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Abstract
A second-order closed-form semi-analytical solution of the main problem of the 
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version. The short-period terms are removed by means of an extension of the Lie-
Deprit method using Delaunay variables. The averaged equations of motion are 
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sion of the DSST orbit propagator.
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1  Introduction

The Draper Semi-analytic Satellite Theory (DSST) orbit propagator can be found 
in two forms, as an option within the Massachusetts Institute of Technology version 
of the Goddard Trajectory Determination System (GTDS) computer program [1, 2], 
and as the DSST Standalone orbit propagator package [3–7].

The original implementations of the DSST, both in GTDS and in the Standalone 
versions, were done in Fortran 77 (F77). Between 2012 and 2015, the DSST was 
re-implemented in Java and included in the Orekit flight dynamics library [5, 6]. 
During the same time frame, the University of La Rioja provided web access to 
the F77 DSST Standalone via a friendly and intuitive interface [8]. In 2016, Setty 
[7] extended the F77-DSST-Standalone force models, state-transition matrix, and 
dynamic-parameter partial derivatives to provide the F77-DSST Standalone with 
orbit determination capability. More recently, the migration of the F77-DSST Stan-
dalone code to C/C++ has been done at the University of La Rioja [9, 10].

The theory underlying DSST makes use of the non-singular equinoctial elements 
and is based on the generalized method of averaging [11–13]. The Lagrange Plan-
etary equations are used for handling the conservative terms, 50 × 50 gravity fields 
(M-daily, tesseral resonance and approximate solution of the second-order effect 
in J2 , J22 , based on eccentricity expansions), lunar-solar point masses, and the solid 
Earth tides, whereas the Gauss equations are used for the atmospheric drag and the 
solar radiation pressure (SRP).

In particular, the J2
2
 effect was formulated by Zeis [14] in DSST. This author 

developed an approximate second-order solution as a power series of the eccentric-
ity in J2 for mean-element and short-periodic motions. This analytical model was 
implemented with the help of the computer algebra system, Macsyma. Latter, Fisher 
[15] described the computational procedure required to obtain the J2

2
 effect in closed 

form. This author proposed two alternatives methods for completing this effect: first, 
using numerical quadratures and, second, symbolically expanding and manipulat-
ing all the mathematical expressions. Unfortunately, time and computer constraints 
prevented obtaining the full second-order effect. Recently, Folcik and Cefola [16] 
ported this code to Maxima, the open-source descendant of Macsyma, to calculate 
the integrant of the mean element rate expressions. The averaged process was car-
ried out using Gauss-Kronrod numerical quadrature. These authors also performed 
a detailed numerical comparison between Zeis and their numerical model. Finally, 
they concluded with the necessity of developing an analytical closed-form model to 
replace the numerical quadrature process and, so, improve the speed of evaluating 
the theory.

To obtain the closed-form averaged equations and the mean-to-osculating trans-
formation, we propose an alternative method to build fully second-order closed-
form analytical expressions for the J2

2
 contribution based on the Lie-transform 

method [17–21] and canonical variables consistent with the DSST orbit propagator. 
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The main difference between the Lie transform method and the generalized method 
of averaging is regarded more as a matter of the algorithm than the underlying idea. 
In fact, both methods are connected through an integration constant [22, 23]. It is 
worth noting that the Lie transform method allows us to obtain the transformations 
from osculating-to-mean and mean-to-osculating elements simultaneously from the 
generating function.

The main characteristic observed in the application of the generalized method of 
averaging in the zonal problem in DSST can be found in the calculation of the zonal 
harmonic short-periodic generator in DSST [24] to which must be added an integra-
tion constant to guarantee that the short-period terms do not contain any long-period 
terms. The equivalent approach is followed by Kozai [25] using Von Zeipel method 
[26].

In this work, we present a second-order semi-analytical theory for the J2 problem 
to remove the short-period terms from the equations of motion using Hamiltonian 
formalism, an extension of the Lie-Deprit method [27], which is implemented in 
MathATESAT [28], and Delaunay variables. The resultant theory is equivalent to 
the elimination of mean anomaly in Kozai [25]. Then, the equations of motion are 
expressed in equinoctial elements. After that, the transformed equations of motion 
are analytically and numerically validated. Finally, the Mathematica expressions are 
migrated to C and included in DSST C.

2 � On the J2 Problem and its Normalization

Extensive investigations dealing with the J2 problem, or classically called the main 
problem of artificial satellite theory, have been done since Brouwer’s work [29]. In 
this section, we present a semi-analytical theory equivalent to the first canonical 
transformation described in Kozai [25] using an extension of the Lie-Deprit method.

The J2 problem is defined as a Kepler problem perturbed by Earths oblateness. 
The Hamiltonian of this dynamical system can be written in a cartesian coordinate 
system ( � , � ) as

where r = ‖�‖ =
√
x2 + y2 + z2 , � is the satellite velocity, � is the gravitational 

constant, � the equatorial radius of the Earth, J2 the oblateness coefficient and P2 the 
second-degree Legendre polynomial.

The first step to carry out the analytical transformation consists of expressing the 
Hamiltonian (1) in terms of Delaunay variables (�, g, h, L,G,H) [30, 31]. This set of 
canonical action-angle variables can be defined in terms of the orbital elements such 
as

(1)H =
1

2
(� ⋅ �) −

�

r

[
1 − J2

(
�

r

)2

P2

(
z

r

)]
,
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where M, � , Ω , a, e, i are the mean anomaly, argument of the perigee, longitude 
of the ascending node, semi-major axis, eccentricity and inclination, respectively. 
Then, the transformed Hamiltonian is given by

where

where � = J2 is a small parameter, s = sin i and f is the true anomaly. To avoid any 
ambiguity in the notation between Delaunay variable and the equinoctial elements 
(a, h, k, p, q, �) , we use Ω instead of h to refer to the argument of the node in Delau-
nay variables.

Next, we normalize the Hamiltonian (3) by applying the Lie transform 
� ∶ (�, g, h,L,G,H) → (��, g�, h�,L�,G�,H�) , the so-called Delaunay Normalization 
[32], using the Extended Lie-Deprit method [27]. This perturbation method is based 
on transforming the analytic Hamiltonian function

into the new one

which satisfies some specific prerequisites. The double index notation in the Ham-
iltonian is introduced to simplify the automatization of this algorithm. As well as 
the Lie-Deprit method [18], the extended method looks for a generating function 
Wn =

∑
n≥0 �n

n!
Wn+1 of � so that the terms Hn , Kn and Wn verify the partial differen-

tial equation, called the Homological Equation,

where LH0
 is the Lie operator associated with H0 , a linear operator given in terms of 

a Poisson bracket.

(2)
� = M,

g = �,

h = Ω,

L =
√
�a,

G =
√
�a(1 − e2),

H =
√
�a(1 − e2) cos i,

(3)H = H0 + �H1,

(4)H0 = −
�2

2L2
,

(5)H1 =
�

2r

(
�

r

)2

(3s2 sin2(f + g) − 1).

(6)H =
∑

n≥0
�n

n!
Hn ≡

∑

n≥0
�n

n!
Hn0

(7)K =
∑

n≥0
�n

n!
Kn ≡

∑

n≥0
�n

n!
H0n

(8)LH0
(Wn) +Kn = H̃0 n



1296	 The Journal of the Astronautical Sciences (2022) 69:1292–1318

1 3

The right-hand side of the homological equation, H̃0,n , is computed from Hn , 
(Wi)1≤i≤n−1 and (Hp,q)p+q≤n−1 , where the latter are obtained by means of the recur-
sive formula

with i ≥ 0 and j ≥ 0 and { , } represents the Poisson bracket (for more details, see 
[18]). On the other hand, Cn is an arbitrary integration function which can depend on 
(_, g�, h�, L�,G�,H�).

In this case, the Lie operator is defined from the zero order Hamiltonian H0 as 
LH0

= n �∕��� , where n = �2∕L�3 is the mean motion. On the other hand, the solu-
tion of the homological equation is obtained as

where Cn , in accordance with Kozai’s work, is chosen to remove the long-period 
terms contained in the generating function and is given by

This semi-analytical theory inherits the intrinsic singularities of the Delaunay varia-
bles for the eccentricity, e = 0 , and for the inclination, i = 0,� . However, the critical 
inclination is not a problem in the present theory as DSST because perigee’s motion 
remains in the equation of motion. In the remainder of this paper, we shall drop the 
primes on the transformed variables to alleviate the notation.

After this summary, we briefly outline the operations that accomplished the 
elimination of the short period terms using the extended Lie-Deprit method, 
which up to first-order reads

Using Eq. (10), we obtain the first-order transformed Hamiltonian as the average 
over the fastest angle �:

(9)Hi,j = Hi+1,j−1 +

i∑

k=0

(
i

k

){
Hi−k,j−1,Wk+1

}

(10)Kn =
1

2� ∫
2�

0

H̃0 nd�
�,

(11)Wn =∫ (H̃0 n −Kn)d�
� + Cn,

(12)Cn =
1

2� ∫
2�

0

Wnd�
�.

(13)K0 =H0,

(14)K1 =H1 −
�2

L3

�W1

��
.

(15)K1 = �
�2

L2

(
�2�2

G4

)(
3

4
s2 −

1

2

)
,
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whereas Eq. (11) provides the first-order term of the generating function:

where � =
√
1 − e2 and � = f − l is the equation of center. Finally, the arbitrary 

integration function is chosen to be

Following the same process, we have that the second-order homological equation is

where in this case H2 = 0 . Using Eq. (10), the second-order transformed Hamilto-
nian is given as

where the coefficients Pi,2k

are polynomials in s and � . The expression of W2 is included in the Appendix A 
where the arbitrary integration function is

where the coefficients Ci
2
 are polynomials in � and are given by

The direct and inverse transformations of the Lie transform � are obtained from the 
generating functions W1 and W2 using the classical recurrent algorithms [18–20]. 

(16)

W1 =
�2�2

8�3L3

[
2
(
3s2 − 2

)
� + 2e

(
3s2 − 2

)
sin f

−3s2 sin(2f + 2g) − 3es2 sin(f + 2g)

−es2 sin(3f + 2g) −
(� − 1)(2� + 1)s2

� + 1
sin 2g

]
,

(17)C1 = −
�2�2(� − 1)(2� + 1)s2

8�3(� + 1)L3
sin 2g.

(18)LH0
(W2) +K2 = {H1 +K1,W1} +H2,

(19)K2 = �
�2

L2

(
�2�2

G4

)2 ∑

0≤2k≤2
Pi,2k(s

2, �) cos 2kg

P2,0 = −
105

64
s4 +

15

4
s2 −

15

8
−
(
27

16
s4 −

9

4
s2 +

3

4

)
�

−
(
15

64
s4 +

3

8
s2 −

3

8

)
�2,

P2,2 =
(
45

32
s4 −

21

16
s2
)
(�2 − 1) +

3

8
s2
(
5s2 − 4

) (� − 1)(2� + 1)

� + 1
,

(20)C2 =
�4�4

256�7(� + 1)L7

[
2s2

(
C1

2
+ C2

2
s2
)
sin 2g − 3C3

2
s4 sin 4g

]
,

C1

2
=456�4 + 510�3 + 338�2 − 382� − 538,

C2

2
= − 540�4 − 591�3 − 397�2 + 407� + 641,

C3

2
=3(� − 1)2(3� + 7).
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It is worth noting that both transformations expressed in Delaunay variables suffer 
from the inclusion of the eccentricity in the denominator. Their explicit expressions 
are not provided here due to a large number of terms.

Finally, Hamilton’s equations, the partial derivatives of the Hamiltonian (19) with 
respect to the new variables, provide the equations of motion as

The first-order coefficients Δ�,g,Ω

1
 are expressed by

where c represents the cosine of the inclination. On the other hand, the second-order 
coefficients Δ�,g,Ω,G

2
 are

where the polynomials P̄�,g,Ω,G

2,i
 depend on s2 , � and are given by

(21)

d�

dt
=
�K

�L
=

�2

L3
+ �Δ�

1
+

�2

2
Δ�

2
,

dg

dt
=
�K

�G
= �Δ

g

1
+

�2

2
Δ

g

2
,

dΩ

dt
=
�K

�H
= �ΔΩ

1
+

�2

2
ΔΩ

2
,

dL

dt
= −

�K

��
= 0,

dG

dt
= −

�K

�g
=

�2

2
ΔG

2
,

dH

dt
= −

�K

�h
= 0.

(22)

Δ�

1
= −

3

4

�2

L3

(
�2�2

G4

)
(3s2 − 2)�,

Δ
g

1
= −

3

4

�2

L3

(
�2�2

G4

)
(5s2 − 4),

ΔΩ
1
= −

3

4

�2

L3

(
�2�2

G4

)
c,

(23)

Δ�

2
=

3

64

𝜇2

L3

(
𝛼2𝜇2

G4

)2

𝜂

[
P̄�

2,0
−

2

(𝜂 + 1)2
P̄�

2,2
cos 2g

]
,

Δ
g

2
=

3

64

𝜇2

L3

(
𝛼2𝜇2

G4

)2 [
P̄
g

2,0
−

2

(𝜂 + 1)2
P̄
g

2,2
cos 2g

]
,

ΔΩ
2
=

3

16

𝜇2

L3

(
𝛼2𝜇2

G4

)2

c

[
P̄Ω
2,0

−
2(𝜂 − 1)

𝜂 + 1
P̄Ω
2,2

cos 2g

]
,

ΔG
2
=

3

16

𝜇2

L3

(
𝛼2𝜇2

G4

)2
𝜂(𝜂 − 1)

𝜂 + 1
s2P̄G

2,2
sin 2g,
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In order to include this theory in DSST, the transformations and equations of motion 
are formed in terms of the non-singular equinoctial element set.

3 � Mean Equinoctial Variational Equations

In this section, we derive the mean equinoctial variational equations from Ham-
ilton’s equations (21). The equinoctial elements [33] are defined in terms of the 
orbital elements as follows:

where I is called the retrograde factor. The factor I takes the value 1 for the direct 
equinoctial elements and -1 for the retrograde equinoctial elements, although direct 
orbits can include the range of inclination [0,�).

To derive the equinoctial equation of motion, we start by differentiating Eq. (25) 
with respect to time, the derivatives of the equinoctial elements can be written in 
terms of the orbital elements and their derivatives:

(24)

P̄�

2,0
=5

(
5s4 + 8s2 − 8

)
𝜂2 + 16

(
2 − 3s2

)2
𝜂 + 15

(
7s4 − 16s2 + 8

)
,

P̄�

2,2
=5s2

(
15s2 − 7

)
𝜂4 + 2s2

(
155s2 − 67

)
𝜂3 + 10s2

(
17s2 − 7

)
𝜂2

+ 30s2
(
3 − 7s2

)
𝜂 + 15s2

(
3 − 7s2

)
,

P̄
g

2,0
=
(
45s4 + 36s2 − 56

)
𝜂2 + 24

(
15s4 − 22s2 + 8

)
𝜂

+ 5
(
77s4 − 172s2 + 88

)
,

P̄
g

2,2
=
(
135s4 − 158s2 + 28

)
𝜂4 +

(
670s4 − 732s2 + 120

)
𝜂3

+ 2
(
55s4 − 66s2 + 16

)
𝜂2 − 10

(
77s4 − 82s2 + 12

)
𝜂

− 5
(
77s4 − 82s2 + 12

)
,

P̄Ω
2,0

=
(
5s2 + 4

)
𝜂2 +

(
36s2 − 24

)
𝜂 + 5

(
7s2 − 8

)
,

P̄Ω
2,2

=
(
15s2 − 7

)
𝜂2 +

(
70s2 − 30

)
𝜂 + 5

(
7s2 − 3

)
,

P̄G
2,2

=
(
15s2 − 14

)
𝜂2 +

(
70s2 − 60

)
𝜂 + 5

(
7s2 − 6

)
.

(25)
a = a,

h = e sin(� + IΩ),

k = e cos(� + IΩ),

p = tanI (i∕2) sinΩ,

q = tanI (i∕2) cosΩ,

� = M + � + IΩ,

(26)

da

dt
=
da

dt
,

dh

dt
=
h

e

de

dt
+ k

(
d�

dt
+ I

dΩ

dt

)
,

dk

dt
=
k

e

de

dt
− h

(
d�

dt
+ I

dΩ

dt

)
,

dp

dt
=
1

2
I sec2 (i∕2) tanI−1 (i∕2) sinΩ

di

dt
+ q

dΩ

dt
,

dq

dt
=
1

2
I sec2 (i∕2) tanI−1 (i∕2) cosΩ

di

dt
− p

dΩ

dt
,

d�

dt
=
dM

dt
+

d�

dt
+ I

dΩ

dt
.
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The derivatives on the right-hand sides of Eq. (26) are obtained in a straightforward 
manner by differentiating Eq. (2) with respect to time as

Then, considering mean elements in Eqs. (26 and 27) and using Hamilton’s equa-
tions Eq. (21), after some complex algebraic manipulation, we obtain the mean equi-
noctial variational equations as

where da∕dt = 0 and � represents the mean equinoctial elements (h, k, p, q, �) . It is 
worth noting that Eqs. (28) depend on the orbital elements a, e, i and �.

Finally, we will obtain Eqs (28) in equinoctial elements taking into account Eqs. 
(25) and the transformation from the equinoctial elements to the orbital elements 
given by

where � is an auxiliary angle, which is defined by:

The zero-order terms in equinoctial elements are Δ̄h
0
= Δ̄k

0
= Δ̄

p

0
= Δ̄

q

0
= 0 and 

Δ̄𝜆
0
= n where n =

√
�∕a3 is the mean motion. The first-order terms only depend on 

(27)

da

dt
=
2L

�

dL

dt
,

de

dt
=

1

eL

�
(1 − e2)

dL

dt
−
√
1 − e2

dG

dt

�
,

di

dt
=

1

G sin i

�
cos i

dG

dt
−

dH

dt

�
,

d�

dt
=
dg

dt
,
dM

dt
=

d�

dt
.

(28)d𝜎

dt
=

2∑

k=0

𝜀k

k!
Δ̄𝜎

k
,

(29)

a =a,

e =
√
h2 + k2,

i =�
�
1 − I

2

�
+ 2I arctan

√
p2 + q2,

sinΩ =
p

√
p2 + q2

,

cosΩ =
q

√
p2 + q2

,

� =� − IΩ,

M =� − � ,

(30)

sin � =
h

√
h2 + k2

,

cos � =
k

√
h2 + k2

.
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the momenta L, G and � , s, c allowing us to obtain the Δ�
1
 terms in a straightforward 

manner as

where C1 = 3�2n∕(4a2�4) and � = 5s2 + 2Ic − 4 . The expressions of � , c and s in 
equinoctial elements are

As it can be seen, Eq. (31) are valid for both direct and retrograde equinoctial ele-
ments and agree with known results [14, 34].

The expressions of the second-order terms to equinoctial elements are not 
directly calculated, The second-order Hamilton equations introduce the contribu-
tion of the argument of the perigee g through terms in sin 2g and cos 2g . Using Eq. 
(25), these trigonometric functions are converted to equinoctial elements and yield

After a laborious simplification process, we obtained that the Δ�
2
 terms were not 

entirely non-singular. These terms depended on the factor (p2 + q2)−2I . Therefore, 
it was not possible to derive a unique set of expressions valid for both direct and 
retrograde orbits.

For the case of direct orbits (I = 1) and the range of inclination [0,�) , we obtain the 
following non-singular expressions

(31)

Δh
1
= − C

1
k� ,

Δk
1
=C

1
h� ,

Δ
p

1
= − 2C

1
cq,

Δ
q

1
=2C

1
cp,

Δ�
1
= − C

1

[
(3� + 5)s2 + 2Ic − 2(� + 2)

]
,

� =
√
1 − h2 − k2, c =

1 − p2 − q2

1 + p2 + q2
, s =

2
√
p2 + q2

1 + p2 + q2
.

(32)

sin 2g =
2(hq − Ikp)(Ihp + kq)

(h2 + k2)(p2 + q2)
,

cos 2g =

(
h2 − k2

)(
p2 − q2

)
+ 4Ihkpq

(h2 + k2)(p2 + q2)
.

(33)

Δh
2
=C

2

1∑

m1=0

3∑

m2=0

8∑

m3=0

8∑

m4=0

P
(m1,m2,m3,m4 )

h
hm1 km2pm3qm4 ,

Δk
2
=C

2

3∑

m1=0

1∑

m2=0

8∑

m3=0

8∑

m4=0

P
(m1,m2,m3,m4 )

k
hm1 km2pm3qm4 ,

Δ
p

2
=C∗

2

2∑

m1=0

2∑

m2=0

8∑

m3=0

9∑

m4=0

P
(m1,m2,m3,m4 )
p hm1 km2pm3qm4 ,

Δ
q

2
=C∗

2

2∑

m1=0

2∑

m2=0

9∑

m3=0

8∑

m4=0

P
(m1,m2,m3,m4 )
q hm1 km2pm3qm4 ,

Δ�
2
=C

2

2∑

m1=0

2∑

m2=0

8∑

m3=0

8∑

m4=0

P
(m1,m2,m3,m4 )

�
hm1 km2pm3qm4 ,
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where

and the coefficients P(m1,m2,m3,m4)
�  are polynomial in � . The values of these coefficients 

are given in Tables 2–7 of the Appendix B.
For the case of retrograde orbits (I = −1) and i = � , we have that p = q = 0 and 

take the limits when p → 0 and q → 0 and we obtain

where

and the coefficient qi(�) is a polynomial in � of ith order with the coefficients in 
Table 1.

Finally, the second-order terms have been tested reproducing the solution pro-
vided by Zeis [14]. This approach has been derived from the beginning consider-
ing the first-order approximation in the eccentricity of the transformed Hamilto-
nian K2 (19) which yields

Following the same process used to build the Δ�
2
 terms (33), the corresponding sec-

ond-order terms in the Zeis case are

(34)

C2 =
3�4n

8a4�8(� + 1)3
(
p2 + q2 + 1

)4 ,

C
∗
2
=

3�4n
(
p2 + q2 − 1

)

8a4�8(� + 1)2
(
p2 + q2 + 1

)3 ,

(35)

Δh
2
=C2k[q3(�) + 4q2(�)h

2],

Δk
2
=C2h[q5(�) + 4q2(�)k

2],

Δ
p

2
=0,

Δ
q

2
=0,

Δ�
2
= − C2[q1(�)q4(�) + 4q2(�)k

2],

C2 =
3�4n

8a4�8(� + 1)2
,

(36)K
Zeis
2

= −
3�4�6

(
19s4 − 30s2 + 12

)

16L10
+O

(
e2
)
.

Table 1   Value of the 
polynomials qi(�)

qi(�) �0 �1 �2 �3 �4

1 1 1 0 0 0
2 15 30 7 0 0
3 45 126 154 78 5
4 -105 -156 -4 20 5
5 -105 -246 -122 42 23
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where CZ
2
= 3�4n∕(4a4�) . In this simplified case, the expressions do not include any 

singularity and are valid for both direct and retrograde orbits and agree with known 
results [14, 34].

4 � Numerical Experiments

Validation of any analytical or semi-analytical theories is not a trivial task since the 
accuracy of the theory mainly depends on its correct initialization [35, 36]. In the 
semi-analytical theory presented in this paper, the osculating-to-mean and mean-to-
osculating transformations are expressed in the singular Delaunay variables, which 
introduce an additional problem to its validation. Both issues do not allow us to 
reproduce or reach the accuracy of the results presented in Fig. 6 in the work of Fol-
cik and Cefola [16]. These authors use orbital determination techniques to adjust the 
initial conditions properly, whereas the mean-to-oscillating transform is formulated 
in the non-singular equinoctial variables.

Finally, we compared the first-order, the truncate second-order (Zeis’s solution), 
and the closed-form second-order semi-analytical theories (SA) with the non-trans-
formed equations of motion for three families of orbits. The first family, low-altitude 
near circular orbits, has a 200 km perigee height by 210 km apogee, the second 
200 km perigee height by 500 km apogee, and the third 200 km perigee height by 
1000 km apogee. The inclination varies from zero to 180 degrees. Both transformed 
and non-transformed equations of motion were integrated using a highly accurate 
eighth-order Runge-Kutta method [37] (NUM) for two days. Then, their respective 
outputs, �SAi

 and �NUMi
 , were then compared in terms of their RMS of position dif-

ferences, as given in Eq. (38).

The equations of motion are formulated in equinoctial elements, whereas the 
changes from mean-to-osculating and osculating-to-mean remain in the Delaunay 
variables.

Figure  1 describes the evaluation process of the semi-analytical theories. The 
initial osculating elements �t0 are transformed to initial mean elements �̄t0 using 
the osculating-to-mean transformation. Then, the mean equations of motion are 
numerically integrated. Finally, the osculating elements �t are obtained through the 

(37)

Δh
2
=CZ

2
k
(
19s2 − 15

)(
s2 + Ic − 1

)
,

Δk
2
= − C

Z
2
h
(
19s2 − 15

)(
s2 + Ic − 1

)
,

Δ
p

2
=CZ

2
cq
(
19s2 − 15

)
,

Δ
q

2
= − C

Z
2
cp
(
19s2 − 15

)
,

Δ�
2
=
C
Z
2

2

[
2
(
19s2 − 15

)(
s2 + Ic − 1

)
+ 5

(
19s4 − 30s2 + 12

)
�
]
,

(38)RMSpos =

����1

n

n�

i=1

(‖�NUMi
− �SAi

‖)2.
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mean-to-osculating transformation. It is worth noting that the non-transformed equa-
tions of motion are integrated starting with the same initial conditions �t0.

Figure 2 shows the position error RMS between the first-order semi-analytical 
theory and the numerical integration of the non-transformed problem for the three 
families of orbits. As can be seen, the errors are symmetric for the 90 degrees of 
inclination. For the 200×210 km family, the maximum error is 10 km, obtained 
at an inclination of 90 degrees, whereas the minimum is 4.37 km, at an inclina-
tion around 52 and 128 degrees. The maximum errors are reduced as the apogee 
height is increased to 500 km and 1000 km to 2.2 and 2 km for inclinations 0 
and 180 degrees, respectively. The minimum errors are approximately 0.47 km at 
inclinations around 74 and 106 degrees.

Figure 3 shows the position error RMS for the truncate (blue) and the closed-
form (red) second-order semi-analytical theories for the family near-circular 
orbits ( e = 0.000759 ). The position errors remain the symmetry to the 90 degrees 
of inclination. As can be seen, the truncate and the closed-form solutions are very 
close to each other, which is consistent with the small eccentricity case. The dif-
ference between both lines is very small. The maximum error of the two theories 

Fig. 1   Evaluation process of a semi-analytical theory

Fig. 2   Position error RMS for the first-order semi-analytical theory for three families of orbits as the 
inclination is varied from 0 to 180 degrees. The family in green includes a 200 km perigee height by 210 
km apogee height (near circular) orbit, in red 200 km perigee height by 500 km apogee height orbit, and 
in blue 200 km perigee height by 1000 km apogee height orbit
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is around 463 m for the inclinations of 0 and 180 degrees, whereas the minimum 
error is around 117 m. for the inclinations of 54 and 126 degrees.

Figure  4 depicts the difference between the closed-form and the truncate position 
errors plotted in Fig. 3. The accuracy provided by the truncate solution is only better 
between 65 and 180, whereas the closed-form solution is in the rest. We assume that 
this behaviour mainly lies in the small eccentricity of this family and in conserving the 
transformations from osculating-to-mean and mean-to-osculating in Delaunay variables.

Figure  5 shows the position error RMS for the truncate (dashed line) and the 
closed-form (continuous line) second-order semi-analytical theories for two fami-
lies of orbits with 500 km (red) and 1000 km (blue) apogee height, respectively. As 
can be seen, the position errors are symmetrical to the 90 degrees of inclination. 
The loss of accuracy produced by conserving the singular Delaunay variables in 
the transformations is visible in the family with 500 km apogee height as incli-
nation varies from 0 to 50 and 130 to 180 degrees. The maximum errors of both 
theories are reached for the inclination of 0 and 180 degrees, with around 180 m 
for the closed-form and 160 m for the truncate. The minimum errors or the closed 
and truncated theories are around 63 m and 45 m for an inclination of 55 and 45 
degrees, respectively. However, this behaviour changes for the family with 1000 km 

Fig. 3   Position error RMS for the second-order semi-analytical theory for the family near circular orbits 
as inclination is varied from 0 to 180 degrees and 200 km perigee height by 210 km apogee height orbit. 
Red represents closed-form second-order theory and blue the truncate approach

Fig. 4   Difference between the 
closed-form and truncate posi-
tion errors plotted in Fig. 3
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apogee height. The accuracy of the closed-form theory improves the truncate one 
for all inclination. The maximum and minimum errors in the closed-form are 173 m 
and 95 m, respectively, whereas in the truncate are 335 m and 131 m.

Finally, Fig. 6 simulates the current status of the different implementations of the 
J2
2
 effect in GTDS-DSST and DSST Standalone using the closed-form and truncate 

mean equations of motion and the families of 500 km (red) and 1000 km (blue) 
apogee height. The second-order osculating-to-mean transformation was applied to 
the initial conditions. On the other hand, the change from mean to osculating is 
done using the first-order expressions. For both families of orbits, the accuracy of 
the closed-form equations of motion slightly predominates over the accuracy given 
by the truncate equations. It is not clear for the family of 500 km because both 
lines are close to each other, as can be seen in Fig. 7. However, this behaviour can 
be appreciated in the family of 1000 km apogee height, especially for inclinations 

Fig. 5   Position error RMS for the second-order semi-analytical theory for two families of orbits as the 
inclination is varied from 0 to 180 degrees. The family in red includes the 200 km perigee height by 500 
km apogee height orbits, and in blue, the family of 200 km perigee height by 1000 km apogee height 
orbits. The continuous line indicates the closed-form second-order theory and the dashed line the trun-
cate approach

Fig. 6   Position error RMS for the second-order semi-analytical theory for two families of orbits as the 
inclination is varied from 0 to 180 degrees. The family in red includes the 200 km perigee height by 500 
km apogee height orbits, and in blue, the family of 200 km perigee height by 1000 km apogee height 
orbits. The continuous line indicates the closed-form second-order theory and the dashed line the trun-
cate approach. The transformation from mean to osculating and from osculating to mean is done using 
the first-order expressions
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from 40 to 130 degrees. It is worth noting that the asymmetry errors at 0 and 180 
degrees inclination detected in [16] do not appear in our analytical expressions.

5 � Conclusion and Future Work

In this paper, a second-order closed-form semi-analytical solution of the J2 problem 
has been developed. An extension of the Lie-Deprit method and Delaunay variables 
is used to remove the short-period terms from the equations of motion using the 
Hamiltonian formalism. This semi-analytical theory has been implemented using 
MathATESAT a Mathematica-based tool.

The averaged equations of motion are given explicitly and transformed into the 
non-singular equinoctial elements. This semi-analytical theory is equivalent to oth-
ers in which Lagrange Planetary equations, as well as General Averaging Method 
and equinoctial elements, are used, and hence, consistent with the Draper Semi-
analytic Satellite Theory. These analytical expressions improve the computational 
speed of the numerical-based approach, which is only available in the GTDS-DSST 
version.

Additionally, the second-order terms have been tested reproducing the solution 
provided by Zeis, validated numerically, and included in DSST C.

Finally, we are currently working on expressing the second-order mean-to-oscu-
lating transformation in equinoctial elements, calculating the partial derivatives nec-
essary for an orbit determination system and integrating GTDS-DSST and DSST 
Standalone. It is worth noting that these expressions are essential to reach the com-
plete accuracy of the second-order theory.

Fig. 7   Difference between the closed-form and truncate position errors plotted in Fig. 6
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Appendix A W2

The second-order generating function is

where S1 = s2
(
5s2 − 4

)
� , S2 = s2

(
3s2 − 2

)
 and Pi represent polynomials in � given 

by
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�4�4
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(
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(A2)P1 = � + 1,
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Appendix B P(m1,m2,m3,m4)

�

The coefficients P(m1,m2,m3,m4)
�  are given in Tables 2, 3, 4, 5 and 6.

(A3)

P
2
= � − 1,

P
3
= 3� + 7,

P
4
= 5� + 11,

P
5
= 13� + 31,

P
6
= �2 − 5,

P
7
= �2 + 7,

P
8
= �2 − 10,

P
9
= �(3� + 4),

P
10

= 7�2 + 9� − 1,

P
11

= �2 + 3� + 2,

P
12

= �2 + 4� + 3,

P
13

= 3�2 + 10� + 5,

P
14

= �2 + 6� + 6,

P
15

= �2 + 2� − 7,

P
16

= �2 − 2� − 7,
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17

= 7�2 + 22� + 11,

P
18

= �2 + 8� + 14,

P
19

= �2 + 12� + 15,

P
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P
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P
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= 2�2 + 9� − 23,

P
24
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P
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P
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P
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P
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= 49�2 + 37� + 112,

P
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P
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= 3�3 − 7�2 − 3� + 7,
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Table 2   P(m1
,m

2
,m

3
,m

4
)

h m
1

m
2

m
3

m
4 P

(m
1
,m

2
,m

3
,m

4
)

h

1 2 7 1 8p
1
(�)p

6
(�)

1 2 5 3 24p
1
(�)p

6
(�)

1 2 5 1 −16p
22
(�)

1 2 3 5 24p
1
(�)p

6
(�)

1 2 3 3 −32p
22
(�)

1 2 3 1 24p
23
(�)

1 2 1 7 8p
1
(�)p

6
(�)

1 2 1 5 −16p
22
(�)

1 2 1 3 24p
23
(�)

1 2 1 1 −64p
14
(�)

1 0 5 1 −8p
1
(�)p
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(�)
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(�)
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(�)
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(�)
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(�)

0 3 4 2 8p
22
(�)
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Table 3   P(m1
,m

2
,m

3
,m

4
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k m
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(m
1
,m

2
,m

3
,m

4
)

k

3 0 8 0 −4p
1
(�)p

6
(�)

3 0 6 2 −8p
1
(�)p

6
(�)

3 0 6 0 8p
22
(�)

3 0 4 2 8p
22
(�)

3 0 4 0 −12p
23
(�)

3 0 2 6 8p
1
(�)p

6
(�)

3 0 2 4 −8p
22
(�)

3 0 2 0 32p
14
(�)

3 0 0 8 4p
1
(�)p

6
(�)

3 0 0 6 −8p
22
(�)

3 0 0 4 12p
23
(�)

3 0 0 2 −32p
14
(�)

2 1 7 1 −8p
1
(�)p

6
(�)

2 1 5 3 −24p
1
(�)p

6
(�)

2 1 5 1 16p
22
(�)

2 1 3 5 −24p
1
(�)p

6
(�)

2 1 3 3 32p
22
(�)

2 1 3 1 −24p
23
(�)

2 1 1 7 −8p
1
(�)p

6
(�)

2 1 1 5 16p
22
(�)

2 1 1 3 −24p
23
(�)

2 1 1 1 64p
14
(�)

1 0 8 0 −p
1
(�)2p

19
(�)

1 0 6 2 8p
1
(�)2p

16
(�)

1 0 6 0 4p
1
(�)p

25
(�)

1 0 4 4 18p
1
(�)3p

9
(�)

1 0 4 2 4p
1
(�)p

26
(�)

1 0 4 0 −2p
1
(�)p

31
(�)

1 0 2 6 8p
1
(�)2p

18
(�)

1 0 2 4 −4p
1
(�)p

32
(�)

1 0 2 2 −24p
1
(�)3p

8
(�)

1 0 2 0 4p
1
(�)p

24
(�)

1 0 0 8 p
1
(�)2p

21
(�)

1 0 0 6 −4p
1
(�)p

29
(�)

1 0 0 4 2p
1
(�)p

34
(�)

1 0 0 2 −4p
1
(�)p

27
(�)

1 0 0 0 p
1
(�)3p

10
(�)

0 1 5 1 8p
1
(�)p

2
(�)p

6
(�)



1312	 The Journal of the Astronautical Sciences (2022) 69:1292–1318

1 3

Table 4   P(m1
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Table 5   P(m1
,m
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4 P

(m
1
,m

2
,m

3
,m

4
)

q

2 0 5 0 −p
6
(�)

2 0 3 2 −2p
6
(�)

2 0 3 0 2p
12
(�)

2 0 1 4 −p
6
(�)

2 0 1 2 −2p
6
(�)

2 0 1 0 −p
6
(�)

1 1 4 1 −2p
6
(�)

1 1 2 3 −4p
6
(�)

1 1 2 1 8p
11
(�)

1 1 0 5 −2p
6
(�)

1 1 0 3 16p
4
(�)

1 1 0 1 −2p
6
(�)

0 2 5 0 p
6
(�)

0 2 3 2 2p
6
(�)

0 2 3 0 −2p
12
(�)

0 2 1 4 p
6
(�)

0 2 1 2 2p
6
(�)

0 2 1 0 p
6
(�)

0 0 5 0 2p
1
(�)2p

5
(�)

0 0 3 2 4p
1
(�)2p

5
(�)

0 0 3 0 2p
1
(�)2p

7
(�)

0 0 1 4 2p
1
(�)2p

5
(�)

0 0 1 2 2p
1
(�)2p

7
(�)

0 0 1 0 2p
1
(�)2p

5
(�)

Table 6   P(m1
,m

2
,m

3
,m

4
)

� m
1

m
2

m
3

m
4 P

(m
1
,m

2
,m

3
,m

4
)

�

2 0 8 0 2p
1
(�)p

6
(�)

2 0 6 2 4p
1
(�)p

6
(�)

2 0 6 0 −2p
30
(�)

2 0 4 2 −2p
30
(�)

2 0 4 0 2p
33
(�)

2 0 2 6 −4p
1
(�)p

6
(�)

2 0 2 4 2p
30
(�)

2 0 2 0 −2p
28
(�)

2 0 0 8 −2p
1
(�)p

6
(�)

2 0 0 6 2p
30
(�)

2 0 0 4 −2p
33
(�)

2 0 0 2 2p
28
(�)

1 1 7 1 8p
1
(�)p

6
(�)

1 1 5 3 24p
1
(�)p

6
(�)
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Table 6   (continued) m
1

m
2

m
3

m
4 P

(m
1
,m

2
,m

3
,m

4
)

�

1 1 5 1 −8p
30
(�)

1 1 3 5 24p
1
(�)p

6
(�)

1 1 3 3 −16p
30
(�)

1 1 3 1 8p
33
(�)

1 1 1 7 8p
1
(�)p

6
(�)

1 1 1 5 −8p
30
(�)

1 1 1 3 8p
33
(�)

1 1 1 1 −8p
28
(�)

0 2 8 0 −2p
1
(�)p

6
(�)

0 2 6 2 −4p
1
(�)p

6
(�)

0 2 6 0 2p
30
(�)

0 2 4 2 2p
30
(�)

0 2 4 0 −2p
33
(�)

0 2 2 6 4p
1
(�)p

6
(�)

0 2 2 4 −2p
30
(�)

0 2 2 0 2p
28
(�)

0 2 0 8 2p
1
(�)p

6
(�)

0 2 0 6 −2p
30
(�)

0 2 0 4 2p
33
(�)

0 2 0 2 −2p
28
(�)

0 0 8 0 −p
1
(�)3p

20
(�)

0 0 6 2 −4p
1
(�)3p

20
(�)

0 0 6 0 −4p
1
(�)3p

13
(�)

0 0 4 4 −6p
1
(�)3p

20
(�)

0 0 4 2 −12p
1
(�)3p

13
(�)

0 0 4 0 12p
1
(�)3p

15
(�)

0 0 2 6 −4p
1
(�)3p

20
(�)

0 0 2 4 −12p
1
(�)3p

13
(�)

0 0 2 2 24p
1
(�)3p

15
(�)

0 0 2 0 −60p
1
(�)3p

3
(�)

0 0 0 8 −p
1
(�)3p

20
(�)

0 0 0 6 −4p
1
(�)3p

13
(�)

0 0 0 4 12p
1
(�)3p

15
(�)

0 0 0 2 −60p
1
(�)3p

3
(�)

0 0 0 0 −p
1
(�)3p

17
(�)
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Table 7   {pi(�)}34i=1 I = 1 pi(�) �0 �1 �2 �3 �4

1 1 1 0 0 0
2 0 0 1 0 0
3 3 3 1 0 0
4 5 10 2 0 0
5 −10 −6 1 0 0
6 15 30 7 0 0
7 15 24 7 0 0
8 20 28 7 0 0
9 −25 −12 3 0 0
10 −35 −12 5 0 0
11 45 90 19 0 0
12 55 110 23 0 0
13 60 69 22 0 0
14 15 45 39 7 0
15 20 33 19 5 0
16 −30 −48 −25 1 0
17 −35 −27 −3 5 0
18 −45 −63 −2 8 0
19 45 81 73 5 0
20 −75 −51 1 5 0
21 −105 −141 19 23 0
22 115 345 289 51 0
23 135 405 341 55 0
24 −15 0 143 186 34
25 −55 −56 245 334 64
26 65 292 593 466 76
27 −105 −240 −65 130 36
28 120 405 477 211 35
29 −175 −404 −103 202 52
30 230 735 743 257 35
31 −285 −402 770 1270 239
32 −295 −752 −451 70 40
33 405 1335 1463 565 80
34 −525 −1218 −226 766 155
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