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1. Introduction 

Airports are public resources that require large investments, and there has been substantial 

interest in exploring whether such resources have been effectively and efficiently used. Some 

of the funds that were spent in Spanish airport infrastructure were provided by the European 

Union.  The European Court of Auditors (2014) investigated if investment expenditure in 

Spanish airports had been justified.  

The study of the efficiency of airports has long been a matter of interest.  Bezerra and 

Gomes (2016) give a literature review of performance measurement in airports. Some relevant 

studies are Gillen and Lall (1997), Parker (1999), Sarkis (2000), Bazargan and Vasigh (2003), 

Sarkis and Talluri (2004) , Wang et al. (2004), Yu (2004; 2010), Barros et al. (2007),  Barros 

(2008a; 2008b; 2009), Pathomsiri et al. (2008), Yu et al. (2008), Assaf et al. (2012), and 

Pacagnella Junior et al. (2021).  This literature has been reviewed by Lieber and Niemeir (2013 

and 2010). In Spain we can mention Murillo-Melchor (1999), Salazar de la Cruz (1999), Martin 

and Roman (2001; 2006), Martin-Cejas (2002), Coto-Millan et al. (2007; 2014; 2016), Tapiador 

et al. (2008), Martin et al. (2009; 2011), Tovar and Martin-Cejas (2009; 2010), Lozano and 

Gutierrez (2011), and Lozano et al. (2013).   

A popular technique for efficiency assessment is Data Envelopment Analysis (DEA).  DEA 

takes a particular airport whose efficiency is to be assessed as the focus of analysis and asks if 

the inputs used by such airport would have been better employed elsewhere.  The question is 

basically: imagine that we close the airport under observation and distribute its inputs amongst 

other airports. Having expanded, the airports that have received extra inputs are expected to 

generate extra outputs.  The question is if these extra outputs be at least as large as the outputs 

that were generated by the airport we consider closing.  If the answer to this question is “yes”, 

then the airport under observation is deemed to be inefficient.   

This paper reports the result of a study of Spanish airport efficiency over a five-year period 

that includes an economic crisis.  Several issues are addressed using DEA and multivariate 

statistical methods.  Since DEA efficiency scores depend on the outputs and inputs included in 

the model, we estimate efficiencies under a variety of combinations of inputs and outputs 

(specifications). This approach has the further advantage of avoiding the zero-weight problem 

that is common in DEA.  It also serves to highlight the strengths and weaknesses of each airport 

in terms of efficiency. We do this for a five-year period.  This results in 43,710 efficiency 

scores, a large amount of information that can only be fully understood using statistical 

methods.  For this reason, we visualise the efficiency models and results using scaling methods.  
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We think this is the first time that this methodology has been applied in this context.     

DEA efficiency is measured in the form of a score between one (if the airport is fully 

efficient) and zero (if the airport is fully inefficient).  These scores are often multiplied by one 

hundred and reported in the form of percentages.  This way of proceeding is appropriate, but 

we would like to go beyond a mere score. We would like to know what is special about the 

airport being assessed, what are its strengths and what are its weaknesses.  The methodology 

presented in this paper addresses this issue from a different perspective from previous studies 

such as Pacagnella Junior et al. (2021). 

A major issue in DEA is the choice of inputs and outputs to be included in the model.  DEA 

is not a statistical technique and there are no tools such as t-tests in regression to assess if 

an input or an output are important or could be deemed to be redundant and removed from the 

data. It is known that efficiencies depend on the number of inputs and outputs included in the 

specification.  The more inputs or outputs included in the model, the higher the calculated 

efficiencies will be.  For a discussion of the issues related to specification in DEA see, for 

example, Grosskopft (1986 and 1996), Thrall (1989), Hughes and Yaisawarng (2004), and 

Pastor et al (2002).  

There are many possible input/output combinations (specifications) that can enter into a 

DEA study, and calculated efficiencies depend on the specification chosen.  In fact, two 

different analysts working on the same data can come up with different results just because they 

have chosen different specifications.  It is difficult to justify how two different results can arise 

from the same data when the analysis is performed by two perfectly competent people using 

the same technique.  A solution proposed by Serrano-Cinca et al. (2016) is to estimate a variety 

of specifications for each unit under observation and to analyse the results using Factor 

Analysis. This approach has been revealed to be very effective in various studies: Gutierrez-

Nieto et al., (2007); Serrano-Cinca et al., (2016); and Sagarra et al., (2017).  Ripoll-Zarraga 

and Mar-Molinero (2020) applied this approach to study the efficiency of Spanish airports. 

Extreme values are a problem in DEA since they may have considerable influence on the 

results. But an extreme efficiency value may just be consequence of the choice of inputs and 

outputs.  Serrano Cinca et al. (2016) demonstrated that whether a particular unit of assessment 

appears to be discordant depends on the particular choice of inputs and outputs incorporated in 

the specification.  Airports that are associated with extreme efficiency values under a particular 

specification may not appear to present discordant behaviour under other specifications.  For 
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this reason, we have decided not to start the modelling by looking for extreme values, as it is 

common practice.  By estimating a variety of specifications, we will be able to reveal the 

reasons why some airports present extreme behaviour, if any such units exist.  This will disclose 

the strengths and weaknesses in the efficiencies of the various airports. 

A standard problem in DEA studies is the treatment of zero weights.  The methodology 

proposed here avoids it.  Attaching a zero weight to an input (or to an output) is equivalent to 

removing this input (or output) from the analysis.  Our methodology removes or includes an 

input (output) in an explicit way.  If an input (output) has no impact on the assessment of 

efficiency, this will be revealed by the data reduction techniques of multivariate analysis that 

we adopt. 

Airport efficiency studies tend to be static, in the sense that data on inputs and outputs are 

collected for a particular year, and the model is estimated.  Here we take the analysis a step 

further by adding the time dimension to the analysis.  Hence, our approach reveals the dynamics 

of airport efficiency over time. 

The standard approaches used to incorporate time changes in DEA are the Malmquist index 

approach (Thanassoulis, 2001), or the multiperiod network model of Kao and Hwang (2014), 

Liu (2017), Fragoudaki et al (2016), and Ahn and Min (2014).  However, these approaches 

suffer from the same limitations as the standard DEA approach in that a particular specification 

has to be selected, and no alternatives are normally considered.   

Our data consists in four inputs and five outputs for 47 Spanish airports over a five-year 

period. DEA efficiency was calculated for each airport under an output-oriented variable returns 

to scale model (VRS). VRS is justified given the large difference in size between the various 

airports.  Output orientation was selected as an approach because we considered that the 2008 

economic crisis had left capacity under-utilised, and we wanted to see how this had impacted 

on efficiency.  As for the specifications, many can be contemplated, but we were selective in 

the sense that some of them did not make much managerial sense and these were excluded from 

the analysis. For example, having Commercial Revenues but not Passengers in a specification 

seems not to make sense unless the commercial income is generated mostly by employees, 

which is unlikely to happen. But it is possible to have Cargo without Passengers. At the same 

time, any specification with Passengers, Cargo, or Percentage of Flights on Time will require 

having aircraft movements. Although some unrealistic specifications may be missed, the DEA-

Visualisation approach proposed here will disregard any ‘uninteresting’ combination of inputs 
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and outputs. 

The final data set was a three-way table of airports by specifications by years.  The cells in 

the table contained efficiencies.  There is an efficiency score for each airport under each 

specification for each year.  This generates a very large amount of information that may obscure 

any relevant findings.   

To reveal the findings and make them accessible to anybody without a strong technical 

background we resorted to visualisation techniques.  The approach followed to analyse the 

results was based on the Individual Differences Scaling (INDSCAL) model of Carroll and 

Chang (1970).  This model returns a “common map” that reveals what has remained constant 

over the time period, and a set of weights that informs about any time effects that may exist.   

The common map revealed that there are at least nine ways in which airport efficiency can 

be described, although only six such approaches to efficiency were explored.  These are: a) 

efficient use of investment in order to generate Air Traffic Movements (ATM); b) cost 

efficiency with respect to aeronautical activity; c) efficiency in obtaining revenues in relation 

to Air Traffic Movements (ATM); d) cost efficiency in dealing with passengers; e) efficiency 

in dealing with cargo; and f) efficiency effects associated with runway length. 

The relative importance of these approaches to efficiency changed as result of the 2009 

economic crisis.  We found that, after 2009, the emphasis appears to have shifted from 

generating ATM to generating passenger activity given the investment available in each airport.  

During the worst years of the economic crisis (2010 and 2011) cost efficiency in dealing with 

passengers appears to have taken great importance. Before the crisis, efficiency effects in 

dealing with cargo appear to have been prominent over efficiency effects in dealing with 

passengers.  The situation was reversed during the crisis period, something that may just reflect 

the fall in cargo activity during the crisis.  

The approach described in this paper, besides identifying the various efficiency aspects that 

can be associated with an airport, and the way in which their importance has evolved over time, 

permits to visualise the strengths and weaknesses of each airport.  In the concluding section we 

show how to do this by concentrating in Vitoria airport. 

This introductory section is followed by a discussion of data, particularly in what concerns 

airport inputs and outputs.  The third section of the paper is technical.  It describes how the 

efficiencies were calculated, the statistical model used, and visualises the findings.  The paper 

ends with a discussion and conclusions section. 
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2. The Data 

Spanish airports are government owned and managed by a public company named AENA. 

AENA manages 49 civilian aviation airports. One of the consequences of this centralised 

management structure is that airports do not compete. There has been much debate about the 

adequacy of a centralised system versus a system based on local managerial decision making 

(Cambra de Comerç de Barcelona, 2010; CNMC-The National Board for Markets and 

Competition, 2014; and Word Finance, 2016). 

Our data set includes 47 airports over a period of five years (2009-2013).  2009 was chosen 

as starting point because there is no financial data information on individual airports prior to 

2009. The list of airports can be seen in Table 4. Two airports were excluded due to lack of 

data: Son Bonet (in Majorca Island) and Algeciras.   

The network contains 14 large airports (i.e. more than 3.5 million of passengers per year).  

The remaining 33 airports are medium or small sized, with a high variability in terms of 

passengers and cargo. The data, except for the depreciation of assets, flight delays, and runway 

surface, have been extracted from the annual reports of AENA from 2009 to 2013. 

Despite being government owned, AENA does not receive public subsidies.  To obtain 

extra funds, Spanish airports have engaged in commercial activities alongside their aeronautical 

mission. Amongst these commercial activities, we can list duty-free shops, car rental, food 

services, shops, advertising, VIP lounges, banking, travel agencies, and vending machines. 

Diversification towards commercial activities is normally associated with privatisation 

processes (Humphreys, 1999). In the Spanish case, commercial revenues are as important as 

aeronautical revenues (ICAO, 2013).  Non-aviation revenues in airports have been studied by 

Fasone et al. (2016). 

Table 1    List of inputs and outputs included in the DEA model. 

Inputs Outputs 

(A) Labour costs excluding air traffic control 
services  

(B) Operating costs 
(C) Depreciation of airside assets 
(D) Runway surface 

(1) Passengers 
(2) Air traffic movements (ATM) 
(3) Cargo 
(4) Commercial revenues 
(5) Percentage flights on time 

 

DEA model requires specifying what are the inputs and the outputs of an airport.  The 

inputs and outputs used in this study are listed in Table 1.  
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All the inputs are in euros except for runway surface. The letters in brackets indicate the 

symbols used in the analysis.  As for outputs, cargo is measured in tons and commercial 

revenues are measured in euros. The numbers in brackets indicate the symbols used in the 

analysis.  The choice of inputs and outputs has been guided by a revision of the literature and 

by data availability as published by AENA. Labour and operating costs; the number of 

passengers; movements; cargo and commercial revenues have been extracted from AENA’s 

annual reports.  Runway surface was calculated from the geographical maps of the airports. 

These inputs and outputs have been frequently used in airports’ efficiency studies; see Tovar 

and Martin-Cejas (2010). 

On the side of outputs, cargo has increased its importance over the years.  It requires 

different handling methods as compared to passengers (Tovar and Martin-Cejas, 2009; Chi-Lok 

and Zhang, 2009). Air Traffic Movements (ATM) are treated as an output of airside operations.  

They generate revenues in the form of landing and aircraft parking charges (Coto-Millan et al., 

2014). The percentage flights on time has been used as an indicator of good management of 

traffic flows.  The data for percentage flights on time was obtained from CODA (Central Office 

for Delay Analysis). 

Turning our attention to inputs, airport resources are normally related to infrastructure. 

Infrastructure includes the number of runways, terminal buildings, boarding gates, number of 

checking desks, terminal size, parking capacity, and number of full-time employees.  

Nevertheless, infrastructure is difficult to define or quantify. Indeed, one of the main challenges 

of airport benchmarking analysis is the inclusion of capital measures (Parker, 1999).  Various 

capital proxies have been used in airport industry research: rent expenses (Parker, 1999); 

depreciation of fixed assets (Murillo and Melchor, 1999; Martin and Roman 2001; Martin et 

al., 2009; 2011); capital expenses (Martin-Cejas, 2002); book value (Barros and Sampaio, 

2004; Coto-Millan et al., 2014; 2016); length of runways (Martin et al., 2011); and airport 

surface area or number of gates (Tovar et al., 2009; 2010). It is also possible to take into account 

if assets are linked to aircraft movements (boarding gates, apron capacity and runways areas), 

or to loading processes such as checking counters and baggage belts (Lozano et al., 2013). 

In this study we have employed as a proxy for capital usage the depreciation of airside 

assets. From an accounting perspective, depreciation reflects the consumption of airport assets 

that takes place in the process of generating revenues. Following Ashford et al. (1996) airport 

infrastructure was classified into airside and landside. In this study, only the depreciation of 

airside assets is considered.  The split between airside and landside assets has been discussed 
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by Gillen and Lall (1997), and Pels et al. (2001; 2003). Airside assets are considered to be 

essential to conduct aeronautical activities. The depreciation of airside assets concerns aviation 

terminals, aprons, taxiway and air traffic control and visualisation systems (beacon), and 

excludes runway depreciation.   

Depreciation was calculated using established depreciation rules whilst taking into account 

the historical cost of non-current assets.   The calculation required knowing the initial cost of 

assets and of the subsequent work performed on them. The historical cost of non-current assets 

was obtained from the construction certifications of works performed in airports.  It was not 

possible to find individual airport infrastructure expenditure information before 2000, and 

calculations were made as if airports had started their activity in the year 2000.  Airports’ initial 

investments for 2000 were estimated from depreciation charges for 2004 (released by the 

Spanish Government). These depreciation expenses were available per airport within individual 

income statements. The useful life of the assets conforms to current regulation in the 

transportation sector for buildings and structures as required by international financial reporting 

standards (IFRS) for property, plant and equipment (IAS 16). 

There was no information regarding the type of labour cost (full or part-time; permanent 

or fixed term).   

In a few instances, there was missing data.  We preferred to make a small estimation error 

rather than removing an airport from the data set because a particular data item was not 

available, and we inputted an estimate using the nearest neighbour approach.  We estimated 

some items in the cases of Ceuta, Cordoba, Huesca, La Gomera, and Madrid-4Vientos.  

Table 2    Descriptive Statistics. Source: AENA 2009-2013 except for depreciation and 
runway length. Data deflated by the GDP deflator base Spain, 2010. 

Variables Mean 
Standard  
Deviation Minimum Maximum 

Passengers (number) 4,094,892 8,656,221 0 49,866,113 

Air Traffic Movements (number) 42,736.41 72,758.36 476 435,187 

Cargo (Tons) 13,472,972 53,369,951 0 394,154,078 

Aeronautical Revenues (mill €) 35.45 97.33 0.03 703.93 

Commercial  Revenues (mill €) 13.40 31.16 0 186.82 

Labour Costs (mill €) 8.25 11.36 0.12 81.83 

Operating Costs (mill €) 21.75 55.88 0.45 350.82 

Depreciation Airside (€) 2,208.97 5,498.38 0 31,100.24 

Runway Surface (m2)   177,574.20 161,175.30 10,626 927,000 
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Runway surface is a non-discretionary input in the sense that it cannot be changed in the 

short term in order to improve efficiency.  Non-discretionary inputs in DEA have been studied, 

amongst others, by Banker and Morey (1986), Ruggiero (1998), and Cordero-Ferrara et al., 

(2008).  In our case, the DEA models estimated are output oriented, and the standard model 

does not need to be modified. 

All the data measured in monetary units was deflated by the Spanish gross domestic 

product deflator (base Spain, 2010). 

Descriptive statistics for inputs and outputs are given in Table 2. 

3. Analysis and Results 

Efficiencies were estimated under 186 DEA specifications for each airport and for each of 

the five years.  Estimations were made using the software EMS (Efficiency Management 

Software).  Each specification containing a subset of the inputs and outputs shown in Table 1. 

This makes a total of 43,710 estimations. Inputs were identified by means of capital letters, and 

outputs by means of numbers, in line with the notation introduced in Table 1.  For example, 

model AC32 contains as inputs labour (A) and depreciation (C) and as outputs cargo (3) and 

ATM (2).  The specifications estimated are not all the possible combinations between the five 

outputs and the four inputs since some were excluded on the grounds that they did not make 

operational sense. 

3.1. Factor analysis of efficiencies for individual years 

The data to be analysed is a three-way matrix of 186 specifications, by 47 airports, and by 

5 years.  The cells in the table contain estimated efficiencies.  Although some relevant 

information can be obtained through visual inspection of the data, it is clearly necessary to use 

a data reduction technique in order to deal with such a large set of numbers.  

The data set was treated, in the first instance, as a set of five matrices of airports by 

specifications, one such matrix for each year.  Specifications were treated as variables, and 

airports were treated as cases.  Each matrix was analysed using Unrotated Orthogonal Factor 

Analysis.  This was done in order to assess the dimensionality of the data.  The calculations 

were performed using the IBM-SPSS computer package. 

There was little variation between the five years.  In general, either 9 or 8 factors were 

associated with eigenvalues greater that unity, the standard Kaiser’s criterion.  The 9 factors 
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always accounting for more than 95% of the variability in the data.  The first factor was clearly 

an overall measure of efficiency and accounted for more than 60% of the variability in the 

information.  Similar patterns were reported by Gutierrez-Nieto et al., (2007), Serrano-Cinca et 

al., (2016), Sagarra et al., (2017), and Ripoll-Zarraga and Mar-Molinero (2020). 

It was also observed that factorial weights associated with dimensions 7, 8, and 9 were low 

(less than 0.3).  Considering that the statistical package employed, IBM-SPSS, orders factors 

in terms of their eigenvalues, it can be conjectured that factors 7, 8, and 9 are of lesser 

importance in the analysis.   

Following this matrix by matrix factor analysis study, it was decided to model the data 

as nine-dimensional, although we did not explore dimensions higher than six. 

3.2. The individual differences scaling model 

Given the amount of data we had, we decided to use a statistical technique that reveals its 

main characteristics in a graphical form.  There are several such approaches that can be used to 

model three-way data.  We preferred to employ the Individual Differences Scaling (INDSCAL) 

model of Carroll and Chang (1970).  Estimations were performed with the PROXSCAL routine 

of the package SPSS.   

Scaling models are estimated using numerical hill-climbing methods and can suffer from 

local minima problems. To be sure that it was not the case in this instance, several 

approximation methods were used.  Another problem with hill-climbing approaches is that 

iterations can finish before the optimal value is found.  To avoid this problem as far as possible, 

the default level of precision in SPSS was increased by a factor of one thousand.  The results 

reported here were found to be robust to the estimation method used and to the level of precision 

in the calculations. 

The INDSCAL model is proximity based.  First, proximities between airports are 

calculated for every year.  There are various ways in which proximities can be calculated. We 

used Euclidean metric between airports using as variables standardised efficiency values.   This 

method is equivalent to Factor Analysis when certain restrictive conditions apply; Coxon 

(1982). In other words, each airport is a point in a space of 186 dimensions (one dimension for 

each specification).  The proximity (similarity) between any two airports is taken to be the 

distance between the points in the 186-dimensional space.  Since there are 47 airports in the 

data set, this results in the calculation of 1081 proximity values for each year.  In mathematical 

terms, the proximity between airport i and airport j in year t is given by: 
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𝛿 𝑒 𝑒
/

 ,                                                      1  

where 𝑒  is the standardised efficiency of airport i under specification k for year 𝑡. 

INDSCAL models the airports as a set of points in a d-dimensional space. Following the 

findings of the year by year factor analysis, d was set to 9. INDSCAL is not rotation invariant, 

as is the case with factor analysis or with Multidimensional Scaling.  It has been found that the 

dimensions in an INDSCAL study often have a meaning.  Attaching a meaning to the 

dimensions is important in order to interpret the results of the analysis.  This is done below. 

INDSCAL assumes that the relative position of the airports with respect to each other, in 

this 9-dimensional space, remains invariable over time, but that the relative importance 

(salience) of the dimensions in the space changes over time.  This assumption is appropriate for 

the Spanish airport data set since it is reasonable to assume that the airports that are similar in 

a particular year will continue to be similar over the time period.  For example, if Vitoria and 

Zaragoza airports are similar during the first year, they will continue to be similar during the 

following four years.  This does not mean that things do not change; the relative importance of 

the dimensions in the space may change over time as a result of, for example, the economic 

cycle. 

INDSCAL returns as output both a common map that represents what has remained 

invariant over time, and a set of weights that reveals time-related effects. The set of weights, 

one for each dimension and for each year, are used to “distort” the common map.  The distortion 

is a simple change of scale that is used to emphasise the importance (salience) of each 

dimension in each particular year.  

Mathematically, INDSCAL performs a non-linear regression where the dependent 

variables are the 𝛿  and the unknowns are of two types: the coordinates of the airports in the 

common space, 𝑐 , and the set of weights 𝑤 . Where 𝑐  is the coordinate 𝑑 of airport 𝑖 in the 

common space, and  𝑤  is the weight attached to dimension 𝑑 in the specific year 𝑡. 

We can write: 

𝛿 𝑐 𝑐 𝑤 𝜀 𝑑 𝜀  ,                                        2  

where the 𝑑   are the distances between airports in the common space taking into account the 
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importance taken by the dimensions in year t.  

Being regression based, model fit can be assessed using the correlation between the 

dissimilarities, 𝛿 ,  and the distances 𝑑 .  This is done for each year. 

𝑅 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝛿 ,𝑑                                                      3  

The model contains an ambiguity: if we multiply the coordinates of the common space by 

a constant and divide the weights by the square of this constant, the value under the square root 

remains unchanged.  To avoid this, the weights for each year are normalised so that 

𝑅 𝑤                                                                  4  

In other words, the sum of the square of the weights for each year adds up to the square of 

the correlations between dissimilarities and distances for that particular year. 

The weights for each dimension and each year can be seen in Table 3.  This table also 

contains the sum of squares of the weights for each particular year. 

Table 3    INSCAL weights (wt) and Goodness of Fit (𝑅 ) measure for each year. 

Year 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 𝒘𝟔 𝒘𝟕 𝒘𝟖 𝒘𝟗 𝑹𝒕
𝟐 

2009 0.240 0.589 0.106 0.000 0.137 0.009 0.228 0.022 0.025 0.4877 

2010 0.219 0.178 0.165 0.158 0.232 0.095 0.185 0.132 0.491 0.4874 

2011 0.260 0.145 0.248 0.502 0.212 0.121 0.146 0.042 0.057 0.4880 

2012 0.301 0.171 0.277 0.165 0.163 0.100 0.094 0.467 0.000 0.4873 

2013 0.289 0.141 0.247 0.117 0.195 0.506 0.100 0.000 0.075 0.4878 

 

It can be seen in Table 3 that correlations between dissimilarities and distances for each 

year are in the region of 0.7 (the square root of the figure under the 𝑅  column).  It can also be 

seen that the relative salience of the dimensions, as measured by the weights, changes over 

time.  This is something we will further explore below. 

Another way of assessing the goodness of fit of the model is known as “stress”. Stress is a 

measure of lack of fit.  As such, we would like stress to be near to zero.  There are various 

measures of stress.  The most common measure is known as Stress1; Kruskal (1964).  In this 

case Stress1 was found to be 0.0610, which ranks as “very good” in Kruskal’s (1964) verbal 

classification. 
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As previously stated, INDSCAL generates a common map.  The common map is a 

consensus map over time, which plots each airport in the 9-dimensional space.  Each airport is 

then, a point in a 9-dimensional space.  The coordinates of each airport in the common map are 

given in Table 4. 

A mathematical map in nine dimensions is difficult to comprehend.  It needs to be projected 

into pairs of dimensions.  The projection of the common map into dimensions 1 and 2 can be 

seen in Figure 1(a). The projection of the common map into dimensions 3 and 4 can be seen in 

Figure 1(b), and the projection of the common map into dimensions 5 and 6 can be seen in 

Figure 1(c).  Airports are identified by means of their IATA codes, as given in Table 4. 

a) Dimension 1 (Dim1) vs Dimension 2 (Dim2) b) Dimension 3 (Dim3) vs Dimension 4 (Dim4) 

 
  c) Dimension 5 (Dim5) vs Dimension 6 (Dim6) 
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Fig. 1.  Common Map. Projection into pairs of dimensions. Airports identified by means of 
their IATA codes. 

3.3. Interpreting the common map. Property Fitting 

In order to better understand the results of the analysis, it is important that dimensions in 

the common map be attached a meaning.  This can be done using the Property Fitting approach 

(ProFit); Schiffman et al. (1981). ProFit is a form of biplot; Gower and Hand (1996).  ProFit 

attempts to establish if there are directions in the common space that are related to the way in 

which efficiency under a particular specification changes.  For example, if efficiency in dealing 

with cargo grows in the direction of Dimension 5, we plot a vector in the direction of Dimension 

5 to make this explicit.  To draw the vectors, we need to perform a regression in which the 

independent variables are the coordinates of the airports in the common space, and the 

dependent variable is the efficiency under the specification of interest.  For a mathematical 

justification of this procedure see Mar-Molinero and Mingers (2006).  All calculations were 

made with the regression routine of the IBM-SPSS package. 

ProFit vectors were normalised to unit length, 

𝛽∗
𝛽

∑ 𝛽
 , 𝑖 1 … .9 ,                                          5  

where 𝛽  is the 𝑖 th regression coefficient.  The 𝛽∗ values can be seen in Table 5.  Table 5 also 

shows the 𝑅 , that measures Goodness of Fit in the regression. 

Normalisation is important for the interpretation of the dimensions.  All ProFit vectors have 
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their origin in the centre of co-ordinates and, after normalization, have unit length.  If, in a two-

dimensional projection, the end point of the ProFit vector associated with a particular 

specification is close to the centre of coordinates, it is concluded that the dimensions on which 

the vector is plotted are unrelated to efficiency under that particular specification.  If, on the 

other hand, the vector appears to have unit length in a particular projection, one can conclude 

that the dimensions of the figure are the relevant ones for the interpretation.   

3.4. Interpreting the common map.  Hierarchical Cluster Analysis 

Figures 2, 3, and 4 complement Figure 1.  Ideally, one would project on the same pair of 

dimensions both the end points of the profit vectors and the airports, but this would have 

resulted in too much information within each figure. 

Before we proceed to interpretation, we need to realise that the end points of the ProFit 

vectors are located in a 9-dimensional space, and it is possible for two such end points to appear 

near to each other in the projection while being far away in the space.  In order to address this 

issue we have conducted a Hierarchical Cluster Analysis of the end points of the ProFit vectors 

using the IBM-SPSS computer package.  The 𝛽∗values were treated as variables, and the 

specifications as observations.  Ward´s agglomeration method was chosen since it maximises 

homogeneity within clusters and heterogeneity between clusters.  After observing the 

dendrogram, it was decided that six would be an appropriate number of clusters.  The 

specifications that belong to the same cluster have been identified in Figures 2, 3, and 4. 
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Fig. 2.  DEA Specifications projection into Dimension 1 and Dimension 2 with indication of Ward 
clustering method. 

 

Fig. 3.  DEA Specifications projection into Dimension 3 and Dimension 4 with indication of Ward 
clustering method. 
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Fig. 4.  DEA Specifications projection into Dimension 5 and Dimension 6 with indication of Ward 
clustering method. 

3.5. Interpreting the common map.  Exploring the meaning of the dimensions 

In this section we interpret the common map, as projected in Figure 1 taking into account 

the results of ProFit and Cluster analysis. 

We observe in Figure 1(a) that airports concentrate in the lower right-hand-side quadrant 

and in the upper left-hand-side quadrant.  Airports located in the lower right-hand side of the 

figure are, on the whole, large or medium-sized (Madrid Barajas, Barcelona El Prat, Palma, 

Alicante). Airports located on the top left-hand side quadrant are small airports (Albacete, 

Logrono, Badajoz). It is clear that the north-west, south-east diagonal is related to the size of 

the airport.  To understand how the efficiency of large airports differs from the efficiency of 

small airports, we turn our attention to Figure 2. 

In Figure 2 we observe that the end points of ProFit vectors that are most distant from the 

centre of coordinates in the direction south-east belong to Cluster 6 and, to a smaller extent, to 

cluster 3.  Furthermore, the distance from the origin of coordinates to points that belong to 

Cluster 6 is almost unity, indicating that this cluster is important for interpretation purposes. 

Members of Cluster 6 contain as inputs Operating Costs (B), Depreciation (C), and Runway 

Surface (D) and as outputs Passengers (1), ATM (2), and Commercial Revenues (4).  This 

indicates that large airports are efficient at generating aeronautical activity and revenues given 
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the use they make of the infrastructure, while the same cannot be said of small airports.   

We now turn our attention to Dimension 1 in Figure 2.  ProFit vectors that point towards 

the right-hand side contain Depreciation (C) and Runway Surface (D) as inputs; as outputs they 

contain Passengers (1), ATM (2), and Commercial Revenues (4).   We can then identify 

Dimension 1 as the efficient use of investment in order to generate air traffic movements 

(passengers) and commercial revenues. 

If we look at Dimension 2 in Figure 2 we see that the ProFit vectors that point towards the 

top contain as inputs Labour Cost (A) and Depreciation (C), and as outputs ATM (2), Cargo 

(3), and Flights on Time (5).  We have already observed that the airports that are located towards 

the top of Figure 1(a) are small ones.  This suggests that small airports have high punctuality 

records, and deal with aircraft traffic in a cheap way, both from the point of view of labour and 

the point of view of investment in infrastructures.  We can label this dimension as cost 

efficiency with respect to aeronautical activity in terms of punctuality. 

Dimension 3 is associated with a variety of specifications combining a variety of inputs 

and outputs, but all of them include ATM (output 2). This suggests that dimension 3 is related 

to the efficiency in obtaining financial resources in relation with Air Traffic Movements (airport 

charges in relation to approach and landing taxes).  

It can be seen in Figure 3 that the ProFit vectors most associated with Dimension 4 contain 

Labour Costs (A) and Operating Costs (B) as inputs, and Passengers (1) and ATM (2) as 

outputs. This dimension could be interpreted as cost efficiency in dealing with passengers.  

Dimension 5 is clearly associated with the efficiency in dealing with cargo (3).  

Finally, Dimension 6 captures efficiency effects associated with runway surface (D). 

Clearly, larger runways make it possible for larger aircraft to land, as well as unfolding runways 

make it possible for more aircraft to land. This impacts on efficiency, especially in Air Traffic 

Movements (ATM) (2) and Flights on Time (5).   

3.6. Time evolution 

Time related effects are captured by the weights in Equation 2.  For a given year and a 

given dimension, the absolute value of the weight is not important, since this depends on the 

normalisation performed in Equation 4.  What is important for a given year, 𝑡, is whether the 

value of the weight associated with a particular dimension is greater or smaller than the value 

of the weight associated with another dimension.  If both weights are of equal value, the 
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common map is a good representation of the efficiency situation for the airports.  If the weight 

for dimension 𝑖 is higher than the weight for dimension 𝑗, the common map has to be elongated 

along dimension 𝑖 and shrunk along dimension 𝑗.  This is to say, if weight, 𝑤 , is higher than 

weight, 𝑤 , dimension 𝑖 takes more importance than dimension 𝑗 during year 𝑡. 

This is best explored graphically, but because there are 6 weights, 15 such graphs are 

necessary to give full details.  We have decided to reproduce here only the most informative 

graphs.  

There are various ways in which the relative importance of the weights can be revealed.  

Here we have opted for Young’s plots; Coxon (1982, p.199).  Four such plots can be seen in 

Figure 5. 

It can be seen in section (a) of Figure 5 that there was a large change in the relative 

importance of Dimension 2 with respect to Dimension 1 after 2009.  This can be directly 

attributed to the impact of the economic crisis.  In 2009 Dimension 2 was clearly more 

important than Dimension 1, a situation that was reversed in the following years. Dimension 2 

has been interpreted as cost and investment efficiency, and Dimension 1 was interpreted as 

efficiency in the use of investment in order to generate passenger activity. From this we deduce 

that in the year 2009, when passenger activity was high, the emphasis was on cost reduction 

and good use of infrastructures.  After 2009 the emphasis appears to have shifted to generating 

passenger activity given the investment available in each airport.  
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Fig. 5.  INDSCAL weights, Young’s plots. 

 

The next plot of interest corresponds to section (b) of Figure 5.  Here we concentrate on 

cost efficiency in dealing with passengers, which was associated with Dimension 4.  This 

efficiency appears to have taken more importance during the worst years of the economic crisis 

(2010 and 2011).  In years 2012 and 2013 the relative importance of Dimension 4 with respect 

to Dimension 1 decreased, indicating a return to the pre-crisis situation. 

The relative importance of Dimension 4 with respect to Dimension 2 is explored in section 

(c) of Figure 5.  We see that cost efficiency in relation to passengers appears to have had 

relatively low emphasis in 2009, before the economic crisis hit Spanish airports, but that the 

situation was reversed during the crisis. 

Finally, the relative salience of efficiency in dealing with passengers or cargo is explored 

in section (d) of Figure 5.  We can see that efficiency in cargo took more importance before the 

crisis and that, as the crisis developed, efficiency in dealing with passengers took more 
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importance.  This can be due to a fall in cargo activity as a consequence of the economic crisis. 

4. Discussion and conclusions 

Airports are important infrastructures that command many resources.  In Spain, airports 

are nationally owned and managed through a state company: AENA.  There has been substantial 

interest in establishing if the resources have been efficiently managed in the aeronautical 

industry.  

From 2004 to 2007, the vast majority of small and medium sized airports increased their 

number of passengers. The financial crisis that started in 2008 impacted on small and medium 

sized airports that suffered a significant reduction in air traffic compared to large airports. In 

fact, the reduction in traffic that took place between 2007 and 2013 was so drastic that only two 

airports reported increases in the number of passengers (27.86% Santander and 1.12% 

Santiago).  However, efficiency depends on inputs and on outputs.  This begs the question of 

how the crisis affected the efficiency of the airport system.  The research reported in this paper 

addresses such question using the technique of Data Envelopment Analysis combined with the 

tools of Multivariate Statistical Analysis. 

The first issue explored is: what is airport DEA efficiency?  Is there just one form of DEA 

efficiency or can several efficiencies be identified?  In standard studies data is collected on the 

values of inputs and outputs and calculations take place.  But the results of the analysis depend 

on the choice of inputs and outputs.  This is no trivial matter, as inputs (and outputs) tend to be 

correlated and there are no modelling rules equivalent to the ones that are available in statistical 

analysis. 

Our approach has been to estimate a variety of input/output combinations that we have 

named specifications.  We have used four inputs and five outputs that are standard in the airport 

efficiency literature.   

The treatment of capital assets has been particularly complex since appropriate data could 

not be had from AENA’s financial statements.  Capital usage had to be estimated from 

investment expenditure (tangible assets) whilst taking into account established depreciation 

rules. 

In total, efficiencies were estimated under 186 combinations of inputs and outputs.  The 

calculations were performed for each of the five years for which we had data. Since we had 

data for 47 airports, this represents the calculation of 43,710 efficiency values. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 

To analyse such a large number of results we resorted to the tools of multivariate statistical 

analysis, in particular to scaling techniques because these permit the graphical presentation of 

the main features of the data.   

The particular statistical approach chosen was the Individual Differences Scaling model of 

Carrol and Chang (INDSCAL).  INDSCAL produces a “common map”, that shows what has 

remained constant over time, and a set of weights that contain information about time-related 

changes. 

The study of the common map revealed that six efficiency definitions can be identified: (a) 

efficient use of investment in order to generate passenger activity and commercial revenues; 

(b) cost efficiency in relation to aeronautical activity; (c) efficiency in obtaining revenues in 

relation to Air Traffic Movements; (d) cost efficiency in dealing with passengers; (e) efficiency 

in dealing with cargo; and (f) efficiency effects associated with runway surface.   

Having interpreted the meaning of the dimensions, it is possible to assess the strengths and 

weaknesses of each airport in terms of efficiency.  To give an example we will discuss the 

particular case of Vitoria airport. Vitoria airport is located near the centre of the representation 

in Figure 1(a).  This suggests that Vitoria is slightly better than average in terms of efficient use 

of investment in order to generate passenger activity, and that it is slightly better than average 

in terms of cost efficiency as related to aeronautical activity.  From Figure 1(b) we deduce that 

Vitoria airport is slightly better than average in terms of cost efficiency in relation to ATM, and 

that it is below average in cost efficiency when dealing with passengers.  However, in Figure 

1(c) we see that the real strength of Vitoria is in cargo efficiency.  We conclude that in Vitoria 

airport there is room for improvement in terms of use of investment, cost reduction, and 

generation of passenger activity, but that it stands as an example of good practice in relation to 

cargo.  Similar analyses can be easily performed for any other airport, since this only requires 

the observation of the location of the airport in the different dimensions of the common map.  

In fact, it has been shown that operational knowledge can be derived from appropriate 

processing of the data and that this knowledge can be represented in a graphical way for easy 

understanding. 

The relative importance of these approaches to efficiency has varied over time, and this is 

revealed in the weights generated by the INDSCAL model.  We see in Figure 5 (a) that in 2009 

cost efficiency took priority over efficient use of investment in the generation of passenger 

activity, but that the situation was reversed as a consequence of the economic crisis.  In Figure 
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5 (b) we see that after 2009, cost efficiency in dealing with passengers was gaining priority over 

efficient use of investment along 2010 and 2011, turning then toward the pre-crisis situation.  

From Figure 5 (c) we observe that, before the crisis, cost efficiency in dealing with passengers 

also took priority over cost efficiency in relation to aeronautical activity.  Figure 5 (d) shows 

how cost efficiency in dealing with cargo lost importance during the period, and this was gained 

by cost efficiency in relation to passengers.  These changes can be related to the loss of outputs 

as a consequence of the crisis, whilst inputs were slow to adapt to change.  What is more, the 

slow return that is observed to the pre-crisis situation has probably more to do with increases 

in the outputs than with decreases in the inputs. 

We conclude that the combination of multivariate statistical analysis with DEA efficiency 

evaluation can produce important insights in time related effects in efficiency.  However, in this 

analysis we have not taken into account shifts in the production frontier.  This may not be a 

great loss, since five years is a short period, and, in this case, the situation is dominated by the 

impact of the economic crisis. 
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Table 4.  Coordinates of Spanish airports in the common space. 

Code Airport  Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 

LCG A Corunna -0,14 0,43 -0,65 -0,63 -0,24 -0,90 0,71 0,93 -0,57 

ABC Albacete -1,53 2,18 -1,08 -1,38 -1,11 0,69 0,14 0,64 0,64 

ALC Alicante-Elche 1,47 -1,24 1,22 0,30 -0,72 0,89 -1,02 -0,50 0,67 

LEI Almeria -0,49 -0,18 -0,80 -0,86 -0,36 -0,80 1,46 0,76 -1,02 

OVD Asturias -0,28 0,11 -0,58 -0,07 -0,32 -0,71 0,19 0,44 -0,55 

BJZ Badajoz -1,64 1,38 -0,24 1,28 0,01 -1,79 -0,22 -0,82 0,08 

BCN Barcelona-El Prat 1,68 -0,77 1,59 1,07 -0,43 1,58 -1,31 -1,46 1,41 

BIO Bilbao 0,71 -0,61 1,02 0,60 1,07 0,24 -1,23 -0,74 0,82 

RGS Burgos -1,41 1,39 -1,34 -0,10 -0,39 0,64 0,45 -0,20 0,34 

JCU Ceuta -1,07 0,38 -0,91 0,20 -1,49 0,47 1,22 -0,94 0,33 

ODB Cordoba -0,61 2,24 -0,59 -0,38 -0,34 0,54 0,03 -0,29 0,97 

VDE El Hierro -0,36 0,80 -2,16 -1,54 -0,30 -0,06 0,47 -0,25 -0,30 

FUE Fuerteventura -0,07 -1,46 -0,49 0,63 0,17 -0,39 1,04 0,38 0,01 

GRO Girona 0,30 -1,31 1,25 0,30 0,36 -0,26 -0,94 0,64 -0,24 

LPA Las Palmas GC 0,94 -0,93 1,35 1,42 1,44 0,66 -1,19 -1,23 1,25 

GRX Granada-Jaen -0,39 0,52 -0,73 -0,58 -0,18 -1,34 0,30 1,45 -0,92 

HSK Huesca -1,52 0,82 0,07 -0,31 -0,23 -0,55 -0,99 -0,45 -1,59 

IBZ Ibiza 0,67 -1,17 0,75 1,49 0,27 0,58 -0,33 -0,35 0,45 

XRY Jerez 0,75 -0,46 0,34 1,12 0,24 0,91 0,79 -0,29 0,23 

GMZ La Gomera -1,18 1,21 -1,02 -1,61 -1,07 1,24 1,14 2,97 -3,16 

SPC La Palma -0,51 0,07 -1,34 -0,76 0,19 -1,23 1,59 1,59 -1,27 

ACE Lanzarote 1,75 -0,87 0,54 0,31 0,73 0,63 -0,40 -0,72 0,51 

LEN Leon -1,20 1,03 -0,06 -1,47 -0,84 -0,54 0,76 1,10 -0,55 

RJL Logrono-Agoncillo -1,17 2,31 -0,86 -1,65 -0,95 1,18 -0,63 0,49 -0,20 

MAD Madrid-Barajas 1,73 -0,57 1,68 1,06 -0,04 1,58 -1,57 -1,52 1,55 

MCV Madrid-4Vientos 1,72 -0,52 1,68 1,09 0,02 1,56 -1,54 -1,51 1,50 

TOJ Madrid-Torrejon -1,08 -0,45 -1,54 0,31 0,60 1,43 2,26 0,75 -1,66 

AGP Malaga 0,30 -1,55 1,49 0,36 -0,97 0,29 -1,15 -0,34 1,32 

MLN Melilla -0,62 1,17 -0,84 -1,19 -0,95 -1,66 -0,03 -1,12 -0,92 

MAH Menorca -0,16 -0,43 -0,84 -0,06 -0,09 -0,79 1,54 0,72 -1,00 

MJV Murcia -0,11 -1,07 -0,57 1,55 -0,84 -0,87 1,20 0,88 -0,35 

PMI Palma de Mallorca 1,73 -0,57 1,68 1,06 -0,04 1,58 -1,57 -1,52 1,53 

PNA Pamplona -0,78 0,84 -0,10 -1,50 -0,45 -1,29 0,72 -0,11 -0,29 

REU Reus -0,17 -0,27 -0,25 -0,45 0,02 -1,14 0,96 1,72 -0,60 

QSA Sabadell 1,38 -0,51 1,62 1,63 -0,64 1,43 -1,45 -1,20 1,44 

SLM Salamanca -0,92 -0,25 -0,48 -0,89 0,06 -0,84 -0,97 1,98 -0,83 

EAS San Sebastian -0,15 1,16 -0,23 -0,97 -0,31 -0,59 -0,66 -1,16 0,41 

SDR Santander -0,23 0,05 -0,46 1,15 -0,43 -0,38 0,85 0,06 -0,24 

SCQ Santiago Compost -0,37 -0,68 -0,45 -0,89 -0,39 -1,19 0,55 0,86 -0,83 

SVQ Sevilla 1,63 -0,26 1,05 0,98 1,36 0,62 -1,15 -0,96 0,98 

TFN Tenerife Norte 0,29 -1,40 0,80 1,02 0,95 0,10 -0,21 -0,53 0,56 

TFS Tenerife Sur 1,42 -0,99 0,33 1,04 -0,77 0,40 -0,23 -0,06 0,44 

VLC Valencia 0,74 -0,90 1,38 0,75 0,31 0,43 -1,33 -0,23 0,94 

VLL Valladolid -0,85 0,13 -0,81 -1,25 -0,10 -1,66 0,55 0,08 -0,97 

VGO Vigo -0,47 0,36 -0,66 -1,03 -0,23 -1,65 1,03 0,62 -1,28 

VIT Vitoria 0,32 0,94 0,24 -0,96 3,38 0,75 0,07 -0,45 0,80 

ZAZ Zaragoza -0,04 -0,13 0,02 -0,20 4,05 0,22 0,08 -0,12 0,14 
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Table 5. End points of normalised ProFit vectors. 

Model 𝜷𝟏
∗  𝜷𝟐

∗  𝜷𝟑
∗  𝜷𝟒

∗  𝜷𝟓
∗  𝜷𝟔

∗  𝜷𝟕
∗  𝜷𝟖

∗  𝜷𝟗
∗  R2 

ABCD12345 -0,230 0,057 0,137 0,386 0,228 0,194 -0,301 -0,155 0,756 0,519 

ABCD12 0,388 -0,403 -0,020 0,740 -0,161 -0,211 -0,241 -0,070 -0,078 0,820 

ABCD2 0,092 -0,540 0,420 0,522 -0,138 0,303 -0,278 -0,223 -0,115 0,800 

ABCD2345 -0,222 -0,016 0,206 0,134 0,241 0,399 -0,307 -0,212 0,731 0,544 

ABCD234 0,364 -0,598 0,367 0,352 0,483 0,062 0,013 -0,044 0,109 0,863 

ABCD235 -0,460 0,195 0,417 -0,056 0,288 0,400 -0,134 -0,329 0,453 0,586 

ABCD245 -0,033 0,034 0,113 0,333 -0,391 0,316 -0,447 -0,183 0,623 0,537 

ABCD23 -0,052 -0,386 0,552 0,193 0,577 0,356 -0,010 -0,200 0,078 0,856 

ABCD24 0,437 -0,625 0,150 0,563 -0,168 -0,029 -0,214 -0,028 -0,061 0,859 

ABCD25 -0,378 0,270 0,411 0,083 -0,198 0,407 -0,264 -0,379 0,436 0,539 

ABC12345 -0,196 0,096 0,149 0,499 0,280 0,219 -0,321 0,043 0,670 0,548 

ABC1234 0,389 -0,428 0,223 0,599 0,464 -0,172 -0,020 -0,064 0,090 0,833 

ABC1235 -0,096 0,324 0,116 0,582 0,369 0,198 -0,308 0,007 0,513 0,523 

ABC1245 -0,051 0,087 0,038 0,652 -0,290 0,128 -0,441 0,059 0,515 0,545 

ABC123 0,468 -0,213 0,137 0,655 0,502 -0,176 -0,039 -0,059 0,001 0,820 

ABC124 0,399 -0,445 0,014 0,718 -0,145 -0,218 -0,226 -0,048 -0,069 0,840 

ABC125 0,050 0,307 0,002 0,731 -0,201 0,111 -0,426 0,020 0,367 0,498 

ABC12 0,457 -0,267 -0,063 0,758 -0,104 -0,218 -0,243 -0,046 -0,146 0,809 

ABC2 0,218 -0,393 0,375 0,632 -0,073 0,269 -0,305 -0,199 -0,217 0,786 

ABC2345 -0,192 0,068 0,274 0,296 0,308 0,400 -0,328 -0,011 0,658 0,565 

ABC234 0,418 -0,547 0,356 0,375 0,500 0,043 -0,012 -0,014 0,077 0,862 

ABC235 -0,367 0,365 0,455 0,148 0,395 0,395 -0,146 -0,179 0,371 0,591 

ABC245 -0,025 0,082 0,161 0,503 -0,324 0,311 -0,483 0,015 0,529 0,553 

ABC23 0,063 -0,258 0,524 0,289 0,652 0,334 -0,030 -0,183 -0,010 0,859 

ABC24 0,477 -0,578 0,140 0,577 -0,148 -0,045 -0,235 -0,003 -0,087 0,855 

ABC25 -0,315 0,399 0,442 0,358 -0,076 0,418 -0,254 -0,053 0,412 0,523 

ABD12345 -0,332 -0,090 0,380 0,264 0,181 0,304 -0,145 -0,091 0,716 0,497 

ABD1234 0,308 -0,615 0,284 0,494 0,420 -0,046 0,055 -0,060 0,131 0,828 

ABD1235 -0,352 0,004 0,419 0,255 0,222 0,321 -0,134 -0,135 0,669 0,478 

ABD1245 -0,160 -0,073 0,279 0,455 -0,418 0,227 -0,283 -0,072 0,611 0,510 

ABD123 0,336 -0,542 0,266 0,538 0,461 -0,039 0,045 -0,058 0,118 0,809 

ABD124 0,349 -0,615 0,057 0,642 -0,196 -0,115 -0,169 -0,048 -0,040 0,851 

ABD125 -0,192 0,028 0,331 0,459 -0,401 0,251 -0,273 -0,125 0,573 0,480 

ABD12 0,362 -0,550 0,020 0,684 -0,203 -0,112 -0,195 -0,049 -0,068 0,828 

ABD2 -0,014 -0,582 0,440 0,484 -0,162 0,333 -0,223 -0,198 -0,086 0,796 

ABD2345 -0,420 -0,055 0,477 0,140 0,169 0,369 -0,120 -0,125 0,616 0,533 

ABD234 0,222 -0,650 0,419 0,352 0,441 0,105 0,048 -0,020 0,141 0,842 

ABD235 -0,519 0,130 0,556 -0,040 0,235 0,371 -0,019 -0,253 0,382 0,572 

ABD245 -0,268 -0,022 0,417 0,326 -0,392 0,323 -0,258 -0,112 0,557 0,542 

ABD23 -0,133 -0,406 0,581 0,178 0,518 0,377 0,023 -0,177 0,077 0,830 

ABD24 0,318 -0,686 0,198 0,562 -0,199 0,015 -0,180 -0,010 -0,030 0,855 

ABD25 -0,461 0,189 0,581 0,086 -0,194 0,378 -0,116 -0,288 0,360 0,534 

ACD12345 -0,023 0,247 0,040 -0,007 0,314 0,399 -0,545 -0,398 0,473 0,569 

ACD1234 0,287 -0,447 0,233 0,356 0,597 0,186 -0,246 -0,293 -0,002 0,829 

ACD1235 -0,136 0,280 0,147 -0,053 0,346 0,406 -0,440 -0,446 0,449 0,571 

ACD1245 0,154 0,275 -0,043 0,167 -0,300 0,306 -0,651 -0,371 0,354 0,544 

ACD123 0,226 -0,410 0,287 0,330 0,634 0,204 -0,189 -0,331 0,015 0,825 

ACD124 0,435 -0,098 0,631 -0,362 0,301 -0,258 0,304 -0,142 0,047 0,053 

ACD125 0,033 0,332 0,072 0,129 -0,272 0,340 -0,586 -0,453 0,360 0,534 

ACD12 0,333 -0,457 0,043 0,581 -0,194 0,077 -0,426 -0,291 -0,178 0,784 

ACD2 0,192 -0,486 0,332 0,473 -0,155 0,360 -0,328 -0,314 -0,182 0,818 

ACD2345 0,064 0,241 0,122 -0,122 0,302 0,480 -0,493 -0,373 0,451 0,572 

ACD234 0,358 -0,468 0,346 0,208 0,562 0,297 -0,181 -0,226 -0,047 0,872 

ACD235 -0,289 0,340 0,336 -0,104 0,318 0,440 -0,237 -0,390 0,419 0,583 

ACD245 0,206 0,194 -0,036 0,117 -0,405 0,354 -0,655 -0,336 0,271 0,525 

ACD23 0,014 -0,296 0,557 0,147 0,581 0,405 -0,023 -0,278 0,004 0,866 

ACD24 0,452 -0,510 0,128 0,450 -0,196 0,172 -0,400 -0,201 -0,219 0,846 

ACD25 -0,165 0,409 0,303 0,040 -0,228 0,428 -0,380 -0,438 0,375 0,540 

AC12345 0,069 0,428 0,029 0,218 0,442 0,379 -0,548 -0,186 0,300 0,591 

AC1234 0,388 -0,284 0,195 0,416 0,638 0,137 -0,254 -0,244 -0,088 0,846 

AC1235 -0,039 0,514 0,114 0,218 0,505 0,355 -0,429 -0,225 0,243 0,582 

AC1245 0,218 0,428 -0,064 0,391 -0,142 0,292 -0,667 -0,167 0,183 0,537 

AC123 0,326 -0,182 0,231 0,427 0,695 0,136 -0,191 -0,274 -0,106 0,837 

AC124 0,453 -0,325 -0,019 0,609 -0,129 0,023 -0,446 -0,204 -0,244 0,799 
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Model 𝜷𝟏
∗  𝜷𝟐

∗  𝜷𝟑
∗  𝜷𝟒

∗  𝜷𝟓
∗  𝜷𝟔

∗  𝜷𝟕
∗  𝜷𝟖

∗  𝜷𝟗
∗  R2 

AC125 0,117 0,556 0,022 0,412 -0,049 0,295 -0,588 -0,226 0,142 0,499 

AC12 0,423 -0,254 0,007 0,659 -0,087 0,023 -0,419 -0,245 -0,279 0,762 

AC2 0,297 -0,222 0,367 0,600 -0,047 0,292 -0,306 -0,279 -0,330 0,789 

AC2345 0,138 0,455 0,154 0,141 0,438 0,443 -0,490 -0,154 0,279 0,594 

AC234 0,448 -0,321 0,314 0,275 0,610 0,251 -0,192 -0,187 -0,125 0,887 

AC235 -0,139 0,578 0,318 0,175 0,466 0,382 -0,247 -0,180 0,241 0,589 

AC245 0,289 0,462 0,064 0,325 -0,160 0,362 -0,625 -0,139 0,166 0,543 

AC23 0,133 -0,106 0,506 0,263 0,670 0,351 -0,036 -0,246 -0,110 0,878 

AC24 0,533 -0,377 0,102 0,505 -0,132 0,133 -0,405 -0,166 -0,285 0,844 

AC25 -0,015 0,658 0,274 0,367 -0,041 0,359 -0,402 -0,196 0,164 0,505 

AD12345 -0,317 0,087 0,455 -0,231 0,030 0,570 -0,177 -0,412 0,323 0,450 

AD1234 0,008 -0,614 0,413 0,256 0,334 0,442 -0,072 -0,271 -0,033 0,776 

AD1235 -0,357 0,110 0,469 -0,209 0,057 0,550 -0,154 -0,402 0,326 0,450 

AD1245 -0,179 0,112 0,441 -0,128 -0,450 0,508 -0,221 -0,404 0,267 0,493 

AD123 -0,022 -0,591 0,430 0,271 0,360 0,437 -0,049 -0,261 -0,006 0,778 

AD124 0,132 -0,615 0,231 0,439 -0,350 0,306 -0,240 -0,240 -0,166 0,819 

AD125 -0,228 0,137 0,464 -0,110 -0,420 0,498 -0,201 -0,402 0,275 0,487 

AD12 0,108 -0,609 0,251 0,465 -0,338 0,308 -0,226 -0,236 -0,146 0,814 

AD2 -0,009 -0,491 0,475 0,356 -0,286 0,419 -0,146 -0,317 -0,165 0,795 

AD2345 -0,340 0,182 0,518 -0,204 0,029 0,533 -0,120 -0,393 0,296 0,460 

AD234 -0,048 -0,531 0,512 0,161 0,320 0,496 -0,031 -0,276 -0,041 0,788 

AD235 -0,414 0,238 0,529 -0,153 0,088 0,481 -0,064 -0,380 0,285 0,464 

AD245 -0,214 0,208 0,510 -0,108 -0,419 0,478 -0,160 -0,386 0,246 0,505 

AD23 -0,133 -0,405 0,581 0,133 0,367 0,486 0,030 -0,303 -0,024 0,782 

AD24 0,081 -0,572 0,358 0,362 -0,342 0,387 -0,202 -0,262 -0,174 0,828 

AD25 -0,311 0,272 0,541 -0,066 -0,334 0,446 -0,104 -0,387 0,247 0,493 

BCD12345 0,084 -0,060 0,192 0,080 0,195 0,262 -0,173 -0,141 0,889 0,508 

BCD1234 0,693 -0,437 0,229 0,166 0,324 -0,201 0,087 0,080 0,298 0,871 

BCD1235 0,081 0,036 0,216 0,070 0,258 0,281 -0,184 -0,197 0,850 0,492 

BCD1245 0,257 -0,028 0,084 0,272 -0,444 0,161 -0,300 -0,106 0,727 0,514 

BCD123 0,732 -0,361 0,195 0,202 0,364 -0,203 0,056 0,078 0,269 0,856 

BCD124 0,711 -0,476 0,049 0,353 -0,198 -0,254 -0,113 0,079 0,137 0,885 

BCD125 0,260 0,069 0,109 0,279 -0,427 0,182 -0,319 -0,170 0,701 0,486 

BCD12 0,729 -0,412 0,002 0,397 -0,192 -0,256 -0,156 0,073 0,096 0,860 

BCD2 0,539 -0,539 0,486 0,260 -0,189 0,169 -0,200 -0,043 0,100 0,866 

BCD2345 0,009 -0,040 0,285 -0,039 0,217 0,383 -0,200 -0,198 0,802 0,549 

BCD234 0,649 -0,476 0,350 0,069 0,356 -0,058 0,087 0,110 0,275 0,909 

BCD235 -0,327 0,157 0,469 -0,187 0,282 0,398 -0,065 -0,329 0,513 0,580 

BCD245 0,215 0,013 0,187 0,161 -0,436 0,295 -0,341 -0,167 0,687 0,547 

BCD23 0,315 -0,371 0,592 -0,036 0,532 0,236 0,061 -0,045 0,258 0,905 

BCD24 0,723 -0,526 0,176 0,275 -0,188 -0,131 -0,113 0,116 0,125 0,916 

BCD25 -0,213 0,231 0,478 -0,070 -0,233 0,409 -0,189 -0,385 0,512 0,536 

BC12345 0,237 -0,086 0,249 0,118 0,291 0,230 -0,144 0,086 0,834 0,524 

BC1234 0,710 -0,407 0,206 0,166 0,352 -0,221 0,066 0,103 0,270 0,865 

BC1235 0,354 0,169 0,211 0,235 0,424 0,223 -0,151 0,043 0,701 0,493 

BC1245 0,392 -0,093 0,121 0,327 -0,363 0,133 -0,302 0,103 0,682 0,520 

BC123 0,781 -0,235 0,131 0,249 0,405 -0,226 0,037 0,095 0,176 0,849 

BC124 0,726 -0,455 0,032 0,350 -0,164 -0,272 -0,131 0,101 0,116 0,873 

BC125 0,523 0,160 0,075 0,454 -0,271 0,123 -0,317 0,059 0,545 0,465 

BC12 0,773 -0,301 -0,048 0,428 -0,124 -0,274 -0,165 0,090 0,023 0,839 

BC2 0,684 -0,398 0,419 0,346 -0,093 0,115 -0,238 -0,005 -0,007 0,846 

BC2345 0,137 -0,029 0,414 0,024 0,316 0,327 -0,166 0,037 0,757 0,553 

BC234 0,663 -0,438 0,341 0,078 0,387 -0,087 0,059 0,148 0,252 0,903 

BC235 -0,099 0,300 0,564 -0,077 0,446 0,373 -0,035 -0,175 0,454 0,561 

BC245 0,344 -0,019 0,303 0,246 -0,360 0,245 -0,343 0,063 0,646 0,542 

BC23 0,445 -0,245 0,537 0,032 0,621 0,192 0,034 -0,014 0,168 0,911 

BC24 0,737 -0,498 0,167 0,281 -0,152 -0,159 -0,140 0,151 0,105 0,903 

BC25 0,061 0,397 0,612 0,110 -0,126 0,389 -0,202 -0,210 0,446 0,486 

BD12345 -0,137 -0,097 0,477 0,120 0,152 0,265 -0,024 -0,073 0,795 0,508 

BD1234 0,620 -0,497 0,305 0,189 0,308 -0,155 0,125 0,112 0,304 0,864 

BD1235 -0,166 -0,023 0,511 0,101 0,201 0,285 -0,024 -0,122 0,751 0,491 

BD1245 0,035 -0,077 0,381 0,312 -0,460 0,185 -0,161 -0,049 0,690 0,527 

BD123 0,649 -0,442 0,288 0,223 0,350 -0,152 0,106 0,110 0,287 0,845 

BD124 0,647 -0,539 0,116 0,377 -0,225 -0,213 -0,081 0,108 0,144 0,894 

BD125 0,012 0,001 0,430 0,305 -0,444 0,213 -0,162 -0,112 0,664 0,497 
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Model 𝜷𝟏
∗  𝜷𝟐

∗  𝜷𝟑
∗  𝜷𝟒

∗  𝜷𝟓
∗  𝜷𝟔

∗  𝜷𝟕
∗  𝜷𝟖

∗  𝜷𝟗
∗  R2 

BD12 0,665 -0,492 0,075 0,421 -0,227 -0,213 -0,119 0,100 0,108 0,871 

BD2 0,410 -0,602 0,522 0,254 -0,218 0,208 -0,160 -0,026 0,123 0,861 

BD2345 -0,250 -0,087 0,552 -0,014 0,143 0,354 -0,022 -0,105 0,684 0,544 

BD234 0,526 -0,539 0,427 0,087 0,333 -0,027 0,121 0,138 0,312 0,883 

BD235 -0,403 0,086 0,601 -0,162 0,226 0,368 0,046 -0,249 0,438 0,577 

BD245 -0,078 -0,057 0,501 0,162 -0,435 0,306 -0,154 -0,090 0,632 0,559 

BD23 0,202 -0,426 0,619 -0,035 0,491 0,265 0,089 -0,030 0,271 0,882 

BD24 0,613 -0,598 0,249 0,298 -0,227 -0,103 -0,083 0,144 0,161 0,907 

BD25 -0,321 0,140 0,642 -0,057 -0,223 0,378 -0,042 -0,286 0,430 0,544 

CD12345 0,573 0,191 0,145 -0,420 0,195 0,235 -0,324 -0,312 0,378 0,613 

CD1234 0,759 -0,244 0,254 -0,212 0,401 0,117 -0,196 -0,110 0,171 0,890 

CD1235 0,470 0,215 0,236 -0,452 0,242 0,249 -0,279 -0,360 0,381 0,610 

CD1245 0,696 0,224 0,062 -0,255 -0,296 0,148 -0,387 -0,269 0,255 0,608 

CD123 0,724 -0,220 0,307 -0,220 0,441 0,126 -0,169 -0,139 0,163 0,890 

CD124 0,856 -0,254 0,072 0,015 -0,235 0,022 -0,364 -0,092 0,004 0,878 

CD125 0,630 0,260 0,156 -0,294 -0,280 0,168 -0,369 -0,328 0,273 0,592 

CD12 0,853 -0,244 0,118 0,019 -0,229 0,027 -0,362 -0,120 -0,009 0,865 

CD2 0,771 -0,230 0,442 0,100 -0,235 0,138 -0,257 -0,077 0,034 0,906 

CD2345 0,562 0,212 0,206 -0,410 0,201 0,251 -0,302 -0,299 0,380 0,618 

CD234 0,742 -0,228 0,357 -0,190 0,402 0,152 -0,149 -0,073 0,148 0,925 

CD235 0,191 0,309 0,427 -0,396 0,283 0,292 -0,162 -0,365 0,453 0,598 

CD245 0,691 0,245 0,121 -0,246 -0,299 0,164 -0,370 -0,258 0,259 0,613 

CD23 0,521 -0,167 0,581 -0,152 0,489 0,223 -0,021 -0,080 0,210 0,925 

CD24 0,861 -0,246 0,175 0,032 -0,231 0,056 -0,326 -0,060 -0,016 0,919 

CD25 0,403 0,378 0,368 -0,272 -0,273 0,234 -0,279 -0,371 0,375 0,573 

C12345 0,673 0,397 0,076 -0,235 0,373 0,128 -0,355 -0,115 0,185 0,606 

C1234 0,826 0,008 0,126 -0,130 0,477 0,056 -0,211 -0,096 0,024 0,880 

C1235 0,606 0,456 0,129 -0,221 0,437 0,125 -0,329 -0,136 0,161 0,594 

C1245 0,780 0,389 0,004 -0,100 -0,080 0,063 -0,448 -0,102 0,097 0,552 

C123 0,797 0,082 0,148 -0,092 0,527 0,045 -0,189 -0,109 -0,014 0,871 

C124 0,905 -0,053 -0,020 0,070 -0,101 -0,026 -0,377 -0,088 -0,110 0,825 

C125 0,744 0,464 0,057 -0,086 -0,025 0,060 -0,441 -0,128 0,074 0,518 

C12 0,901 0,017 -0,002 0,113 -0,058 -0,037 -0,370 -0,103 -0,153 0,787 

C2 0,880 0,069 0,257 0,208 -0,044 0,044 -0,287 -0,055 -0,148 0,846 

C2345 0,640 0,452 0,187 -0,205 0,382 0,133 -0,314 -0,092 0,198 0,607 

C234 0,809 0,026 0,240 -0,107 0,486 0,090 -0,162 -0,065 0,014 0,922 

C235 0,460 0,562 0,313 -0,155 0,472 0,141 -0,228 -0,108 0,211 0,581 

C245 0,762 0,448 0,111 -0,067 -0,086 0,066 -0,415 -0,081 0,106 0,556 

C23 0,678 0,134 0,388 -0,032 0,589 0,127 -0,066 -0,055 0,017 0,924 

C24 0,915 -0,037 0,088 0,095 -0,102 0,006 -0,340 -0,060 -0,125 0,876 

C25 0,632 0,605 0,263 -0,018 -0,014 0,081 -0,360 -0,107 0,130 0,498 

D12345 0,289 0,242 0,556 -0,405 -0,302 0,294 0,037 -0,328 0,313 0,534 

D1234 0,597 -0,318 0,593 -0,178 -0,092 0,317 0,087 -0,181 0,095 0,892 

D1235 0,265 0,253 0,571 -0,399 -0,289 0,292 0,045 -0,332 0,316 0,530 

D1245 0,311 0,224 0,521 -0,356 -0,440 0,274 -0,007 -0,327 0,281 0,553 

D123 0,598 -0,303 0,604 -0,166 -0,080 0,318 0,094 -0,185 0,089 0,892 

D124 0,615 -0,350 0,466 -0,043 -0,431 0,253 -0,034 -0,171 0,002 0,923 

D125 0,287 0,236 0,538 -0,351 -0,429 0,273 0,001 -0,332 0,284 0,549 

D12 0,618 -0,336 0,476 -0,030 -0,425 0,254 -0,029 -0,176 -0,005 0,922 

D2 0,567 -0,323 0,549 -0,023 -0,410 0,260 -0,005 -0,190 -0,001 0,910 

D2345 0,233 0,248 0,586 -0,397 -0,290 0,298 0,050 -0,324 0,320 0,532 

D234 0,571 -0,306 0,626 -0,172 -0,084 0,317 0,099 -0,179 0,099 0,889 

D235 0,141 0,278 0,629 -0,378 -0,239 0,295 0,076 -0,338 0,316 0,519 

D245 0,258 0,232 0,553 -0,350 -0,429 0,280 0,007 -0,324 0,290 0,551 

D23 0,523 -0,280 0,675 -0,160 -0,048 0,319 0,123 -0,195 0,095 0,884 

D24 0,597 -0,342 0,497 -0,038 -0,428 0,255 -0,024 -0,172 0,005 0,920 

D25 0,167 0,264 0,604 -0,334 -0,382 0,281 0,035 -0,342 0,288 0,534 
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