denaturation
at 94 ◦C for 3 min, followed by 40 cycles of denaturation at 94 ◦C for 30 s, annealing at
55 ◦C for 30 s, and extension at 72 ◦C for 45 s, and a final extension of 10 min at 72 ◦C. The
PCR products were purified using the Zymoclean Gel DNA recovery kit (Zymo Research,
Inqaba Biotechnical Industries, Pty Ltd., Pretoria, South Africa) and quantified using the
NanoDrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). The amplicons
from triplicate PCR reactions were combined at equal concentrations and used for Nextera
library preparation and sequencing. Samples were subjected to standard quality control
measures (fluorometric quantification and normalization). One nanogram of each amplicon
pool was used in a standard indexing PCR protocol for a paired-end sequencing library
(using Nextera XT DNA Library Prep workflow), and samples were sequenced using
MiSeqV3 chemistry (2 × 300 reads) (Illumina, San Diego, CA, USA).

2.3. Data Analysis

Raw Illumina fastq files were subjected to quality analysis using FastQC, and low-
quality sequences with a Phred score below 30 were identified using dynamic trimming
and removed. Different QIIME version 1 scripts were used [22]; except when indi-
cated between brackets, standard parameters were used: validate_mapping_file.py to
validate data format; split_libraries_fastq.py (–barcode_type ‘not-barcoded’) for multi-
plexing; truncate_reverse_primer.py to remove reverse primer and subsequent sequences
(–barcode_type ‘not-barcoded’); identify_chimeric_seqs.py to remove chimeras with
the identifying algorithm usearch61 (–m, –chimera_detection_method usearch61,
–suppress_usearch61_ref); pick_open_reference_otus.py for OTU picking steps (–suppress_
align_and_tree, OTU clustering threshold is 97%); and summarize_taxa.py to create taxa
summary tables. OTU and taxonomy tables with metadata files were used to feed Micro-
biomeAnalyst web-based software [23]. Unless specified, filter parameters were a low count
filter of 2, with a prevalence in sample of 10%. Data were normalized through the Total
Sum Scaling (TSS) method. Different R packages were used: EdgeR [24] and DESeq2 [25]
for statistical comparison of differential OTUs in samples and conditions; Vegan [26] for
rarefaction curve analysis. To investigate richness, the main alpha diversity indexes were
used (Shannon and Simpson, Chao1). The Bray–Curtis dissimilarity index and Permuta-
tional Multivariate Analysis of Variance (PERMANOVA) were used to compare fungal
community composition between regions [20], and the beta diversity was visualized using
the ordination-based method of Principal Coordinates Analysis (PCoA). ANOVA tests were
used to identify significant differences in both analyses. In Hierarchical Clustering (HCl)
and Heatmap visualization, the Ward clustering algorithm was used.
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3. Results
3.1. Design of Experiments and Sequence Analysis

To understand the main drivers in microbial diversity in wine grapes from different
vine cultivars, we sampled different regions from Europe (Georgia, Italy, Spain) and South
Africa (Table A1). From each location, grapes were collected from an international cultivar,
Cabernet Sauvignon, and from a second, locally prominent or unique cultivar. Illumina
paired end sequencing of the genomic DNA extracted from grape musts was used to explore
the fungal biota (mycobiome) of the different vineyard samples, and ITS1-5.8S rDNA-ITS2
libraries were generated. A dataset containing forward reads (mainly containing partial
ITS1-5.8S sequences) was selected for further analysis; indeed, this last proved to be more
informative than the joined reads (ITS1-5.8S-ITS2) that significantly reduced the amount
of available data. Sampling depth and sequencing coverage were analyzed by rarefaction
curves, showing that in most cases the desired plateau was reached, especially for samples
coming from the Italian and Georgian datasets (Figure A1). The analysis of the sample
diversity, using the main alpha diversity indexes, showed that the South African and
Spanish datasets were the most diverse, with the former having the least variance between
samples (Figure 1).
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Figure 1. Analysis of the sample diversity: alpha-diversity index: (a) Shannon, p-value: 0.004172;
(ANOVA) F-value: 5.5182; (b) Simpson, p-value: 0.02898; (ANOVA) F-value: 3.4793; (c) Chao, p-value:
0.012439; (ANOVA) F-value: 4.339. The colored solid line inside the box is the median value, and the
black rhombus is the mean value; the colored dots are individual samples.

3.2. Fungal Distribution

A total of 361,981 ITS high-quality sequences were generated from 32 grape samples,
and they were clustered into 92 fungal OTUs with 97% pairwise identity (Assigment be-
tween OTU numbers and genera is shown in Table A2). Most of the species belonged to the
Ascomycota phylum (Figure A2a). Basidiomycota species represented an important per-
centage (25%) in only a few samples across the different datasets; for instance, one sample
in the Georgian and one in the South African dataset, with the lowest representation in the
Italian samples. Some Spanish samples (in both varietals) and one Cabernet Sauvignon
sample in South Africa showed incidence of the Mucoromycota phylum (within 8% as
a maximum). Dothideomycetes were the most common fungi across all samples, with a
high presence of Leotiomycetes in the Italian samples, together with Eurotiomycetes in
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the Spanish ones. The presence of Saccharomycetes was also important in some isolated
samples from the Italian (showing the highest values), South African, and Spanish datasets
(Figure A2b).

Genera abundance distribution can be seen in Figure 2. As expected, some yeast
genera had an important presence across all datasets, as is the case for Aureobasidium.
Although only healthy samples were collected, the second fungal genus in abundance was
Botrytis, which, however, showed very high heterogeneity in its quantitative distribution.
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Figure 2. Relative abundance and taxonomic assignment of genera in the 32 samples from the four
countries. Sample code: Ge, Georgia; It, Italy; SA, South Africa; Sp, Spain; CS, Cabernet Sauvignon;
Rk, Rkatsiteli (Ge); Sa, Sangiovese (It); Tem, Tempranillo (Sp); CB, Chenin Blanc (SA).

Despite these heterogeneities, some patterns can be observed: South African samples
showed an important presence of Alternaria in all samples, with significantly higher
frequencies when compared to all the other samples; an important abundance of Penicillium
was found in the Spanish samples, and Georgian samples contained high frequencies of
unidentified fungi.

3.3. Deconstructing the Drivers Defining Microbial Population
3.3.1. Country of Isolation Is the Primary Driver

A hierarchical clustering was made to show similarities among groups of samples
(Figure 3). The results highlighted that all the South African samples separated from the rest
of the European samples in a single sub-cluster, which, however, also included two Spanish
samples. The second cluster contained all the European samples, with the remaining
Spanish samples forming their own sub-cluster separated from the Italo-Georgian sub-
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cluster. Even so, in this last group the samples belonging to the same country tended
to be closely associated. The figure also shows how the vine cultivar from which the
samples were isolated seems to have little effect in defining the groups; the samples of the
local cultivars grouped together only in some cases. When they did, it was mostly true
for two adjacent samples, as was the case in samples of Chenin Blanc in South Africa or
of Sangiovese and Rkatsiteli in the Italo-Georgian subgroup. The international cultivar
samples showed a similar arrangement, except in the case of Georgia, where the largest
grouping of Cabernet Sauvignon samples is observed.
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Figure 3. Clustered heatmap showing the variation of genus abundance with regard to vine cultivars
and countries. Sample code: Ge, Georgia; It, Italy; SA, South Africa; Sp, Spain; CS, Cabernet
Sauvignon; Rk, Rkatsiteli (Ge); Sa, Sangiovese (It); Tem, Tempranillo (Sp); CB, Chenin Blanc (SA).



J. Fungi 2022, 8, 1034 8 of 25

3.3.2. Cabernet Sauvignon Vine Cultivar Shows a Specific Microbial Fingerprint

Despite country of isolation being the main driver of variation, other factors were
influencing the outcome (Figure 4).
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p−value: 0.001) of the Georgian (red), Italian (green), Spanish (light blue), and South African
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When comparing datasets from Cabernet Sauvignon grapes against local cultivars
by PCoA, the main component explaining the distances between samples is the principal
component in the local and Cabernet Sauvignon cultivars, explaining 39.1 and 27.1% of
differences each (Figure 4a,b). The closer samples are to each other, the more tightly they
cluster in a final plot. As it can be seen in the PCoAs, Cabernet Sauvignon samples do
not appear to be driven by axis one or two, forming a cloud of points altogether. On the
contrary, the local cultivars appear to be more clearly stratified along the PC2 axis: from
top to bottom, Georgia, Italy, Spain, and finally South Africa, with the latter being the most
closely grouped.

A similar situation can be observed with HCl analysis of the two datasets (Figure A3).
Local varieties group very similarly to the previously described HCl (when all samples,
international and local, were analyzed together) (Figure A3a). The South African samples
formed an independent group from the European samples, this time without the inclusion
of any Spanish sample (Figure A3b). Differences between Cabernet Sauvignon and local
cultivars are not related with the most represented genera (Figure 5). The most represented
genera, Aureobasidium and Botrytis, had similar percentages in both groups and roughly
constituted half of the fungal species observed. On the other hand, the fungi that constituted
the other half of the diversity varied more significantly between both groups. This was
especially true for the species that appeared with lower abundances, which showed very
different percentages between cultivars. The average diversity of the Cabernet Sauvignon
cultivars was greater than that of the local cultivars (Figure A4). This was also observed
in the “Other” category of Figure 5, which groups species with a low incidence; this
category had greater weight in Cabernet Sauvignon compared with local cultivars. From
the OTUs shared by both cultivars, five were significantly different between grape cultivars
(Figure A5); these corresponded to Rhodotorula, Cystobasidium, Papiliotrema, Filobasidium,
and the “Other” category.
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Figure 5. Abundance percentage of each genus among Cabernet Sauvignon cultivars (blue bars) and
local cultivars (green bars). In white, the percentage of abundance of that genus for the Cabernet
Sauvignon cultivar and local cultivars.

3.3.3. Drivers of Differentiation at a Local Level

We also analyzed samples from each country individually (Figures A6–A9). In general,
in each country of isolation, samples of Cabernet Sauvignon and the corresponding local
cultivar coming from the same field clustered together. The number of vineyards showing
this behavior differed from region to region; Georgia and Italy had the higher percentages
with 75% (3 out of 4 vineyards) each, Spain 40% (2 out of 5 vineyards), and South Africa 33%
(1 out of 3 vineyards). This clustering was analyzed for differences in OTUs, with only Italy,
Spain, and South Africa presenting OTUs that were significantly different among fields
(Figure 6). In the case of South Africa, with only vineyard number 3 clustering Cabernet
Sauvignon and Chenin Blanc together, the differential abundance analysis showed that the
only significant OTU comparing the three vineyards was OTU34, which corresponds to
Botrytis, which was also in higher abundance in vineyard 3. Two OTUs appeared signifi-
cantly different in the Spanish samples; one corresponded to the category “unidentified”
(OTU61) and the other to Rhizopus (OTU90). The unidentified category collected the
reads that did not have a blast match and indicated that, in the case of vineyard 1, this
category was more abundant. For Rhizopus, three out of the five vineyards presented this
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fungus. Both OTUs have none or very low representation in fields 4 and 5, which are the
ones clustering in the HCl. In Italy, where fields 1, 3, and 4 had samples from Cabernet
Sauvignon and Sangiovese next to each other, the only significant OTU corresponded to
Neoscytalidium (OTU5), which was higher in the last two fields. No significant OTUs
appeared in the Georgian samples.
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Figure 6. Statistically different genus abundance among fields: Spain, Rhizopus and an unidentified
genus; South Africa, Botrytis; Italy, Neoscytalidium. Class, on the x−axis, indicates the field where the
samples were collected (Table A1). Data analysis was performed with R package DESeq2. Statistically
differentiated genus abundance corresponds to a q−value cutoff of 0.05.

3.3.4. Yeast Genera May Shape Population Diversity

In order to evaluate how the presence of different genera was driving the grape
mycobiome, a correlation analysis was performed (Figure 7). In the correlation matrix, it
can be observed that OTU34 had a strong negative correlation with several other species.
This OTU corresponded to Botrytis and showed the strongest negative correlation of the
entire matrix, especially on Aureobasidium (OTU12). In general terms, Aureobasidium was
the most abundant OTU revealed in this study, except when Botrytis was present. On
the other hand, several OTUs had an important positive correlation over other OTUs, for
instance, Bipolaris, Exserohilum, and Cystobasidium. In Bipolaris and Exserohilum the effect
is reciprocal and on unidentified species, in Cystobasidium the effect is on unidentified
species. Contrary to what happens with Aureobasidium and Botrytis, which represent two
of the major groups observed in the population, Bipolaris, Exserohilum, and Cystobasidium
constitute much lower percentages.
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4. Discussion

In this work, we can distinguish up to four layers of influence in the distribution of
the microbiota.

Country of origin, the region of isolation of the samples, is the most influential layer.
This evidence confirms what has been reported in other studies, where both single- and
multiple-cultivar analysis highlighted that fungal microbiome correlates with regional
grape microbial patterns [5,8–10,17,18,20]. Since the initial treatment of the data, datasets
coming from the different localizations show specific characteristics in the form of different
abundances, richness, or number of unidentified fungi. These noticeable differences, easily
seen in the HCl (Figure 3), group the European samples on one side, separate from the
South African samples. The presence of Alternaria in the South African dataset is higher
compared to the other datasets and consistent through the samples. This result has been
recently confirmed in fungal profiles obtained from Cabernet Sauvignon grapes collected
from a biodynamic vineyard in the Stellenbosch wine producing region of South Africa [16].
The filamentous fungus Alternaria sp. is known as a pathogenic grapevine endophyte that
can became more abundant along specific developmental stages of grape; for example,
Alternaria infectoria and Alternaria rosae were only detected in grape samples at veraison
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and appeared in high occupancy afterwards [27]. Alternaria is a plant pathogenic fungus
that produces a mycotoxin dangerous to human health [28], which can reach the wine and
whose presence has recently been suggested to have increased due to climate change [29].
Moreover, the analysis of the fungal microbiota from Pinot Noir and Chardonnay vineyards
from different cellars (located at a small-scale pairwise distance of 8–12 km) displayed
that Alternaria sp. Was detected only in samples from one wine estate, suggesting that not
only local climatic conditions significantly correlate with microbial compositions in grape
musts [11], but also microclimatic changes on field blocks could play a role in shaping the
fungal community diversity.

A second layer of differentiation whichs the wine cultivar fromwhichch samples
where isolated. Although the influence of the cultivar has been previously described [11],
this is the first time that influence is observed in cultivars located in different countries;
although the present work analyzed the mycobiota in two continents, this finding provides
evidence that the grape variety could also act as a factor affecting the composition of
fungal communities at a global scale. Further metagenomic investigations should include
retrieving grape from other regions located on different continents, to compare them with
those here analyzed to confirm our previous hypothesis. Moreover, the analysis of the data
does not allow us to establish exactly what are, in terms of species and abundances, the
characteristics that this fingerprint possesses for the Cabernet Sauvignon cultivar, although
the results indicate that the less abundant species could define this fingerprint, requiring
deeper sequencing for identification.

The third detected layer of influence is the sampling field, because samples from
the same field, either the common or the local cultivars, are in some cases grouped. It
must be considered that, in this work, an effort was made so that the local effects were as
homogeneous as possible between fields in the collection of the samples from common
and local cultivars. This result may be due to different causes, most likely human practices
related to the management of the vineyard and the different agricultural techniques that
may be influencing the observed grouping. Similarities in the fungal communities among
different wineries in the same regions has been recently reported [20]; however, thought
our output confirms this evidence, further studies are required to establish potential
factors driving the fungal community profiles on vineyard blocks (or fields) with different
microclimatic, viticultural, and topographical conditions, beyond the aim of the present
work. In particular, at the local level, the genera that were significantly different between
fields were Botrytis in South Africa, Rhizopus in Spain, and Neoscytalidium in Italy. In this
case, the climatic conditions could have determined the success in the development of
some pathogenic fungi, but further analyzes are necessary to verify a possible correlation
between the climatic parameters and pathogenic fungi found locally, considering both the
vintage under study and the three interested wine-producing areas. Botrytis is a genus
of anamorphic fungi in the family Sclerotiniaceae, which includes B. cinerea, an airborne
filamentous fungus that causes grey mold disease [30]. This necrotrophic phytopathogenic
fungus is ubiquitous, and climate conditions including mean temperature, humidity, and
precipitation are considered the main variables influencing the botrytization process [31,32].
Rhizopus was found to be the main components of the wine grape mycobiota in Tokaj
grape berries of Slovak regions and part of the fungal community in Slovakian wine grapes
from small Carpathians wine region [33–35]. Some species of this genus provoke Rhizopus
rot, common on soft fruits, more abundant in warm, humid climates than in cool climate
viticulture. Finally, the genus Neoscytalidium, belonging to the Botryosphaeriaceae family and
includes species associated with Botryosphaeria dieback on grapevines. In addition, for this
taxon, the geographical distribution of some Botryosphaeriaceae species has been shown to
be associated with climate [36].

The data also identify another influencing factor, “altering species”, usually grape
pathogens, whose presence acts by displacing and varying the fungal and yeast popu-
lation. In some cases, their presence favors the appearance of other genera, such as the
positive effect of the presence of Botrytis on the appearance of Diplodia from the family
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Botryosphaeriaceae, which is associated with Botryosphaeria canker and other trunk diseases
of grapevine [37]. However, most frequently this interaction can be negative [38]; thus, the
negative correlation observed in our samples between Botrytis and Aureobasidium would de-
serve an in-depth study in order to assess whether it is explained by biological interactions
between the two species. Although Alternaria is also a pathogen, more highly represented
in the South African samples when compared to the rest of the samples, we cannot identify
its effect on other species of microorganisms in our dataset, as similar frequencies of this
fungus appear in all samples.

The study also lacks microbial reference data for less-studied wine regions, as is
the case of samples collected in Georgia, which have the highest rate of unidentified
OTUs. This finding further confirms that, despite the numerous efforts of identification
of microorganisms from the vineyard ecosystem, there are locations with microbiological
particularities that should be explored in greater depth. Although such unidentified
species are generally found in relatively low abundances, they may well exert a significant
ecological impact. In most microbiomic datasets, species (OTUs) of low abundance are
those that present the greatest diversity, but also have the least available information
regarding their role. Whether or not this abundance is sufficient to constitute a biological
impact is another matter. It is generally accepted that microbiological diversity constitutes
a good indicator of vineyard health and can act as a buffer against harmful invasive species
by increasing the likelihood of having local antagonist fungi present.

This meta-analysis of grape microbiomes represents the first study to include two con-
tinents, within a more global vision. Through standardization of sampling design, sample
preparation, and metagenomic data generation, the study provides an opportunity to evalu-
ate several relevant issues with regards to microbial diversity in vineyards, and in particular
contributes significant confirmation from existing hypotheses and new insights regarding
the relative importance of both location and cultivar in defining grape microbiome.

The data indeed suggest that, on a global scale, location has a significant impact on
microbial diversity, whether with regards to unique genera or species, or with regards to
species distribution. They also confirm the presence of a common core of genera that is
present globally in vineyards and on grapes, suggesting that vineyards would provide an
ideal model to evaluate the evolutionary trajectory of anthropogenic microbial ecosystems.

The results also suggest that grape varieties are indeed characterized by unique
microbial fingerprints, because the Cabernet Sauvignon samples from all locations showed
closer association than the samples from country-specific varietals. However, a signature in
terms of species isolation or species distribution cannot be defined in this study, and such
an analysis will require additional datasets and deeper sequencing than was the case here.
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Appendix A

Table A1. Origin and geographic data of the grape samples.

Country Cultivar Field Number Sample Name Winery Name Wine District GPS Coordinates

Georgia (Ge) Cabernet
Sauvignon (CS) 1 GeCS1 Khareba Gurjaani, Kakheti 41◦53′34.5′′ N;

45◦42′33.7′′ E

2 GeCS2 Khareba Kvareli, Kakheti 41◦57′39.9′′ N;
45◦39′45.9′′ E

3 GeCS3 Telavi Wine Cellar Telavi, Kakheti 41◦57′09.0′′ N;
45◦36′01.6′′ E

4 GeCS4 Besini Company Telavi, Kakheti 41◦54′51.4′′ N;
45◦35′12.5′′ E

Rkatsiteli (Rk) 1 Ge Rk1 Khareba Gurjaani, Kakheti 41◦52′41.7′′ N;
45◦41′49.3′′ E

2 Ge Rk2 Khareba Kvareli, Kakheti 41◦57′15.2′′ N;
45◦39′26.4′′ E

3 Ge Rk3 Telavi Wine Cellar Telavi, Kakheti 41◦57′27.8′′ N;
45◦36′10.6′′ E

4 Ge Rk4 Besini Company Telavi, Kakheti 41◦54′54.4′′ N;
45◦35′36.4′′ E

Italy (It) Cabernet
Sauvignon (CS) 1 ItCS1 Banfi Montalcino,

Tuscany
42◦57′47.4′′ N;
11◦25′08.5′′ E

2 ItCS2 Guado al Melo Castagneto Carducci,
Tuscany

43◦11′37.9′′ N;
10◦37′34.4′′ E

3 ItCS3 Ruffino Chianti, Tuscany 43◦40′53.7′′ N;
11◦21′06.1′′ E

4 ItCS4 Ruffino Chianti, Tuscany 43◦41′31.6′′ N;
11◦19′13.9′′ E

Sangiovese (Sa) 1 ItSa1 Banfi Montalcino,
Tuscany

42◦57′48.7′′ N;
11◦25′16.0′′ E

2 ItSa2 Guado al Melo Castagneto Carducci,
Tuscany

43◦11′35.2′′ N;
10◦37′35.3′′ E

3 ItSa3 Ruffino Chianti, Tuscany 43◦40′54.1′′ N;
11◦21′07.1′′ E

4 ItSa4 Ruffino Chianti, Tuscany 43◦41′31.2′′ N;
11◦19′12.9′′ E

South
Africa (SA)

Cabernet
Sauvignon (CS) 1 SACS1 Stark-Condé Stellenbosch 33.953790◦ S;

18.911330◦ E

2 SACS2 Reyneke Stellenbosch 33.960188◦ S;
18.754975◦ E

3 SACS3 Villiera Stellenbosch 33.835582◦ S;
18.787778◦ E

Chenin Blanc (SB) 1 SACB1 Stark-Condé Stellenbosch 33.954752◦ S;
18.911675◦ E

2 SACB2 Reyneke Stellenbosch 33.959321◦ S;
18.753102◦ E

3 SACB3 Villiera Stellenbosch 33.843688◦ S;
18.785048◦ E

Spain (Sp) Cabernet
Sauvignon (CS) 1 SpCS1 Valdegón Logroño,

La Rioja
42◦27′57.5′′ N;
2◦17′39.1′′ W

2 SpCS2 Bodegas Olarra Logroño, La Rioja 42◦28′18.4′′ N;
2◦24′31.1′′ W

3 SpCS3 Barón de Ley Mendavia,
Navarra

42◦25′36.2′′ N;
2◦10′00.1′′ W

4 SpCS4 Vivanco Briones, La Rioja 42◦32′16.3′′ N;
2◦46′24.2′′ W

5 SpCS5 Don Jacobo-Altos
del Corral

Navarretes,
La Rioja

42◦24′56.2′′ N;
2◦33′58.7′′ W

Tempranillo (Tem) 1 SpTem1 Valdegón Logroño, La Rioja 42◦27′57.5′′ N;
2◦17′39.1′′ W

2 SpTem2 Bodegas Olarra Logroño, La Rioja 42◦28′18.4′′ N;
2◦24′31.1′′ W

3 SpTem3 Barón de Ley Mendavia,
Navarra

42◦25′36.2′′ N;
2◦10′00.1′′ W

4 SpTem4 Vivanco Briones, La Rioja 42◦32′16.3′′ N;
2◦46′24.2′′ W

5 SpTem5 Don Jacobo-Altos
del Corral

Navarretes,
La Rioja

42◦24′56.2′′ N;
2◦33′58.7′′ W

http://cordis.europa.eu/project/rcn/109193_en.html
http://cordis.europa.eu/project/rcn/109193_en.html
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Table A2. Assignment between OTU codes and genera.

OTU Code Genus Identification OTU Code Genus Identification OTU Code Genus Identification

00001 Botryosphaeria 00032 Articulospora 00063 Suillus
00002 Diplodia 00033 Lambertella 00064 Vuilleminia
00003 Dothiorella 00034 Botrytis 00065 unidentified
00004 Neofusicoccum 00035 Phacidium 00066 Stereum
00005 Neoscytalidium 00036 Hyphopichia 00067 unidentified
00006 unidentified 00037 Metschnikowia 00068 Cystobasidium
00007 unidentified 00038 Kregervanrija 00069 Buckleyzyma
00008 Cladosporium 00039 Pichia 00070 Quambalaria
00009 Uwebraunia 00040 Lachancea 00071 Rhodosporidiobolus
00010 Mycosphaerella 00041 Saccharomyces 00072 Rhodotorula
00011 unidentified 00042 Torulaspora 00073 Sporobolomyces
00012 Aureobasidium 00043 Zygosaccharomyces 00074 Cystofilobasidium
00013 Hormonema 00044 Candida 00075 Udeniomyces
00014 Didymella 00045 unidentified 00076 Filobasidium
00015 Neoascochyta 00046 Hanseniaspora 00077 Naganishia
00016 Sclerostagonospora 00047 Zygoascus 00078 Piskurozyma
00017 Alternaria 00048 unidentified 00079 unidentified
00018 Bipolaris 00049 Diaporthe 00080 Holtermanniella
00019 Comoclathris 00050 unidentified 00081 Vishniacozyma
00020 Exserohilum 00051 Phomopsis 00082 Kwoniella
00021 Paradendryphiella 00052 unidentified 00083 Tsuchiyaea
00022 Stemphylium 00053 Colletotrichum 00084 Papiliotrema
00023 unidentified 00054 Verticillium 00085 Cryptococcus
00024 Preussia 00055 Cordyceps 00086 unidentified
00025 unidentified 00056 unidentified 00087 unidentified
00026 unidentified 00057 Hirsutella 00088 unidentified
00027 Valsaria 00058 Campylospora 00089 Mucor
00028 Aspergillus 00059 Nigrospora 00090 Rhizopus
00029 Penicillium 00060 unidentified 00091 unidentified
00030 Punctelia 00061 unidentified 00092 Other
00031 Erysiphe 00062 unidentified
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Figure A3. Clustered heatmap showing the variation of taxonomic abundance with regard to (a) local
varieties of group vine cultivar samples and countries; (b) Cabernet Sauvignon cultivar samples and
countries. Sample code: Ge, Georgia; It, Italy; SA, South Africa; Sp, Spain; CS, Cabernet Sauvignon.
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Figure A5. Statistically differentially abundant OTUs between Cabernet Sauvignon and local cultivars.
Data transformed using the R package EdgeR, adjusted p−value cutoff, 0.05. The black solid line
inside the box is the median value and the black dots are individual samples.
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Figure A6. Clustered heatmap showing the variation of taxonomic abundance with regard to Georgia
(country) and cultivar samples [Cabernet Sauvignon and others (local cultivar)]. Sample code: Ge,
Georgia; CS, Cabernet Sauvignon; Rk, Rkatsiteli.
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Figure A7. Clustered heatmap showing the variation of taxonomic abundance with regard to Italy 

(country) and cultivar samples [Cabernet Sauvignon and others (local cultivar)]. Sample code: It, 

Italy; CS, Cabernet Sauvignon; Sa, Sangiovese. 

Figure A7. Clustered heatmap showing the variation of taxonomic abundance with regard to Italy
(country) and cultivar samples [Cabernet Sauvignon and others (local cultivar)]. Sample code: It,
Italy; CS, Cabernet Sauvignon; Sa, Sangiovese.
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Figure A8. Clustered heatmap showing the variation of taxonomic abundance with regard to South
Africa (country) and cultivar samples [Cabernet Sauvignon and others (local cultivar)]. Sample code:
SA, South African; C, Cabernet Sauvignon; CB, Chenin Blanc.
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Spain; CS, Cabernet Sauvignon; Tem, Tempranillo. 

  

Figure A9. Clustered heatmap showing the variation of taxonomic abundance with regard to Spain
(country) and cultivar samples [Cabernet Sauvignon and others (local cultivars)]. Sample code: Sp,
Spain; CS, Cabernet Sauvignon; Tem, Tempranillo.
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