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The double extension and the T ∗-extension are classical 
methods for constructing finite dimensional quadratic Lie 
algebras. The first one gives an inductive classification in 
characteristic zero, while the latest produces quadratic non-
associative algebras (not only Lie) out of arbitrary ones in 
characteristic different from 2. The classification of quadratic 
nilpotent Lie algebras can also be reduced to the study of 
free nilpotent Lie algebras and their invariant forms. In this 
work we will establish an equivalent characterization among 
these three construction methods. This equivalence reduces 
the classification of quadratic 2-step nilpotent to that of 
trivectors in a natural way. In addition, theoretical results 
will provide simple rules for switching among them.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Quadratic Lie algebras, also named as metrizable, were introduced in 1957 (see [1]) as 
real Lie algebras of Lie groups admitting a Riemannian metric invariant under all trans-
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lations of the group. In fact, according to [2, Lemmas 7.1 and 7.2] (see also [3, Lemma 
2.1]), the connected Lie groups admitting a bi-invariant Riemannian metric are those 
Lie groups for which their Lie algebras are quadratic. In [1] several decomposition and 
existence theorems are given, and it is shown that every metrizable algebra decomposes 
as an orthogonal sum of an abelian algebra and a finite number of non-decomposable 
reduced ones. The family of quadratic Lie algebras is quite large and contains reductive 
Lie algebras, and also infinitely many solvable examples. Their structure has essential 
patterns which can be used to decode the structure of some Lie groups. Riemannian Ge-
ometry makes this class of algebras visible, but they also play an important role in many 
other branches of mathematics and physics from Cartan’s Criterion up to completely 
integrable Hamiltonian systems (see [4, Section 1]).

A bilinear form ϕ on a non-associative algebra A with product xy that satisfies,

ϕ(xy, z) = ϕ(x, yz) ∀x, y, z ∈ A, (1)

is called invariant. If the invariant bilinear form ϕ is non-degenerated, the pair (A, ϕ)
is named pseudo-quadratic algebra and quadratic if, in addition, ϕ is symmetric. In the 
literature they appear also named as, metric, metrized, metrizable (usual names for 
algebras over the real field), orthogonal, regular quadratic, quassi-classical or symmetric 
self-dual.

Double extensions and T ∗-extensions are classical construction methods for finite 
dimensional quadratic Lie algebras. The first one gives an inductive classification of 
quadratic Lie algebras in characteristic zero, while the latest one produces quadratic 
non-associative algebras of dimension even (not only Lie) out of arbitrary ones in char-
acteristic different from 2. In the case of nilpotent Lie algebras, a classification scheme 
based on free nilpotent algebras and their invariant forms was introduced in [5].

The double extension process appears during the 1980s in several independent works of 
Keith and Hofmann (see [6]), Favre and Santharoubane and Medina and Revoy (see [7,8]). 
According to [7], this procedure follows the main ideas that V. G. Kac had written in 
several exercises for his students (see [9, Exercise 2.10 and 2.11]). In Exercise 2.10, the 
double one-dimensional extension is defined, and the fact that every indecomposable 
solvable quadratic algebra of dimension n + 2 can be obtained from a quadratic algebra 
of dimension n is established in Exercise 2.11 (see [7, Proposition 2.9] for a complete 
proof). According to [10], this process also allows to produce Lie algebras with the 
same type of geometric (quadratic, symplectic or contact) structures. In 1997, Borde-
mann introduced the T ∗-extension technique that can be applied to all known classes 
of non-associative algebras over fields of characteristic different from 2. The method 
produces quadratic algebras of dimension even and Witt index a half of its dimension. 
From [4, Theorem 3.2], T ∗-extensions are just quadratic non-associative algebras of di-
mension 2n that contain an isotropic subspace U of dimension n such that U2 = 0. 
Both methods are good to produce examples, but they present difficulties when deal-
ing with the classification problem. In the 2000s, the notion of a quadratic extension
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was introduced as an attempt to understand general pseudo-Riemannian symmetric 

spaces (see [11] and [12]). Quadratic extensions are close relatives of double exten-
sions. More recently, the double central extension has been introduced in [13], where 

a detailed study of invariant metrics on central extensions of quadratic algebras is in-
cluded.

A Lie algebra A such that is centre is contained in its derived algebra is said reduced. 
The pair (r, s) = (dimA2, dimZ(a)) is called the type of the algebra.

If the Lie algebra is quadratic, by orthogonality, its dimension is just r + s. In 1962, 
S. T. Tsou (see [14]) established an existence theorem for real quadratic Lie algebras of 
arbitrary type. The proof of this result, that was announced in [1, Section 7]), involves 
structure constants, trivectors and solutions of nonlinear systems of equations, so multi-
linear algebra. These ideas are in the base of the proposed scheme, as well as results on 

the classification of quadratic nilpotent Lie algebras given in [5]. In the case of quadratic 

nilpotent algebras of nilindex 2 (2-step nilpotent in the sequel), elemental multilinear 
techniques lead in [15] to the notion of n-quadratic family of matrices and produce a 

computational algorithm to build this type of algebras.
In this paper, we will focus on multilinear tools to provide a constructive equivalence 

theorem (Theorem 3.1) that relates multi-step one-dimensional double extensions, T ∗-
extensions and n-quadratic families. This equivalence reduces, in a direct and natural 
way, the classification up to isometries of quadratic 2-step nilpotent Lie algebras to that 
of 3-alternating forms up to equivalence (Theorem 4.2) following the ideas of [16]. Our 
equivalence also shows that invariant forms of the subclass of reduced quadratic 2-step 

are hyperbolic. Even more, the class of quadratic 2-step Lie algebras agree with the class 
of T ∗-extensions of abelian Lie algebras given by non-degenerate (equivalently linearly 

surjective) 2-cocycles (Corollary 2.23). This assertion collects and expands Proposition 

11 in [17].
The paper splits into four sections including this introduction. In Section 2, we intro-

duce main terminology on quadratic Lie algebras. Subsections 2.1, 2.2 and 2.3 describe 

the construction methods, and give examples and patterns. Starting with the trivial 
quadratic algebra (A0 = 0, ϕ0 = 0), Subsection 2.1 includes, as its main tool, a general 
multi-step hyperbolic extension inductively built by one-dimensional double extensions. 
Section 3 is devoted to our main result, Theorem 3.1. This result gives us 2-step quadratic 

Lie algebras by structure constants encoded in cyclic 2-cocycles and provides a simple rule 

for switching from one construction method to another. In the final section, the bijective 

map described in (20) yields to the explicit relationship between cyclic 2-cocycles and 

trivectors. This bijection leads to the bijection up to isomorphisms of reduced quadratic 

2n-dimensional 2-step Lie algebras and n-rank trivectors up to equivalence. As an easy 

application, we list the 22 non-isometrically isomorphic reduced quadratic 2-step Lie 

algebras up to dimension 16 over the complex field.
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2. Generalities and methods

Along this paper, all vector spaces are considered finite-dimensional over a field K
of characteristic zero. Although, it is worth mentioning many of these results can be 
established in characteristic different from two.

In general, A will denote a Lie algebra over K and ϕ : A × A → K a bilinear form. 
So, the bracket product [x, y] of A is skew-symmetric and satisfies the Jacobi identity, 
i.e. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. From Jacobi and skew symmetry, the left multi-
plication by x ∈ A, adx = [x, · ], is a derivation of A known as inner derivation. When 
working with Lie algebras, condition (1) of invariance of ϕ can be rewritten as

ϕ([x, y], z) + ϕ(y, [x, z]) = 0 ∀x, y, z ∈ A, (2)

and the inner derivation adx = [x, · ] is said ϕ-skew symmetric. In general, a derivation 
d of A such that ϕ(d(x), y) +ϕ(x, d(y)) = 0 will be called ϕ-skew symmetric and Derϕ A

will denote the set of skew-symmetric derivations with respect to ϕ, while DerA (InnerA) 
will denote the whole set of derivations (inner derivations) of A. In this way, we arrive 
to the notion of quadratic Lie algebra:

Definition 2.1. A quadratic Lie algebra (A, ϕ) is a pair formed by a Lie algebra A
equipped with a non-degenerate invariant, see condition (2), symmetric bilinear form 
ϕ : A ×A → K.

For arbitrary subsets S and T of A, [S, T ] denotes the K-linear span [S, T ] =
span〈[s, t] : s ∈ S, t ∈ T 〉. The Lie algebra A is said to be t-step nilpotent if At+1 = 0
when At+1 = [A, At] = 0, but At �= 0, starting A1 = A. We also say that t is the index 
of nilpotency of A or nilindex. The chain of ideals

A ⊇ A2 ⊇ · · · ⊇ At ⊇ At+1 ⊇ · · ·

is the well-known lower central series of A. Hence, if A is t-step nilpotent, this series 
arrives to 0 in t +1 steps. The upper central series of A is inductively defined by Z1(A) =
Z(A) and Zt+1(A) = {x ∈ A : [x, A] ⊆ Zt(A)}. For every quadratic (A, ϕ), the previous 
series are related between them by the orthogonal condition (Ak)⊥ = Zk−1(A) (see [4, 
Proposition 2.1] or [8]). In particular,

(A2)⊥ = Z(A) and therefore dimA = dimA2 + dimZ(A). (3)

Among all quadratic Lie algebras, we are going to focus on the reduced ones:

Definition 2.2. A Lie algebra A is said to be reduced if its centre is contained in its 
square, i.e. Z(A) ⊆ A2. In the 2-step case, this is equivalent to Z(A) = A2 as the other 
inclusion comes from being nilpotent.
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The reason why we limit our classification to this type of algebras is explained in [1, 
Theorem 6.2] which says:

Theorem 2.3. Any non-reduced and non-abelian quadratic Lie algebra (A, ϕ) decomposes 
as an orthogonal direct sum of proper ideals, A = n ⊕ a, where ϕ = ϕ1 ⊥ ϕ2 and (n, ϕ1)
is a quadratic reduced Lie algebra and (a, ϕ2) is a quadratic abelian algebra. �

A quadratic algebra (A, ϕ) is called decomposable if it contains a proper ideal I that is 
non-degenerated (i.e. ϕ |I×I is non-degenerate), and indecomposable otherwise. So, every 
abelian algebra of dimension greater than one or non-reduced algebra is decomposable. 
Any quadratic Lie algebra is the orthogonal direct sum of indecomposable quadratic Lie 
algebras. This assertion follows easily from the fact that I is an ideal of A if and only if 
its orthogonal space I⊥ also is.

Finally, we will denote as nd,t the free t-step nilpotent Lie algebra on d generators 
(see [5] for a formal definition).

There exist several ways to construct quadratic Lie algebras or equivalent structures. 
We give an overview of three of them, with focus on the 2-step case. We are going to see 
all methods in the order they first appeared.

From now on, (A, f) will denote a finite-dimensional quadratic Lie algebra, while A∗

will be the dual space of A. Moreover, ad∗ will represent the coadjoint representation, 
so for any α : A → K, α ∈ A∗ and a, a′ ∈ A:

ad∗(a)(α)(a′) = −α([a, a′]) = −α ◦ ad a(a′). (4)

2.1. Double extension

Chronologically, this is the first classical method to construct all quadratic Lie al-
gebras (see [18] for a nice presentation). This is an iterative process, simultaneously 
introduced in the early 1980s by several authors, that allows us to find new quadratic 
Lie algebras starting from a smaller dimensional one. The formal description we present 
here follows from [4, Theorem 2.2]) which explicitly describes a similar result mentioned 
in [8, Section 2.2].

Theorem 2.4. Let (A, f) be a finite-dimensional quadratic Lie algebra over a field K. Let 
B be another finite-dimensional Lie algebra over K and suppose there is a Lie homo-
morphism φ : B → Derf (A) from B onto the space of all f -skew-symmetric derivations 
of A. Denote by w : A × A → B∗ the bilinear skew-symmetric map (a, a′) → (b →
f(φ(b)(a), a′)). Take the vector space direct sum AB := B ⊕ A ⊕ B∗ and define the 
following multiplication for b, b′ ∈ B, a, a′ ∈ A, and β, β ∈ B∗:

[b + a + β, b′ + a′ + β′] := [b, b′]B + φ(b)(a′) − φ(b′)(a) + [a, a′]A
+ w(a, a′) + ad∗(b)(β′) − ad∗(b′)(β). (5)
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Moreover, define the following symmetric bilinear form fB on AB:

fB(b + a + β, b′ + a′ + β′) := β(b′) + β′(b) + f(a, a′). (6)

Then the pair (AB, fB) is a quadratic Lie algebra over K and is called the double exten-
sion of A by (B, φ). �

So, the double extension, as name suggests, consists of two extensions: it is the semidi-
rect product of two Lie algebras, B and (A ⊕wB∗), where this last algebra comes from a 
central extension of algebra A. We also note that when double extending a nilpotent Lie 
algebra, in case the result is nilpotent, we always keep or increase its nilpotency index 
as next lemma proves.

Lemma 2.5. Let (AB , fB) be the double extension of (A, f) by (B, φ). If AB is t-step 
nilpotent then A is n-step with n ≤ t.

Proof. The proof is straightforward. As every a ∈ A can be seen as even an element of 
AB , and [a, a′]AB

= [a, a′]A +w(a, a′). If [a, a′]AB
= 0, then [a, a′]A = 0, and w(a, a′) = 0

because the first part lays on A, while the second belongs to B∗. �
This result cannot be improved as an abelian quadratic Lie algebra can generate a 

n-step nilpotent one, for every n ∈ N. To see it we have the following example.

Example 2.6. Let us take the abelian quadratic Lie algebra (A, f) of dimension 2n with 
basis {e−n, e−n+1, . . . , e−1, e1, . . . , en}, where

f(ei, ej) =
{

1 if |i− j| = n + 1,
0 if |i− j| �= n + 1.

Let us consider the f -skew-symmetric derivation d : A → A where d(e−i) = e−i+1, 
d(ei) = −ei−1 for i = 2, . . . , n and d(e1) = d(e−1) = 0. Now, we can build the double 
extension (AB , fB) of (A, f) by (φ, B) where B = Kb and φ(b) = d. This new algebra 
satisfies

(AB)t = span〈e−n+t−1, . . . , e−1, e1, . . . , en−t+1〉.

Thus, (AB)n is the bidimensional ideal linearly generated by {e−1, e1} and (AB)n+1 = 0. 
Therefore, AB is n-step nilpotent. �

Every non-abelian solvable (nilpotent) quadratic Lie algebra (S, q) has a nonzero 
element z ∈ S2 ∩ Z(S), so f(z, z) = 0 and

(A, f) =
(

(Kz)⊥
, f

∣∣
(Kz)⊥

)

Kz Kz
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is a solvable (nilpotent) quadratic algebra of dimension dimS − 2. According to [7, 
Proposition 2.9], (S, q) is isometrically isomorphic to a double extension of the algebra 
(A, f) by a one-dimensional algebra B = Kb. Iterating this one-dimensional process, we 
get that the class of solvable (nilpotent) quadratic Lie algebras is a direct sum of abelian 
and one-dimensional double extensions of solvable (nilpotent) ones [8, Théorème III]. 
So, although Theorem 2.4 gives us the general double extension method, for our goal, a 
subset of these extensions is enough. This leads us to the following definition.

Definition 2.7. We call (Ab, fb) the one-dimensional double extension of (A, f) by (b, d)
to the double extension (AB, fB) of (A, f) by (B, φ) where B = Kb has dimension 1 and 
φ(b) = d.

Now, when considering the vector space Ab = Kb ⊕ A ⊕ Kβ, where β(b) = 1 (dual 
1-form of b), the Lie bracket from equation (5) turns into

[bib + ai + βiβ, bjb + aj + βjβ] := bid(aj) − bjd(ai) + [ai, aj ] + f(d(ai), aj)β,

for every scalar bi, bj , βi, bj ∈ K and ai ∈ A. While the symmetric bilinear form from 
equation (6) can be written as

fb(bib + ai + βiβ, bjb + aj + βjβ) := biβj + bjβi + f(ai, aj).

On the other hand, the derived algebra can be easily computed as

A2
b = Im d + span〈[a1, a2]A + f(d(a1), a2)β : a1, a2 ∈ A〉. (7)

The description of the centre and, therefore, the reducibility of Ab depends on if d is 
either an inner or an outer f -skew-symmetric derivation of A.

Lemma 2.8. Let (Ab, fb) be the one-dimensional double extension of (A, f) by (b, d). Then

Z(Ab) = (Z(A) ∩ ker d) ⊕B∗

if and only if d /∈ InnerA. Otherwise, d = adx for some x ∈ A and

Z(Ab) = (Z(A) ∩ ker d) ⊕B∗ ⊕K(b− x)

Proof. If we calculate the centre we obtain

Z(Ab) = {b1b + a1 + β1β : b1d(a2) − b2d(a1) + [a1, a2] = 0,

f(d(a1), a2) = 0 ∀ a2 ∈ A, b2 ∈ K}
= {b1b + a1 + β1β : b1d(a2) + [a1, a2] = 0, d(a1) = 0 ∀ a2 ∈ A}
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= {a1 + β1β : [a1, a2] = 0, d(a1) = 0 ∀ a2 ∈ A}

+ span
〈
b + 1

b1
a1 : d = − ad

(
1
b1

a1

)
, b1 �= 0

〉

=
{

(Z(A) ∩ ker d) ⊕B∗ if d /∈ InnerA,

(Z(A) ∩ ker d) ⊕B∗ ⊕K(b− x) if d = adx.

Note that d = adx = ad y if and only if x − y ∈ Z(A) ∩ ker d. �
Corollary 2.9. Let (Ab, fb) be the one-dimensional double extension of (A, f) by (b, d). 
Then (Ab, fb) is reduced if and only if d /∈ InnerA, A2

b = (Im d + A2) ⊕B∗ and Z(A) ∩
ker d ⊆ Im d + A2.

Proof. Since Ab is reduced if and only if Z(Ab) ⊆ A2
b , the result is straightforward 

applying Lemma 2.8 and equation (7). �
Now, as the aim of this paper is to study the 2-step case, we will see which restrictions 

do A and d need to satisfy in the following proposition.

Proposition 2.10. Let (Ab, fb) be the one-dimensional double extension of a quadratic Lie 
algebra (A, f) by (b, d). Then Ab is 2-step if and only if

0 �= Im d + A2 ⊆ Z(A) ∩ ker d.

Proof. First, we have that

A3
b = d2(A) + d(A2) + span〈[d(a1), a2] + f(d2(a1), a2)β : ai ∈ A〉

+ span〈f(d([a1, a2]), a3)β : ai ∈ A}.

As this must be zero, we need

⎧⎪⎪⎨
⎪⎪⎩
d(A) ⊆ Z(A),
d(d(A)) = d2(A) = 0,
d([A,A]) = d(A2) = 0.

(8)

The conditions in equation (8), as d is a derivation, can be expressed in one line as

Im d + A2 ⊆ Z(A) ∩ ker d. (9)

At this point, A3
b = 0, and we need to check if A2

b �= 0 in case A is abelian. This, using 
equation (7), translates into d �= 0 finishing the proof. �
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Remark 1. Note that every homomorphism d : A → A that satisfies condition (9) is 
indeed a derivation as Im d ⊆ Z(A) and A2 ⊆ ker d.

Corollary 2.11. Let (Ab, fb) be the one-dimensional double extension of an abelian 
quadratic Lie algebra (A, f) by (b, d). Then Ab is 2-step if and only if d �= 0 and d2 = 0.

As we have previously noted, solvable Lie algebras can be obtained by iterating one-
dimensional double extensions. This multistep procedure can be implemented in a nested 
way, which is the idea in our following construction.

Chained one-dimensional double extensions construction

We are going to consider a chain of one-dimensional double extensions {(Ak, fk)}nk=0. 
We start by introducing the following notation for every algebra of our chain:

Ak+1 = Bk+1 ⊕Ak ⊕B∗
k+1,

where Bk = Kbk and B∗
k = Kb∗k are 1-dimensional and dimAk = 2k. Now, we can also 

define Ak+1 = Ak+1,1 ⊕Ak+1,2 where

Ak+1,1 = Bk+1 ⊕Ak,1,

Ak+1,2 = Ak,2 ⊕B∗
k+1.

Applying this definition recursively we obtain

Ak+1,1 =
k+1⊕
i=1

Bi, Ak+1,2 =
k+1⊕
i=1

B∗
i . (10)

All this algebras Ak are associated to an invariant bilinear form fk. Moreover, over 
them we define derivations dk : Ak → Ak such that dk ∈ Derfk(Ak) to do the double 
extensions. Hence, (Ak+1, fk+1) is the one-dimensional double extension of (Ak, fk) by 
(bk+1, dk), starting with A0 = {0} and f0 = 0. Note this is a really convenient notation. 
First, it gives us a basis for Ak:

{bk, bk−1, . . . , b1, b
∗
1, b

∗
2, . . . , b

∗
k},

where the order of this basis is given by the chain itself. Even more, if we divide the 
set separating bi from b∗j elements, we get the bases for Ak,1 and Ak,2 respectively. All 
together, we can see this build as a telescopic construction in Fig. 1.
Let us now define for k = 0, . . . , n − 1

wk+1 : Ak ×Ak → B∗
k+1

(a, b) → fk(dk(a), b) b∗k+1.
(11)
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Ai,1←−−−−−−−−−−−−−
Ai,2−−−−−−−−−−−−−→

Bk ⊕ · · · ⊕

A2︷ ︸︸ ︷
B2 ⊕ B1 ⊕ B

∗
1︸ ︷︷ ︸

A1

⊕B
∗
2 ⊕ · · · ⊕ B

∗
k

︸ ︷︷ ︸
Ak

Fig. 1. Telescopic view of the chained one-dimensional double extension.

So, in basis

{bk+1, bk, . . . , b1, b
∗
1, . . . , b

∗
k, b

∗
k+1},

we can give the Lie bracket [ · , · ]k+1 of algebra Ak+1 which is

[b∗k+1, · ]k+1 = 0, [bi, bj ]k+1 = [bi, bj ]k + wk+1(bi, bj),

[bk+1, bi]k+1 = dk(bi), [b∗i , b∗j ]k+1 = [b∗i , b∗j ]k + wk+1(b∗i , b∗j ), (12)

[bk+1, b
∗
i ]k+1 = dk(b∗i ), [bi, b∗j ]k+1 = [bi, b∗j ]k + wk+1(bi, b∗j ),

for 1 ≤ i, j ≤ k. While the bilinear form satisfies⎧⎪⎪⎨
⎪⎪⎩
fk+1(bk+1, b

∗
k+1) = 1,

fk+1(bk+1, Bk+1 ⊕Ak) = fk+1(b∗k+1, Ak ⊕B∗
k+1) = 0,

fk+1
∣∣
Ak×Ak

= fk.

Remark 2. Note Ak+1,2 = (Ak+1,2)⊥. So, Ak+1,2 is a lagrangian for fk+1 (see [19, Chapter 
I section 1.C]) and therefore, fk+1 is a metabolic or hyperbolic symmetric form (they are 
equivalent terms in characteristic different from 2).

Remark 3. From Lemma 2.5, we have Ak+1 can be t-nilpotent only if Ak is n-nilpotent 
with n ≤ t. Hence, combining this result in the case t = 2 with Proposition 2.10, we 
conclude that Ak+1 is 2-step if and only if

• Ak is abelian and 0 �= Im dk ⊆ ker dk or,
• Ak is 2-step, and Im dk ⊆ Z(Ak) ∩ ker dk and A2

k ⊆ ker dk.

This remark is useful when searching for 2-step quadratic Lie algebras, and it leads 
us to the following definition:

Definition 2.12. Let {(Ak, fk)}nk=0 be a chain of algebras obtained from successive one-
dimensional double extensions from the previous one in the chain by {bk+1, dk}n−1

k=0
starting from A0 = {0} and f0 = 0. We say the chain satisfies:

• the non-null property (NNP) if there exists k such that dk �= 0,
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• and the two-step property (2SP) if Im dk ⊆ Ak,2 ⊆ ker dk for every k ≥ 1.

In any {(Ak, fk)}nk=0 chain of one-dimensional double extensions, we have d0 = d1 = 0
and, therefore, A1 and A2 are abelian quadratic algebras of dimension 2 and 4 respec-
tively. But for greater dimensions we can obtain 2-step algebras. If our chain satisfies 
(NNP) and (2SP) properties from Definition 2.12, we can easily check by applying (2SP) 
inductively

A2
k ⊆ Ak,2 ⊆ Z(Ak). (13)

Therefore, every step or link of this chain satisfies equation (9). Hence, its final quadratic 
Lie algebra (An, fn) for n ≥ 3 is 2-step by using the (NNP) as observed in Remark 3. In 
addition, we have chosen these properties as we want to end up with a reduced 2-step 
Lie algebra An whose square or centre is An,2 and, as images and kernels determine its 
product, this is the most natural way to obtain it. The important result we are going 
to prove later in Theorem 3.1 is that we can obtain all reduced quadratic 2-step Lie 
algebras as the final quadratic Lie algebra (An, fn) of some chain of one-dimensional 
double extensions that satisfies (NNP) and (2SP).

Lemma 2.13. Let {(Ak, fk)}nk=0 be a chain of one-dimensional double extensions by 
{(bk+1, dk)}n−1

k=0 satisfying (NNP) and (2SP). And let define

Dijk := sgn(σ)fσ(k)−1(dσ(k)−1(bσ(i)), bσ(j))

for some permutation σ such that 1 ≤ σ(i) < σ(j) < σ(k) or Dijk = 0 if some subindexes 
repeat. Then n ≥ 3 and

(a) (An, fn) is a 2n-dimensional 2-step quadratic Lie algebra such that An,2 ⊆ Z(An), 
[bi, bj ]n =

∑n
k=1 Dijk b

∗
k, and the invariant bilinear form fn is given by fn(bi, b∗j ) =

δij and fn(bi, bj) = fn(b∗i , b∗j ) = 0.
(b) (An, fn) is reduced if and only if

An,2 = span
〈

n∑
k=1

ŵk(bi, bj) : 1 ≤ j < i ≤ n

〉

where ŵk is the alternating extension of wk defined in equation (11).

Proof. First of all, we can observe Dijk definition resembles the idea dk−1 is fk−1-
skew-symmetric because Dijk = −Dijk and Diik = 0 as fk−1(dk(bi), bj) for i, j ≤ k in 
characteristic different from 2.

Next, from previous arguments after Definition 2.12, we have that (An, fn) is a 
quadratic 2-step Lie algebra. Now, applying multiplication table in equation (12) re-
cursively and using Ak,2 ⊆ ker dk by (2SP), we obtain
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{
[bi, bj ]k+1 = wk+1(bi, bj) + wk(bi, bj) + . . . + wi+1(bi, bj) + di−1(bj),
[b∗i , · ]k+1 = 0,

(14)

for 1 ≤ j < i ≤ k + 1. We also have for 1 ≤ i, j ≤ k + 1

{
fk+1(bi, b∗j ) = δij ,

fk+1(bi, bj) = fk+1(b∗i , b∗j ) = 0.

Moreover, (2SP) also implies that di−1(Ai−1) ⊆ Ai−1,2 = span〈b∗1, . . . , b∗i−1〉 and for 
j < i,

di−1(bj) =
i−1∑
k=1

fi−1(di−1(bj), bk)b∗k =
i−1∑
k=1

Djki b
∗
k =

i−1∑
k=1

Dijk b
∗
k,

by using Dijk definition in the last equality. So product (14) in (An, fn) turns into

{
[bi, bj ]n =

∑n
k=1 Dijk b

∗
k,

[b∗i , · ]n = 0.

And even more,

fn([bi, bj ]n, bk) = Dijk.

Now An is a 2-step nilpotent Lie algebra, thus being reduced is equivalent to 
Z(An) = A2

n. Now if we define ŵk(bi, bk) = wk(bi, bj) when i, j < k and ŵk(bi, bj) =
sgn(σ)wσ(k)(bσ(i), bσ(j)) where σ is some permutation of {i, j, k} such that σ(k) =
max{i, j, k},

adAn
bi(bj) =

n−1∑
k=0

ŵk+1(bi, bj).

Hence A2
n = span〈

∑n
k=1 ŵk(bi, bj) : 1 ≤ j < i ≤ n〉 and applying equation (3) for k = n

we finish the proof. �
All these relations and notation will serve us later to prove the equivalence between 

the different approaches for constructing these algebras.

2.2. T*-extension

The T ∗-extension is a one-step method, which was introduced by Bordemann in 1997. 
In contrast to double extension, it can be applied not only to Lie algebras, but to arbitrary 
non-associative algebras. Nevertheless, as we are focused on the study of Lie algebras, 
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we will only see its definition applied on these algebras (for a general definition see [4]). 
Along this subsection, (B, [x, y]B) will be a Lie algebra.

Let V a B-module given by the representation ρ : B → gl(V ) (indeed a Lie algebra 
homomorphism as gl(V ) denotes the general Lie algebra of endomorphisms over the 
vector space V ). In order to reach the definition of T ∗-extension we need the following 
basic cohomology notions.

Definition 2.14. Let w : B × B → V be a bilinear map, V a B-module given by the 
representation ρ, and a, b, c arbitrary elements of B. Then we say:

• w is non-degenerate if its radical is zero, i.e. Radw = {b ∈ B : w(b, · ) = 0} = 0;
• w is cyclic if

w(a, b)(c) = w(c, a)(b) = w(b, c)(a); (15)

• and w is a 2-cocycle if w is skew-symmetric and
∑
�

a,b,c

w([a, b], c) =
∑
�

a,b,c

ρ(a)w(b, c).

The vector space of 2-cocycles with values in V is denoted by Z2(B, V ).

Remark 4. Given a bilinear map w : B × B → B∗, we can define the trilinear map 
φw : B × B × B → K. It is straightforward to infer w is cyclic, w ∈ Z2(B, B∗) where 
V = B∗ by the coadjoint representation if and only if φw is a 3-cocycle, which means it 
is a 3-alternating form such that

φw([b0, b1], b2, b3) + φw([b1, [b0, b2], b3) + φw([b1, b2, [b0, b3]) =

φw(b0, [b1, b2], b3) + φw(b0, b2, [b1, b3]) − φw(b0, b1, [b2, b3]).

The vector space of scalar 3-cocycles is denoted by Z3(B, K). Here, V = K comes from 
the trivial representation.

Consider now an arbitrary bilinear form w : B × B → B∗, and define the following 
multiplication on the vector space B ⊕B∗ for b, b′ ∈ B and β, β′ ∈ B∗:

[b + β, b′ + β′] := [b, b′]B + w(b, b′) + ad∗(b)(β′) − ad∗(b′)(β), (16)

where ad∗ is the coadjoint representation defined in equation (4). Moreover, we construct 
the symmetric bilinear form qB as:

qB(b + β, b′ + β′) := β(b′) + β′(b). (17)
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Proposition 2.15. Let B, B∗, w, and qB be as above. Then:

(a) The vector space B ⊕ B∗ with the binary product given in equation (16) is a Lie 
algebra if and only if B is a Lie algebra and w ∈ Z2(B, B∗).

(b) The hyperbolic form qB defined in equation (17) is an invariant bilinear form of the 
Lie algebra B ⊕B∗ if and only if w is cyclic.

So, (B ⊕B∗, qB) is a quadratic Lie algebra if and only if the bilinear form w is a cyclic 
2-cocycle and (B, [x, y]B) is a Lie algebra.

Proof. Assertion (a) follows from [4, p. 177]. Here we can see the Jacobi identity is 
satisfied if and only if B is a Lie algebra and w is a 2-cocycle. On the other hand, product 
in equation (16) is skew-symmetric if and only if [x, y]B and w are skew, which also comes 
from being a 2-cocyle. Finally, to prove assertion (b) about the T ∗ construction, we use 
[4, Lemma 3.1], which adds us the cyclic condition in order to be quadratic. �
Definition 2.16. Let w : B×B → B∗ be cyclic 2-cocycle and B Lie algebra. The quadratic 
algebra (B ⊕ B∗, qB), with product and quadratic form defined in equations (16) and 
(17) respectively, is called the T ∗-extension of B by w, and we denote it as (T ∗

wB, qB).

Finally, we have the following theorem (see [4, Theorem 3.2]) which gives us conditions 
about when we can build a quadratic Lie algebra using T ∗-extensions.

Theorem 2.17 (Bordemann, 1997). Let (A, f) be a quadratic Lie algebra of finite dimen-
sion n over a field K of characteristic not equal to two. Then (A, f) will be isometric to 
a T ∗-extension (T ∗

wB, qB) if and only if n is even and A contains an isotropic ideal I
(i.e. I ⊂ I⊥) of dimension n/2. In this case, as a Lie algebra, B is isomorphic to the 
quotient A/I.

Remark 5. As seen in the proof, any isotropic ideal of dimension n/2 will work. We also 
note that, as stated in original paper, any isotropic subspace V of A whose dimension is 
dimA/2 is an ideal of A if and only if it is abelian (V 2 = 0).

Corollary 2.18. The class of T ∗-extensions is just the class of quadratic Lie algebras of 
dimension 2n with a lagrangian n-dimensional ideal.

Example 2.19. T ∗-extensions of Lie algebras by the null bilinear form, T ∗
0B are just split 

extensions of that Lie algebra B by means of its coadjoint representation. And even more, 
any invariant bilinear form f : B×B → K let us define another invariant quadratic form 
QqB ,f on (T ∗

0 B, qB):

QqB ,f (a + α, b + β) = qB(a + α, b + β) + f(a, b) = α(b) + β(a) + f(a, b).
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The resulting quadratic Lie algebra (T ∗
0 B, QqB ,f ) was introduced in [20] as the inflaction 

of B with respect to the forms qB and f . According to [20, Lemma 2.9], inflactions occur 
prominently in the structure of quadratic mixed Lie algebras. �
Example 2.20. Let h = span〈x, y, z〉 be the Heissenberg 3-dimensional Lie algebra given 
by the nonzero products [x, y] = z. Apart from the 6-dimensional 2-step Lie algebra T ∗

0 h, 
we can construct a 6-dimensional 3-step Lie algebra taking the cyclic 2-cocyle w defined 
as

w(v1, v2)(v3) =

∣∣∣∣∣∣∣
λ1 λ2 λ3
β1 β2 β3
γ1 γ2 γ3

∣∣∣∣∣∣∣ ,
where vi = λix + βiy + γiz. �

Once the construction is clear, we can start by seeing what does B and w need to 
satisfy in order to obtain a 2-step quadratic algebra as we have already done in the 
double extension. First, analogue to Lemma 2.5, we have the following result about the 
nilpotency order of the extension. It comes from [4, Theorem 3.1] but adapting indices 
to our situation.

Proposition 2.21. If B is a k-step nilpotent Lie algebra, then for every cyclic 2-cocycle 
w : B ×B → B∗ the T ∗-extension T ∗

wB is n-step nilpotent where k ≤ n ≤ 2k.

Remark 6. This result cannot be improved. Indeed, in the following sections, we build 
2-step quadratic Lie algebras from abelian ones (see Corollary 2.24).

Now, let us find which is the centre and the square of these algebras. In general,

Z(T ∗
wB) = {b + β : b ∈ Z(B) and w(b, b′) + β ◦ ad b′ = 0 ∀ b′ ∈ B},

and

(T ∗
wB)2 = span〈[b, b′]B + w(b, b′) : b, b′ ∈ B〉 + span〈β ◦ ad b : b ∈ B, β ∈ B∗〉. (18)

Lemma 2.22. For any V subspace of B, let define V ◦ := {β ∈ B∗ : β(V ) = 0} and V ⊥

its orthogonal subspace in T ∗
wB with respect to quadratic form qB. Then, V ⊥ = B ⊕ V ◦

and (V ◦)⊥ = B∗ ⊕ V and:

(a) Z(B)◦ = span〈β ◦ ad b : b ∈ B, β ∈ B∗〉 ⊆ (T ∗
wB)2.

(b) (B2)◦ = {β ∈ B∗ : β ◦ ad b = 0 ∀ b ∈ B}.
(c) Z(T ∗

wB) ∩B = Z(B) ∩ Radw and Z(T ∗
wB) ∩B∗ = (B2)◦.

(d) span〈w(b, b′) : b, b′ ∈ B〉 ⊆ (Radw)◦.
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Proof. Let X = span〈β ◦ad b : b ∈ B, β ∈ B∗〉 and x ∈ B such that 0 = qB(x, β ◦ad b) =
β([b, x]B), ∀ β ∈ B∗, ∀ b ∈ B. Previous equality is equivalent to [b, x]B = 0 ∀ b ∈ B, i.e., 
x ∈ Z(B). Hence Z(B) = X⊥∩B and item (a) follows from Z(B)⊥ = X⊕B, X ⊆ Z(B)◦
and equation (18). Now, from equation (3), (Z(T ∗

wB) ∩B∗)⊥ = (T ∗
wB)2+B∗ = B2⊕B∗ =

((B2)◦)⊥ which implies item (b) and second assertion in item (c). Note, the other equality 
in item (c) is straightforward. Finally, if β ∈ (Radw)⊥ ∩B∗, then β(a) = 0 ∀ a ∈ B such 
that w(a, b) = 0, ∀ b ∈ B. Since w is cyclic, for a fixed a ∈ B, w(a, b)(b′) = w(b, b′)(a)
and we get (d) when a ∈ Radw. �

From Lemma 2.22 we get immediately that Z(T ∗
0 B) = Z(B) ⊕ (B2)◦ and (T ∗

0 B)2 =
B2⊕Z(B)◦. So, T ∗

0 B is reduced 2-step if and only if B is reduced 2-step. Even more, this 
lemma also shows that we can build quadratics 2-step Lie algebras from abelian ones in 
an easy way:

Corollary 2.23. Let B be an abelian Lie algebra. Then (T ∗
wB)2 = span〈w(b, b′) : b, b′ ∈ B〉

and Z(T ∗
wB) = Radw⊕B∗. So, T ∗

wB is 2-step if and only if w is not null. Moreover, it 
is equivalent:

(a) (T ∗
wB, qB) is reduced,

(b) w is non-degenerate,
(c) B∗ = span〈w(b, b′) : b, b′ ∈ B〉.

Proof. The first part follows easily from B being abelian, item (d) of Lemma 2.22, and 
the general description of (T ∗

0 B)2. Now, (T ∗
wB, qB) is reduced if and only if (T ∗

wB)2 =
B∗ = Z(T ∗

wB). Hence, items (a) and (c) are equivalent. Finally, Z(T ∗
wB) = B∗ if w is 

non-degenerate, and then (T ∗B, qB)2 = Z(T ∗
wB)⊥ = B∗ by using equation (3). �

Corollary 2.24. Let (A, f) a quadratic Lie algebra. Then, A is 2-step reduced nilpotent if 
and only if A is isometrically isomorphic to a T ∗

wB extension of an abelian Lie algebra 
B where w is non-degenerate.

Proof. If A is 2-step and reduced, Z(A) = A2 = Z(A)⊥ is a lagrangian ideal and, from 
Theorem 2.17, algebra A is isometrically isomorphic to T ∗

wB and B ∼= A/A2, so B is 
abelian. The converse follows from Corollary 2.23. �
Remark 7. Corollary 2.24 provides an alternative proof of Proposition 11 in [17]. It also 
shows the condition of w being non-degenerate can be changed by that of the dual space 
B∗ being the linear span of the image of w.

2.3. Quadratic Lie algebras and n-quadratic families

According to [15], the classification of quadratic nilpotent Lie algebras can be reduced, 
in some categorical way, to the study of symmetric invariant bilinear forms on free 
nilpotent Lie algebras. As stated in [21, Propositions 1.4 and 1.5], and denoting by 
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nd,t the t-nilpotent Lie algebra on d generators, any t-step nilpotent Lie algebra on d
generators (d = codimA2, type of the algebra in the sequel) is a homomorphic image 
of nd,t/I with I ideal such that ntd,2 � I � n2

d,2. This special relation allows us to build 
quadratic nilpotent Lie algebras by means of free nilpotent [5, Proposition 4.1]. The main 
idea to do this is summarized in the following result.

Proposition 2.25 (Benito et al., 2017). Let A = nd,t/I, with I ideal such that ntd,2 �

I � n2
d,2. Then, there exists a symmetric, invariant and non-degenerate bilinear form 

f : A ×A → K if and only if there exists a symmetric invariant bilinear form ψ on n2
d,2

such that I = n⊥d,t. The relation between f and ψ is given by ψ(a, b) = f(a + I, b + I).

For 2-step quadratic Lie algebras, this classification process can be reformulated by 
using the notion of n-quadratic family. This is a special set of skew symmetric matrices 
which encodes the structural constants of a quadratic 2-step Lie algebra of type n and 
dimension 2n. This approach follows preliminary ideas and techniques suggested in [1]
and relates the classification of 2-step quadratic to that of 3-forms (see [16]).

Definition 2.26. For any n ≥ 2, a family {M1, . . . , Mn} of matrices of order n × n with 
entries in K is called n-quadratic if the following properties are satisfied:

1. Every matrix Mi is skew-symmetric.
2. The i-th column of every Mi is null.
3. For any j > i, the j-th column of Mi is the additive inverse of the i-th column of 

Mj .

In case, matrix

F(M1, . . . ,Mn) = [M1<jM2<j . . .Md−1<j ],

of order n × n(n−1)
2 has rank n (maximum) we say this is a non-degenerate n-quadratic 

family. Here Mi<j denotes the submatrix of Mi given by the set of all j-th columns of 
Mi such that i < j.

Let (A, ϕ) be a quadratic 2-step Lie algebra. Since A2 ⊆ Z(A), A is reduced if and 
only if Z(A) = A2, and, from equation (3), dimA = 2n and n = codimA2 = dimA2. 
Otherwise, Theorem 2.3 tells us A decomposes as an orthogonal sum of ideals n ⊕a where 
n is 2-step reduced (so even dimensional) and a is abelian. We assume in the sequel (A, ϕ)
is a quadratic 2-step Lie algebra of dimension 2n.

If even 2-step, as stated in [15, Theorem 8] for reduced (see also Corollary 2.18, since 
A2 is lagrangian), we can find a basis, {v1, . . . , vn, z1, . . . , zn}, where the Lie bracket is

[vi, vj ] :=
n∑

mijk zk,

k=1
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[zi, · ] := 0.

While the bilinear form satisfies

ϕ(vi, vj) = 0, ϕ(zi, zj) = 0, ϕ(vi, zj) = δij .

This means its structure constants are determined by a (non-degenerate) family of n-
quadratic matrices {Mi : 1 ≤ i ≤ n}. Here, mijk is the entry (k, j) of Mi, which is the 
same as saying mijk is the entry (n + k, j) of the matrix of the inner derivation ad vi. 
And, by properties of the inner derivations or of the n-quadratic family, we have

mijk = mjki = mkij = −mikj = −mjik = −mkji.

Even more, ϕ([vi, vj ], vk) = mijk, and the non-degeneration of the family is equivalent to

k∑
i=1

Im ad vi = A2 = span〈zi : i = 1, . . . , n〉 = Z(A).

And, we can recover the Lie product of A from the matrix equation:

([v1, v2], .., [v1, vn], [v2, v3], .., [v2, vn], .., [vn−1, vn]) = (z1, .., zn) · F(M1, ..,Mn).

Previous arguments let us reformulate Theorem 8 in [15] as follows:

Theorem 2.27. Let {M1, . . . , Mn} be a nonzero family of n-quadratic matrices of order 
n × n with entries in K. On the vector space K2n with canonical basis {e1, . . . , e2n}, 
let consider the hyperbolic form ϕ(ei, e2n−i+1) = ϕ(e2n−i+1, ei) = 1 and ϕ(ei, ej) = 0
otherwise, and the product given by bilinear extension of the brackets

[ei, ej ] = (en+1, . . . , e2n) · Colj Mi,

with Colj Mi being the j-th column of the matrix Mi. Then, (K2n, ϕ) is a quadratic 2-step 
Lie algebra. Moreover, the following conditions are equivalent:

(a) (K2n, ϕ) is reduced,
(b) {M1, . . . , Mn} is a non-degenerate n-quadratic family,
(c) the derived algebra of K2n is just W = span〈en+1, . . . , e2n〉.

Conversely, any 2-step quadratic reduced 2n-dimensional Lie algebra is isometrically 
isomorphic to (K2n, f) for some non-degenerate n-quadratic family.

Remark 8. For any n �= 1, 2, 4, there are no non-degenerate n-quadratic families according 
to Proposition 13 in [15]. But if n = 1, 2, 4, there are not. Moreover, [15, Theorem 14]
solves the problem of isomorphisms of quadratic 2-step reduced algebras in terms of a 
matrix relation between the non-degenerate quadratics families attached to them.
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Remark 9. The approach to quadratic 2-step Lie algebras given by free quadratic families 
allows us to introduce computational algorithms for building examples of this class of 
Lie algebras.

3. Equivalence theorem

Despite methods introduced in Section 2 are apparently totally different, all three 
of them end up constructing the same type of algebras and, therefore, it makes sense 
they are equivalent in some way. The relationship among them appears in the following 
theorem.

Theorem 3.1. Let B be a vector space with basis B = {b1, . . . , bn}, n ≥ 3 and, let w : B×
B → B∗ be a bilinear form where w(bi, bj)(bk) = cijk. In the vector space L = B ⊕ B∗

we define the following product and bilinear form φ for b, b′ ∈ B and β, β′ ∈ B∗:

[b + β, b′ + β′] = w(b, b′), φ(b + β, b′ + β′) = β(b′) + β′(b).

Then, it is equivalent:

(a) (L, φ) is a 2-step quadratic Lie algebra.
(b) w is a nonzero cyclic 2-cocycle and (L, φ) = (T ∗

wB, qB).
(c) For {b∗1, . . . , b∗n} dual basis of B, the chain of one-dimensional double extensions 

{(Ak, fk)}nk=0 starting with A0 = {0}, f0 = 0 and given by {(bk+1, dk)}n−1
k=0 , where 

Ak = span〈bi, b∗i : i = 1, . . . , k〉, di−1(b∗j ) = 0, and di−1(bj) =
∑i−1

k=1 cijkb
∗
k for 

j < i ≤ n, satisfies properties (NNP) and (2SP), and (L, φ) = (An, fn).
(d) The family of matrices {M1, . . . , Mn}ni=1, where the entrance (k, j) of Mi is cijk, is 

a non-null n-quadratic family and defines algebra (L, φ) = (K2n, f).

Proof. The construction given in this theorem is exactly the T ∗-extension one, so (L, φ)
is (T ∗

wB, qB), the T ∗-extension of the abelian Lie algebra B by w. This proves the equiv-
alence between (a) and (b) using Proposition 2.15.

Assume now (b) holds and let decompose Ak = Ak,1 ⊕Ak,2 as in equation (10). Note 
that An = L (as vector spaces) and fk := φ

∣∣
Ak×Ak

are as in Remark 2. In particular, 
fn = φ. So, the chain will be of one-dimensional double extensions if and only if di−1 ∈
Derfi−1 Ai−1. Since B∗ is φ-isotropic and di−1(b∗j ) = 0, this assertion is equivalent to 
λijs = 0 where:

λijs = fi−1(di−1(bj), bs) + fi−1(bj , di−1(bs)) = ϕ(di−1(bj), bs) + ϕ(bj , di−1(bs)).

Now from di−1(Ai−1) ⊆ Ai−1,2, λijs = 0 if s ≥ i. Otherwise λijs = cijs + cisj and it 
is also null because of w is cyclic and skew. Moreover since Ak,1 = span〈b1, . . . , bk〉 and 
Ak,2 = span〈b∗1, . . . , b∗k〉 the chain satisfies property (2SP). Finally, from w �= 0 we have 
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that ci0jk �= 0 for some i0 index, thus di0−1 �= 0 and the chain satisfies (NNP). Next, 
observe that from Lemma 2.13, the chain described in (c) ends up in a quadratic Lie 
algebra (An, fn) such that

[bi, bj ]n(bk) = Dijk and [β, · ]n = 0 ∀β ∈ B∗,

where scalars Dijk are defined in that lemma. But [bi, bj ]A(bk) = cijk and for j, k < i, 
with j �= k we have

cijk = fi−1(di−1(bj), bk) =
j<k<i

Djki = sgn((i j k))Dijk = Dijk,

cijk = fi−1(di−1(bj), bk) =
k<j<i

Djki = sgn((j k i))Dijk = Dijk.

Now, from w being cyclic and skew we get cijk = sgn(σ)cσ(i)σ(j)σ(k) for every per-
mutation σ and ciik = 0. So we have [bi, bj ]A(bk) = cijk = Dijk = [bi, bj ]n(bk). Hence, 
[ · , · ]n = [ · , · ]A and (L, φ) = (An, fn) as quadratic Lie algebras.

To prove that (c) implies (d) just apply Lemma 2.13 taking into account that 
sgn(σ)Dσ(i)σ(j)σ(k) = Dijk = cijk and [bi, bj ]n =

∑n
k=1 cijkb

∗
k. So, the entry cijk of 

every matrix Mi described in (d) is the entry in the position (n + k, j) of the matrix 
of the inner derivation ad bi. This proves the matrix family is n-quadratic. Finally, the 
definition of n-quadratic family yields to w being a nonzero cyclic 2-cocycle. �

Note that, with this theorem, we can also check the reduced conditions required in 
each method are equivalent among them.

Once at this point, we are going to see that we can move easily between the three 
methods directly from their respective constructions previously given in this paper.

• In a chain {(Ak, fk)}nk=1 of one-dimensional double extensions we consider a basis 
{bn, . . . , b1, b∗1, . . . , b∗n} as before. Then

[bi, bj ] =
n∑

k=1

Dijke
∗
k, [b∗i , · ] = 0,

fn(bi, bj) = fn(b∗i , b∗j ) = 0, fn(bi, b∗j ) = δij .

• In (T ∗
wB, qB) with basis {e1, . . . , en, e∗1, . . . , e

∗
n}

[ei, ej ] = w(ei, ej) =
n∑

k=1

wijke
∗
k, [e∗i , · ] = 0,

qB(ei, ej) = qB(e∗i , e∗j ) = 0, qB(ei, e∗j ) = δij .

(19)

• An n-quadratic family {M1, . . . , Mn} where mijk is the entry (j, k) of Mi defines 
over the basis {v1, . . . , vn, z1, . . . , zn} of A the quadratic Lie algebra (A, ϕ) where
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[vi, vj ] =
n∑

k=1

mijkzk, [zi, · ] = 0,

ϕ(vi, vj) = ϕ(zi, zj) = 0, ϕ(vi, zj) = δij .

So the equivalence comes from just renaming

bi ←→ ei ←→ vi,

b∗i ←→ e∗i ←→ zi,

fn ←→ qB ←→ f,

Dijk ←→ wijk ←→ mijk.

Therefore, if we have a n-quadratic family of matrices with coefficients mijk we can 
define the equivalent (T ∗

wB, qB) extension taking

w(bi, bj)(bk) = wijk = mijk.

And we can also obtain a chain of one-dimensional double extensions taking

di−1 : Ai−1 → Ai−1

bj →
i−1∑
k=1

wijk b
∗
k =

i−1∑
k=1

w(ei, ej)(ek) b∗k,

b∗j → 0.

And vice versa, if we have built a chain, we can get the equivalent T ∗
wB if we take

w(ei, ej) =
n∑

k=1

Dijk e
∗
k =

n∑
k=1

fn([bi, bj ], bk) e∗k.

And, this also defines our n-quadratic family of matrices taking mijk = Dijk.

Example 3.2. When we try to generate a generic 2-step quadratic Lie algebra of dimension 
n we end up with n(n − 2)(n − 4)/48 parameters, a number that grows pretty fast. Even 
in the 10-dimensional algebra we have 10 parameters in its general form, despite all of 
them are isometrically isomorphic. These parameters can be observed in any of the three 
equivalent constructions. For example, when constructing a (2SP) and (NNP) chain of 
one-dimensional double extensions we obtain the following derivations:

d0 = d1 = 0, d2 =

⎛
⎜⎝ 0 0

−D123 0 00 D123

⎞
⎟⎠ , d3 =

⎛
⎜⎜⎜⎝

0 0
−D134 −D124 0

0−D234 0 D124
0 D D

⎞
⎟⎟⎟⎠ ,
234 134
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d4 =

⎛
⎜⎜⎜⎜⎜⎝

0 0
−D145 −D135 −D125 0

0−D245 −D235 0 D125
−D345 0 D235 D135

0 D345 D245 D145

⎞
⎟⎟⎟⎟⎟⎠

These same parameters appear in T ∗-extensions or in a more condensed way in 5-
quadratic families, where F(M1, . . . , M5) is

⎛
⎜⎜⎝

0 0 0 0 m123 m124 m125 m134 m135 m145
0 −m123 −m124 −m125 0 0 0 m234 m235 m245

m123 0 −m134 −m135 0 −m234 −m235 0 0 m345
m124 m134 0 −m145 m234 0 −m245 0 −m345 0
m125 m135 m145 0 m235 m245 0 m345 0 0

⎞
⎟⎟⎠

All this complexity in terms of classification can be reduced using the next section. For 
instance, we will see all algebras in this example are isometrically isomorphic to the one 
where D123 = D145 = 1 or m123 = m145 = 1 and the rest of the entries are zero, named 
as L5,1 in the following section.

4. Trivectors and 2-step classification

In this section, we follow the main ideas given in [16, Section 3]. For basic notions on 
multilinear algebra see [22, Appendix B].

The classification of quadratic 2-step Lie algebras of dimension 2n can be reduced 
to that of trilinear alternating forms or trivectors over a n-dimensional vector space V . 
In this section we will explain why and how under the scope of previous construction 
methods of quadratic algebras. We point out that, whereas the problem of classifying 
bilinear alternating forms is elemental, the classification of trivectors seems tractable 
only for small values of n.

Let {e1, . . . , en} be a basis of V . The exterior power ΛmV or Altm V is a vector space 
associated to a universal alternating multilinear form

∧ : V × · · · × V → ΛmV

(v1, . . . , vm) → v1 ∧ . . . ∧ vm.

The dimension of ΛmV is 
(
m
n

)
, and {ei1 ∧ · · · ∧ eim : 1 ≤ i1 < . . . < im ≤ n} is its 

standard basis. Every element of ΛmV is called a m-vector. So a trivector is simply an 
element of Λ3V . Therefore, every trivector can be expressed as a linear combination of 
their corresponding basis {ei ∧ ej ∧ ek : 1 ≤ i < j < k ≤ 3}.

If V ∗ is the dual space of V , ϕi ∈ V ∗, vi ∈ V , the map ι : ΛmV ∗ → (ΛmV )∗ given 
explicitly as

(ϕ1 ∧ . . . ∧ ϕm) →
(
v1 ∧ . . . ∧ vm →

∑
σ∈Sm

sgn(σ)
m∏
i=1

ϕσ(i)(vi) = det (ϕj(vi))
)
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is an isomorphism. The elements of (ΛmV )∗ are named m-alternating forms or m-forms. 
We also note that ι−1 sends the linear form (ei1∧. . .∧eim)∗ back into e∗i1∧. . .∧e∗im . Since 
(ΛmV )∗ is isomorphic to ΛmV , there is no difference between m-vectors and m-forms.

Now that we know what a trivector is, we can see its relationship with reduced 
quadratic 2-step Lie algebras. In order to see it, we can use T ∗-extensions of abelian 
Lie algebras as mentioned in Corollary 2.24. Here, every algebra T ∗

wB obtained of the 
same dimension differs only in the mapping w : B × B → B∗, as B is an abelian al-
gebra and the bilinear form is defined in the same way. At this point, we can define 
φw : Λ3B → K taking φw(b1, b2, b3) = w(b1, b2)(b3). Note φw ∈ (Λ3B)∗ ∼= Λ3B∗ is a 
trivector thanks to the bilinear map w is cyclic, so satisfies equation (15), and skew-
symmetric (see Remark 4). In fact, the set {wijk = w(ei, ej)(ek) : i < j < k} seen in 
equation (19) is simply the coordinates of the trivector φw in the standard dual basis, 
(ei∧ej ∧ek)∗ ∼ e∗i ∧e∗j ∧e∗k. Therefore, every quadratic 2-step Lie algebra can be defined 
from a trivector and also a quadratic 2-step Lie algebra gives us a trivector. In this way, 
we arrive at the bijection

Δ: {w ∈ Z2(B,B∗) : w is cyclic} → (Λ3B)∗, w → φw (20)

given by the expression w(ei, ej)(ek) = φw(ei, ej , ek).
Even more, kerφw = {x ∈ B : φw(x, · , · ) = 0} = Radw. Thus Δ sends a non-

degenerate w into a trivector φw such that kerφw = 0, and conversely. The nullity of 
kerφw is equivalent to say that φw is a trivector of (maximal) rank equal to dimB. 
Following [23], the rank of a trivector φ ∈ Λ3V is rankφ = dimV − dim kerφ. The rank 
of φ agrees with the dimension of the smallest subspace W of V such that φ ∈ Λ3W (see 
[24, Section 1]).

But the important point is that not only a bijection between quadratic 2-step Lie 
algebras and trivectors exits. It is the fact the bijection maps isometrically isomorphic 
2-step T ∗-extensions into equivalent trivectors with respect to the natural equivalence 
relation given by the action of the general linear group (see Definition 4.1).

Definition 4.1. We say two trivectors φ1, φ2 ∈ Λ3V are equivalent if there exist σ ∈
GL(V ) such that φ1(x, y, z) = φ2(σ(x), σ(y), σ(z)) for every x, y, z ∈ V . Hence σ·φ1 = φ2, 
letting σ act on the trivectors by means of (σ · φ)(x, y, z) = φ(σ−1(x), σ−1(y), σ−1(z)).

Theorem 4.2. Let B be a Lie algebra and B∗ its coadjoint module, w, w1, w2 ∈ Z2(B, B∗)
and cyclic. The map Δ defined in equation (20) is an involutive bijection satisfying the 
following properties:

(a) w is non-degenerate if and only if rank(φw) = dimB.
(b) If B is abelian and w1, w2 are non-degenerate, T ∗

w1
B and T ∗

w2
B are isometrically 

isomorphic if and only if φw1 and φw2 are equivalent trivectors.
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Proof. For arbitrary B, Δ is well defined according to Remark 4. Thus (a) follows from 

previous comments. Before proving item (b), we recall that Lie bracket of T ∗
wB = B

w
⊕B∗

is given by [a +α, b +β]w = w(a, b) if B is abelian and, from Corollary 2.23, Z(T ∗
wB) = B∗

if w is non-degenerate. Hence, assuming B abelian and w1, w2 non-degenerate, for a given 
isometrically isomorphism ϕ from T ∗

w1
B onto T ∗

w2
B, we have ϕ(Z(Tw1)) = Z(Tw2) = B∗, 

thus T ∗
w2

B = B∗ w2⊕ ϕ(B) = B∗ w2⊕ B. This implies that σ = πB ◦ ϕ ∈ GL(B), where πB

is the projection map from T ∗
w2

B onto B. Then,

φw1(x, y, z) = w1(x, y)(z) = f([x, y]w1 , z) = f([ϕ(x), ϕ(y)]w2 , ϕ(z)) =

f([σ(x), σ(y)]w2 , σ(z)) = w2(σ(x), σ(y)(σ(z)) = φ2(σ(x), σ(y), σ(z)).

Thus φw1 and φw1 are equivalent. On the contrary, if σ ∈ GL(B) such that φw1(x, y, z) =
φw2(σ(x), σ(y), σ(z)), w1(b1, b2) ◦ σ−1 = w2(σ(b1), σ(b2)) follows easily, and the map

ϕ : Tw1B = B ⊕B∗ → Tw2B = B ⊕B∗

b + β → σ(b) + β ◦ σ−1

is an isometric isomorphism. �
Corollary 4.3. The map Δ defined in equation (20) provides a natural bijection between 
isomorphism classes of reduced quadratic 2-step nilpotent Lie algebras of dimension 2n
and the equivalence classes of trivectors of rank n.

This result has been established in [16, 3.5 Théorème] and it is quite useful as clas-
sification tables for trivectors are available. In order to simplify notation, from now on, 
trivector e∗i ∧ e∗j ∧ e∗k will be denoted as ijk. So 123 + 456 ←→ e∗1 ∧ e∗2 ∧ e∗3 + e∗4 ∧ e∗5 ∧ e∗6.

The fact each quadric reduced 2-step Lie algebra can be associated to a trivector 
and vice versa means their classification, thanks to Theorem 4.2, is equivalent to the 
trivectors one. This allows us to obtain a list of these algebras, as trivectors have been 
already classified for low dimensions. A nice classification up to dimension 9, over the 
complex field C, appears in [25] by using a Z3-grading of the simple Lie algebra e8. Cohen 
and Helminck (see [23]) classify trivectors up to dimension 7 over fields of cohomological 
dimension at most 1, which includes algebraically closed fields and finite fields. Recently, 
Borovoi, De Graaf and Vân Lê set the classification of real trivectors of dimension 9 in 
[26].

Over the complex field, we can know how many reduced quadratic 2-step Lie algebras 
are there up to isometrically isomorphisms using less than 9 generators. This data is 
showed in Table 1, where the dimension 2n ≤ 18 of the Lie algebra is related to the rank 
of the corresponding trivector, which is just n ≤ 9.

Moreover, we are also able to give a representative of each of these algebras and 
find its multiplication table. Along the following list we consider a quadratic algebra 
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Table 1
Non-isometric reduced quadratic 2-step Lie algebras in C.

Source [25]

Dimension 6 8 10 12 14 16 ≥ 18
Number 1 0 1 2 5 13 ∞

(A, f) of dimension 2n with basis {e1, . . . , en, e∗1, . . . , e
∗
n}, where A2 = span〈e∗1, . . . , e∗n〉, 

f(ei, ej) = f(e∗i , e∗j ) = 0, and f(ei, e∗j ) = δij . Each algebra receives a name of the form 
Ln,k, where n is the type, also half the dimension, and k is the position it occupies in 
the list among all algebras of the same type/dimension. In addition, to simplify the list 
we only show non-zero products of the form [ei, ej ] where i < j. According to the map Δ
described in equation (20), the rule to display the different multiplication tables is given 
by the coordinates of the trivectors φw =

∑
wijke

∗
i ∧ e∗j ∧ e∗k, so

[ei, ej ] = wijke
∗
k ⇐⇒ φw(ei, ej , ek) = wijk = w(ei, ej)(ek). (21)

In this way, any 2-step quadratic reduced Lie algebras of dimension less than 17 over the 
complex field up to isometric isomorphisms are given in the following list:

• One 6-dimensional algebra:
– Algebra L3,1 associated to trivector 123:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e2, e3] = e∗1.

• One 10-dimensional algebra:
– Algebra L5,1 associated to trivector 123 + 145:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e1, e4] = e∗5,

[e1, e5] = −e∗4, [e2, e3] = e∗1, [e4, e5] = e∗1.

• Two 12-dimensional algebras:
– Algebra L6,1 associated to trivector 123 + 456:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e2, e3] = e∗1,

[e4, e5] = e∗6, [e4, e6] = −e∗5, [e5, e6] = e∗4.

– Algebra L6,2 associated to trivector 124 + 135 + 236:

[e1, e2] = e∗4, [e1, e3] = e∗5, [e1, e4] = −e∗2,

[e1, e5] = −e∗3, [e2, e3] = e∗6, [e2, e4] = e∗1,

[e2, e6] = −e∗3, [e3, e5] = e∗1, [e3, e6] = e∗2.
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• Five 14-dimensional algebras:
– Algebra L7,1 associated to trivector 123 + 145 + 167:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e1, e4] = e∗5,

[e1, e5] = −e∗4, [e1, e6] = e∗7, [e1, e7] = −e∗6,

[e2, e3] = e∗1, [e4, e5] = e∗1, [e6, e7] = e∗1.

– Algebra L7,2 associated to trivector 127 + 134 + 256:

[e1, e2] = e∗7, [e1, e3] = e∗4, [e1, e4] = −e∗3,

[e1, e7] = −e∗2, [e2, e5] = e∗6, [e2, e6] = −e∗5,

[e2, e7] = e∗1, [e3, e4] = e∗1, [e5, e6] = e∗2.

– Algebra L7,3 associated to trivector 125 + 136 + 147 + 234:

[e1, e2] = e∗5, [e1, e3] = e∗6, [e1, e4] = e∗7, [e1, e5] = −e∗2,

[e1, e6] = −e∗3, [e1, e7] = −e∗4, [e2, e3] = e∗4, [e2, e4] = −e∗3,

[e2, e5] = e∗1, [e3, e4] = e∗2, [e3, e6] = e∗1, [e4, e7] = e∗1.

– Algebra L7,4 associated to trivector 125 + 137 + 247 + 346:

[e1, e2] = e∗5, [e1, e3] = e∗7, [e1, e5] = −e∗2, [e1, e7] = −e∗3,

[e2, e4] = e∗7, [e2, e5] = e∗1, [e2, e7] = −e∗4, [e3, e4] = e∗6,

[e3, e6] = −e∗4, [e3, e7] = e∗1, [e4, e6] = e∗3, [e4, e7] = e∗2.

– Algebra L7,5 associated to trivector 123 + 147 + 257 + 367 + 456:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e1, e4] = e∗7, [e1, e7] = −e∗4,

[e2, e3] = e∗1, [e2, e5] = e∗7, [e2, e7] = −e∗5, [e3, e6] = e∗7,

[e3, e7] = −e∗6, [e4, e5] = e∗6, [e4, e6] = −e∗5, [e4, e7] = e∗1,

[e5, e6] = e∗4, [e5, e7] = e∗2, [e6, e7] = e∗3.

• Thirteen 16-dimensional algebras:
– Algebra L8,1 associated to trivector 156 + 178 + 234:

[e1, e5] = e∗6, [e1, e6] = −e∗5, [e1, e7] = e∗8,

[e1, e8] = −e∗7, [e2, e3] = e∗4, [e2, e4] = −e∗3,

[e3, e4] = e∗2, [e5, e6] = e∗1, [e7, e8] = e∗1.
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– Algebra L8,2 associated to trivector 127 + 138 + 145 + 236:

[e1, e2] = e∗7, [e1, e3] = e∗8, [e1, e4] = e∗5, [e1, e5] = −e∗4,

[e1, e7] = −e∗2, [e1, e8] = −e∗3, [e2, e3] = e∗6, [e2, e6] = −e∗3,

[e2, e7] = e∗1, [e3, e6] = e∗2, [e3, e8] = e∗1, [e4, e5] = e∗1.

– Algebra L8,3 associated to trivector 125 + 137 + 248 + 346:

[e1, e2] = e∗5, [e1, e3] = e∗7, [e1, e5] = −e∗2, [e1, e7] = −e∗3,

[e2, e4] = e∗8, [e2, e5] = e∗1, [e2, e8] = −e∗4, [e3, e4] = e∗6,

[e3, e6] = −e∗4, [e3, e7] = e∗1, [e4, e6] = e∗3, [e4, e8] = e∗2.

– Algebra L8,4 associated to trivector 137 + 168 + 236 + 245:

[e1, e3] = e∗7, [e1, e6] = e∗8, [e1, e7] = −e∗3, [e1, e8] = −e∗6,

[e2, e3] = e∗6, [e2, e4] = e∗5, [e2, e5] = −e∗4, [e2, e6] = −e∗3,

[e3, e6] = e∗2, [e3, e7] = e∗1, [e4, e5] = e∗2, [e6, e8] = e∗1.

– Algebra L8,5 associated to trivector 134 + 178 + 256 + 278:

[e1, e3] = e∗4, [e1, e4] = −e∗3, [e1, e7] = e∗8, [e1, e8] = −e∗7,

[e2, e5] = e∗6, [e2, e6] = −e∗5, [e2, e7] = e∗8, [e2, e8] = −e∗7,

[e3, e4] = e∗1, [e5, e6] = e∗2, [e7, e8] = e∗1 + e∗2.

– Algebra L8,6 associated to trivector 128 + 135 + 147 + 237 + 246:

[e1, e2] = e∗8, [e1, e3] = e∗5, [e1, e4] = e∗7, [e1, e5] = −e∗3,

[e1, e7] = −e∗4, [e1, e8] = −e∗2, [e2, e3] = e∗7, [e2, e4] = e∗6,

[e2, e6] = −e∗4, [e2, e7] = −e∗3, [e2, e8] = e∗1, [e3, e5] = e∗1,

[e3, e7] = e∗2, [e4, e6] = e∗2, [e4, e7] = e∗1.

– Algebra L8,7 associated to trivector 127 + 138 + 156 + 246 + 345:

[e1, e2] = e∗7, [e1, e3] = e∗8, [e1, e5] = e∗6, [e1, e6] = −e∗5,

[e1, e7] = −e∗2, [e1, e8] = −e∗3, [e2, e4] = e∗6, [e2, e6] = −e∗4,

[e2, e7] = e∗1, [e3, e4] = e∗5, [e3, e5] = −e∗4, [e3, e8] = e∗1,

[e4, e5] = e∗3, [e4, e6] = e∗2, [e5, e6] = e∗1.
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– Algebra L8,8 associated to trivector 136 + 158 + 247 + 258 + 345:

[e1, e3] = e∗6, [e1, e5] = e∗8, [e1, e6] = −e∗3, [e1, e8] = −e∗5,

[e2, e4] = e∗7, [e2, e5] = e∗8, [e2, e7] = −e∗4, [e2, e8] = −e∗5,

[e3, e4] = e∗5, [e3, e5] = −e∗4, [e3, e6] = e∗1, [e4, e5] = e∗3,

[e4, e7] = e∗2, [e5, e8] = e∗1 + e∗2.

– Algebra L8,9 associated to trivector 145 + 167 + 238 + 246 + 357:

[e1, e4] = e∗5, [e1, e5] = −e∗4, [e1, e6] = e∗7, [e1, e7] = −e∗6,

[e2, e3] = e∗8, [e2, e4] = e∗6, [e2, e6] = −e∗4, [e2, e8] = −e∗3,

[e3, e5] = e∗7, [e3, e7] = −e∗5, [e3, e8] = e∗2, [e4, e5] = e∗1,

[e4, e6] = e∗2, [e5, e7] = e∗3, [e6, e7] = e∗1.

– Algebra L8,10 associated to trivector 128 + 167 + 236 + 247 + 345:

[e1, e2] = e∗8, [e1, e6] = e∗7, [e1, e7] = −e∗6, [e1, e8] = −e∗2,

[e2, e3] = e∗6, [e2, e4] = e∗7, [e2, e6] = −e∗3, [e2, e7] = −e∗4,

[e2, e8] = e∗1, [e3, e4] = e∗5, [e3, e5] = −e∗4, [e3, e6] = e∗2,

[e4, e5] = e∗3, [e4, e7] = e∗2, [e6, e7] = e∗1.

– Algebra L8,11 associated to trivector 128 + 136 + 157 + 247 + 256 + 345:

[e1, e2] = e∗8, [e1, e3] = e∗6, [e1, e5] = e∗7, [e1, e6] = −e∗3,

[e1, e7] = −e∗5, [e1, e8] = −e∗2, [e2, e4] = e∗7, [e2, e5] = e∗6,

[e2, e6] = −e∗5, [e2, e7] = −e∗4, [e2, e8] = e∗1, [e3, e4] = e∗5,

[e3, e5] = −e∗4, [e3, e6] = e∗1, [e4, e5] = e∗3, [e4, e7] = e∗2,

[e5, e6] = e∗2, [e5, e7] = e∗1.

– Algebra L8,12 associated to trivector 126 + 158 + 238 + 257 + 347 + 456:

[e1, e2] = e∗6, [e1, e5] = e∗8, [e1, e6] = −e∗2, [e1, e8] = −e∗5,

[e2, e3] = e∗8, [e2, e5] = e∗7, [e2, e6] = e∗1, [e2, e7] = −e∗5,

[e2, e8] = −e∗3, [e3, e4] = e∗7, [e3, e7] = −e∗4, [e3, e8] = e∗2,

[e4, e5] = e∗6, [e4, e6] = −e∗5, [e4, e7] = e∗3, [e5, e6] = e∗4,

[e5, e7] = e∗2, [e5, e8] = e∗1.
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– Algebra L8,13 associated to trivector 123 + 178 + 257 + 368 + 456 + 478:

[e1, e2] = e∗3, [e1, e3] = −e∗2, [e1, e7] = e∗8, [e1, e8] = −e∗7,

[e2, e3] = e∗1, [e2, e5] = e∗7, [e2, e7] = −e∗5, [e3, e6] = e∗8,

[e3, e8] = −e∗6, [e4, e5] = e∗6, [e4, e6] = −e∗5, [e4, e7] = e∗8,

[e4, e8] = −e∗7, [e5, e6] = e∗4, [e5, e7] = e∗2, [e6, e8] = e∗3,

[e7, e8] = e∗1 + e∗4.

However, despite there are an infinite number of non-isometrically isomorphic 2-step 
quadratic Lie algebras of dimension greater or equal than 18, for the 18-dimensional 
algebras we still have a classification based on seven families of trivectors, where each 
family depends on some parameters. This classification can be found in [25]. Here, the 
authors explain how every trivector can be decomposed as a sum of a semisimple trivec-
tor and a nilpotent one. Details of these concepts can be found in §1 of the paper. That 
semisimple part is a linear combination of four special trivectors, and it is that specific 
combination in addition to the nilpotent part what defines each family. Despite this clas-
sification involves parameters λi, this does not affect our conversion to 2-step quadratic 
Lie algebras, and the procedure described in (21) is still functional. We can see it in the 
following example.

Example 4.4. Let us take a trivector u in the sixth family, which decomposes as u = p +e

with p = λ(123 + 456 + 789) �= 0, where λ is determined up to multiplication by a sixth 
root of the unity, and e is in table [25, Table 5]. For example, we consider e = 147 +158. 
So our trivector is

u = λ(123 + 456 + 789) + 147 + 158.

In this case the associated 18-dimensional Lie algebra L is defined by products

[e1, e2] = λe∗3, [e1, e3] = −λe∗2, [e1, e4] = e∗7, [e1, e5] = e∗8,

[e1, e7] = −e∗4, [e1, e8] = −e∗5, [e2, e3] = λe∗1, [e4, e5] = λe∗6,

[e4, e6] = −λe∗5, [e4, e7] = e∗1, [e5, e6] = λe∗4, [e5, e8] = e∗1,

[e7, e8] = λe∗9, [e7, e9] = −λe∗8, [e8, e9] = λe∗7,

when considering the basis {e1, . . . , e9, e∗1, . . . , e
∗
9}.

Remark 10. The idea of a nilpotent or semisimple trivector does not affect the nilpotency 
of the algebra obtained from it. By construction, the quadratic algebra we obtain is 
always 2-step.
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Remark 11. In case we are interested in greater dimensions, things start to get much 
more difficult as there are not a finite number of trivectors-algebras. We can get ex-
amples by applying Theorem 2.27 or Lemma 2.13. These results provide computational
constructions based on non-degenerate n-quadratic matrices or chained one-dimensional 
double extensions.
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