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The Appell sequences of polynomials can be extended to the Dunkl context, where 
the ordinary derivative is replaced by Dunkl operator on the real line, and the 
exponential function is replaced by the so-called Dunkl kernel. In a similar way, the 
discrete Appell sequences can be extended to the Dunkl context, where the role of 
the ordinary translation is played by the Dunkl translation, that is a much more 
intricate operator. In particular, this allows to define the falling factorial polynomials 
in the Dunkl context. Some numbers closely related to falling factorial are the so 
called Stirling numbers of the first kind and of the second kind, as well as the 
Bell numbers and the Bell polynomials. In this paper, we define these numbers and 
polynomials in the Dunkl context, and prove some of their properties.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The origin of Stirling numbers of the first and second kind may be found in combinatorics, but they can 
be also defined in terms of the falling factorial

xk = x(x− 1) · · · (x− k + 1) =
k−1∏
j=0

(x− j), k = 1, 2, . . . ,

for 0 �= x ∈ R (or C), and x0 = 1. Some other notations have been used for these polynomials, here we 
follow [15] or [12, Section 2.6, p. 47]. Stirling numbers of the first kind s(n, k) are the coefficients in the 
expansion of the falling factorial

xn =
n∑

k=0

s(n, k)xk, (1)
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see [14, §50, (3)], while Stirling numbers of the second kind S(n, k) are given by

xn =
n∑

k=0

S(n, k)xk, (2)

see [14, §58, (2)]. For these numbers, we are using the notation given in [4], that is very common nowadays, 
but in the mathematical literature there are some other notation and/or small variation in the definition, 
such as in [14] or in [12].

The sequence of falling factorial {xk}∞k=0 is an example of discrete Appell polynomials. A general discrete 
Appell sequence {pk(x)}∞k=0 is a sequence of polynomials such that

Δpk(x) = pk(x + 1) − pk(x) = kpk−1(x), k ≥ 1. (3)

In this case, the polynomials can be defined by a Taylor generating expansion

A(t)(1 + t)x =
∞∑
k=0

pk(x) t
k

k! , (4)

where, from now on, A(t) will denote a function analytic in a disk |t| < R (for a certain R > 0 that does 
not play any role), and with A(0) �= 0. Note that the series (4) is convergent in |t| < min{R, 1}. When 
pk(x) = xk the generating function is A(t) = 1.

When we take the derivative operator instead of the discrete operator (3), we obtain the Appell sequences. 
That is, sequences of polynomials {Pk}∞k=0 that satisfy

P0(x) = 1, P ′
k(x) = kPk−1(x).

These polynomials are characterized by a Taylor generating function

A(t)ext =
∞∑
k=0

Pk(x) t
k

k! , |t| < R, (5)

where A(t) is a function analytic on |t| < R (for some R > 0), with A(0) �= 0. Appell polynomials 
have been widely studied because they have multiple applications to number theory, numerical analysis, 
combinatorics. . . Taking different analytic functions A(t) in (5), we obtain examples of Appell polynomials 
such as {xn}∞n=0 with A(t) = 1, Bernoulli polynomials with A(t) = t

et−1 , and Euler polynomials with 
A(t) = 2

et+1 .
In [7–9], Appell polynomials are extended to the Dunkl context. That is, the derivative operator is 

changed by the Dunkl operator

Λαf(x) = d

dx
f(x) + 2α + 1

2

(
f(x) − f(−x)

x

)
, (6)

where α > −1 is a fixed parameter (see [10,21]); of course, (f(x) − f(−x))/x for x = 0 must be understood 
as the limit when x → 0 (this limit exists if the first term f ′(0) exists). In that setting, an Appell-Dunkl 
sequence {Pk}∞k=0 is a sequence of polynomials that satisfies

ΛαPk(x) =
(
k + (α + 1/2)(1 − (−1)k)

)
Pk−1(x)

(instead of ΛαPk = kPk−1, the previous definition with another multiplicative constant in the place of 
k is used for convenience with the notation). Of course, in the case α = −1/2, the operator Λα is the 
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ordinary derivative and Appell-Dunkl sequences become the classical Appell sequences. To give Appell-
Dunkl sequences by means of a generating function, some extra notation is required that we will explain in 
Section 2.

To extended discrete Appell polynomials to the Dunkl context, we need an analogous operator to the 
difference Δf(x) = f(x + 1) − f(x). From the definition of (6) the role of 0 and 1 in the classical case is 
played by 1 and −1 in the context Dunkl. Then it is more natural generalize the central difference operator 
Δcf(x) = (f(x + 1) − f(x − 1))/2 instead of Δ (a somewhat general definition of difference operators can 
be seen in [24, Section 2.1]). In this case, instead of (3) we obtain

Δcqk(x) = kqk−1(x), k ≥ 1, (7)

and can be also defined using a Taylor generating expansion

A(t)(t +
√

1 + t2)x =
∞∑
k=0

qk(x) t
k

k! , |t| < min{R, 1},

where A(t) is a function analytic on |t| < R (for some R > 0) with A(0) �= 0. In [26], using this central 
operator Bernoulli polynomials of the second kind are defined. When we take A(t) = 1 the “central factorial” 
polynomials fk(x) are considered,

(t +
√

1 + t2)x =
∞∑
k=0

fk(x) t
k

k! , |t| < 1.

In [11] the operator Δc has been extended to the Dunkl context, Δα, in this way:

Δαf(x) = (α + 1)(τ1 − τ−1)f(x),

where τy is the Dunkl translation operator of a function f as (see [21])

τyf(x) =
∞∑

n=0
Λn
αf(x) yn

γn,α
, α > −1, (8)

where Λ0
α is the identity operator and Λn+1

α = Λα(Λn
α). In the case α = −1/2, the translation τyf is just 

the Taylor expansion of a function f around a fixed point x, that is,

f(x + y) =
∞∑

n=0
f (n)(x)y

n

n! ,

and Δ−1/2 = Δc. Of course, definition (8) is valid only for C∞ functions, and assuming also that the 
series on the right is convergent. In particular, this can be guaranteed when f is a polynomial, because the 
operator Λα applied to a polynomial of degree k generates a polynomial of degree k − 1, so the series (8)
has only a finite quantity on not null summands. Some other properties of the Dunkl translation, including 
an integral expression that is more general than (8), can be found in [21], [22], and [27].

Discrete Appell-Dunkl polynomials are defined in [11] as a sequence of polynomials {pk,α(x)}∞k=0 such 
that

Δαpk,α(x) = θkpk−1,α(x),

for certain constants θk. There, besides to extend the typical discrete Appell polynomials to the Dunkl case 
(in particular, the so called Bernoulli polynomials of the second kind, also known as Rey Pastor polynomials, 
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see [13,20,2,5]), the analogous sequence of the falling factorial is denoted by {fk,α}∞k=0 and called Dunkl 
factorial.

Stirling numbers have a great mathematical interest, with many recent papers devoted to the subject, and 
they have been generalized in many ways. To cite a few, in [6, §18] and [26] the authors use different discrete 
operators to obtain the falling factorial; in [1,16] symmetric polynomials are used and a new combinatorial 
interpretation is obtained; in [3] an extension of the Möbius function is used in order to generalize the 
Stirling numbers of the first kind; in [23,25] some properties of Stirling numbers and generalized Stirling 
type numbers are proved using generating functions.

The aim of this paper is to give the corresponding definitions in the Dunkl case, using instead of xk the 
Dunkl factorial polynomials fk,α(x); we will call these numbers Stirling-Dunkl numbers of the first kind 
and of the second kind (and order α > −1), and we will denote them sα(n, k) and Sα(n, k), respectively. 
After Section 2 where some additional details of the Dunkl context are given, this is done in Sections 3
and Sections 4 and, of course, we prove some of their properties. Note that, in the Dunkl case, we are 
using the “central” factorial (that would correspond to (7) in the case α = −1/2), so we do not recover the 
classical Stirling numbers in the case α = −1/2, that are defined using xk. Finally, in Section 5 we study the 
so-called Bell-Dunkl numbers (and polynomials), that are an extension to the Dunkl case of the classical 
Bell numbers (or polynomials), that are closely related with the Stirling numbers of the second kind.

2. Details for the Dunkl context

For α > −1, let Jα denote the Bessel function of order α and, for complex values of the variable z, let

Iα(z) = 2αΓ(α + 1) Jα(iz)
(iz)α = Γ(α + 1)

∞∑
n=0

(z/2)2n

n! Γ(n + α + 1) = 0F1(α + 1, z2/4)

(the function Iα is a small variation of the so-called modified Bessel function of the first kind and order α, 
usually denoted by Iα; see [29] or [19]). Also, take

Eα(z) = Iα(z) + z

2(α + 1) Iα+1(z), z ∈ C.

For any λ ∈ C, we have

ΛαEα(λx) = λEα(λx).

Let us note that, when α = −1/2, we have Λ−1/2 = d/dx and E−1/2(λx) = eλx.
From the definition, it is easy to check that

Eα(z) =
∞∑

n=0

zn

γn,α
, z ∈ C, (9)

with

γn,α =
{

22kk! (α + 1)k, if n = 2k,
22k+1k! (α + 1)k+1, if n = 2k + 1,

(10)

and where (a)n denotes the Pochhammer symbol

(a)n = a(a + 1)(a + 2) · · · (a + n− 1) = Γ(a + n)

Γ(a)
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(with a a non-negative integer); of course, γn,−1/2 = n!. From (10), we have

γn,α
γn−1,α

= n + (α + 1/2)(1 − (−1)n) =: θn,α.

We also define
(
n

j

)
α

= γn,α
γj,αγn−j,α

,

that becomes the ordinary binomial numbers in the case α = −1/2. To simplify the notation we sometimes 
write γn = γn,α and θn = θn,α.

Then, Appell-Dunkl polynomials may be defined by the generating function

A(t)Eα(xt) =
∞∑
k=0

Pk(x)
γk,α

tk, |t| < R, (11)

where A(t) is a function analytic on |t| < R (for some R > 0) with A(0) �= 0. Taking A(t) = 1/Iα+1(t) in 
(11) we obtain the Bernoulli-Dunkl polynomials whose properties have been studied in [7], [8] and [17]. In 
[8], the generalized Bernoulli-Dunkl polynomials of order r, {B(r)

k,α(x)}∞k=0, are also introduced as

Eα(xt)
Iα+1(t)r

=
∞∑
k=0

B
(r)
k,α(x)
γk,α

tk, |t| < s1,α, (12)

where s1,α is the first positive zero of Jα+1(z).
As we have seen, in order to generalize the discrete operator Δf or Δcf in the Dunkl context, we have 

introduced the Dunkl translation operator in (8). It is clear that τy commutes with the Dunk operator Λα. 
A nice property of the Dunkl translation, that resembles the Newton binomial (x + y)n =

∑n
k=0

(
n
k

)
ykxn−k, 

is the following:

τy((·)n)(x) =
n∑

k=0

(
n

k

)
α

ykxn−k.

Because 
(
n
k

)
α

=
(

n
n−k

)
α
, this implies that τy((·)n)(x) = τx((·)n)(y). Then, τyf(x) = τxf(y) for polynomials, 

and it is also true for general functions. Moreover this operator is commutative, that is, τaτb = τbτa as we 
can see in [8].

The Dunkl translation has a nice behavior when applies to the function Eα; we have the identity [21, 
formula (4.2.2)]

τy(Eα(t·))(x) = Eα(tx)Eα(ty).

In the case α = −1/2, this identity becomes et(x+y) = etxety.
Many properties of the Appell sequences of polynomials can be adapted to the Appell-Dunkl sequences 

using the Dunkl translation operator as we can see in [7] and [8].
We denote

Gα(z) = zIα+1(z) = z 0F1(α + 2, z2/4) = Γ(α + 1)
∞∑ z2n+1

22nn! Γ(n + α + 1) , z ∈ C.

n=0
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This function is odd, non-negative for z > 0, and increasing (for z > 0, the derivative term by term of 
the series is positive), so there exists the inverse function, G−1

α (z). The function G−1
α will have a power 

expansion around 0 that will converge in a certain disk of radius Rα. As we can see in [11] the generating 
function of a discrete Appell-Dunkl sequence {pk,α}∞k=0 is

A(t)Eα(xG−1
α (t)) =

∞∑
k=0

pk,α(x) tk

γk,α
, |t| < min{R,Rα}, (13)

where A(t) is a function analytic on |t| < R (for some R > 0) with A(0) �= 0. That is, in the Dunkl context 
Eα(xG−1

α (t)) plays the role of (t +
√

1 + t2)x in the classical case.
For the Dunkl case, let us take (13) with A(t) = 1. Then, we can say that the Dunkl factorial (or Dunkl 

“central” factorial) are the polynomials {fk,α(x)}∞k=0 whose generating function is

Eα(xG−1
α (t)) =

∞∑
k=0

fk,α(x) tk

γk,α
, |t| < Rα. (14)

It is not difficult to check that the first Dunkl factorial polynomials are

f0,α(x) = 1, f1,α(x) = x, f2,α(x) = x2,

f3,α(x) = x3 − x, f4,α(x) = x4 − 4x2,

f5,α(x) = x5 − 6(α + 3)x3

α + 2 + (5α + 16)x
α + 2 ,

f6,α(x) = x6 − 12(α + 3)x4

α + 2 + 6(6α + 19)x2

α + 2 ,

f7,α(x) = x7 − 15(α + 4)x5

α + 2 + 9(α + 4)(7α + 22)x3

(α + 2)2 − (7α + 26)2x
(α + 2)2 .

It is perhaps surprising that the polynomials fk,α do not have any recognizable pattern. But the same 
happens when the falling factorials are defined in other contexts; indeed, this is what happens in [6, §18], 
where they are called factor polynomials (a more detailed explanation of the similarities and the differences 
between the context in [6] and our context can be found in [8, Remark 1]).

In the classical case, if {pk(x)}∞k=0 is a discrete Appell sequence (that is, it is defined as in (4)), they 
satisfy

pk(x + y) =
k∑

j=0

(
k

j

)
pj(x)yk−j .

In [11], the analogous formula for the Appell-Dunkl polynomials is proved where fk,α(y) plays the role of 
the factorial polynomials yk. In this context, if {pk,α(x)}∞k=0, α > −1, is a discrete Appell-Dunkl sequence 
of polynomials defined by (13), then

τy(pk,α(·))(x) =
k∑

j=0

(
k

j

)
α

pj,α(x)fk−j,α(y).

An example of discrete Appell-Dunkl polynomials are the generalized Bernoulli-Dunkl polynomials de-
fined in (12) of order k + 1, B(k+1)

k,α (x), because from [8, Theorem 8.2]), they satisfy

ΔαB
(k+1)(x) = (α + 1)

(
τ1B

(k+1)(x) − τ−1B
(k+1)(x)

)
= Λα(B(k) )(x) = θk,αB

(k) (x).
k,α k,α k,α k,α k−1,α
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From [8, Theorem 8.3] we know that

τy(B(r+s)
k )(x) =

k∑
j=0

(
k

j

)
α

B
(r)
j (x)B(s)

k−j(y). (15)

Taking r = k, s = 0 and y = 0 in (15) we can write

B
(k)
k,α(x) =

k∑
j=0

(
k

j

)
α

B
(k)
j,α(0)xk−j . (16)

In Theorem 5.1 of [11] the falling-Dunkl polynomials {fk,α(x)} are expressed in terms of generalized 
Bernoulli-Dunkl polynomials {B(k)

k,α(x)} as follows (see [11]):

fk,α(x) = x

k

d

dx
B

(k)
k,α(x), k = 1, 2, . . . .

So, derivating in (16) we can write

fk,α(x) =
k∑

j=0

j

k

(
k

j

)
α

B
(k)
k−j,α(0)xj , k = 1, 2, . . . . (17)

3. Stirling-Dunkl numbers of the first kind

Stirling numbers of the first kind were defined in (1) in terms of the falling factorial. As we have an 
analogous sequence for the falling factorial in the Dunkl context, using (17) we can define the Stirling-
Dunkl numbers of the first kind of order α, sα(n, k), as

sα(n, k) = k

n

(
n

k

)
α

B
(n)
n−k,α(0), (18)

obtaining that they are the coefficients in the following expansion analogous to (1):

fn,α(x) =
n∑

k=0

sα(n, k)xk, k = 1, 2, . . . . (19)

Note that sα(n, k) for k > n does not appear in this formula, so we can take sα(n, k) = 0 in those cases; 
among other things, this allows to use 

∑∞
n=0 instead of

∑∞
n=r in the generating function (27).

We are going to prove some properties of these numbers. We start proving a recurrence relation.

Proposition 3.1. Let sα(n, k) be the Stirling-Dunkl numbers of the first kind of order α > −1. Then

sα(n, 0) = 0, sα(n, n) = 1, (20)

sα(n + 1, 1) = θn+1

2(α + 1)(n + 1)B
(n)
n,α(0) + θn+1n

2(α + 1)(n + 1)

n∑
j=1

B
(n)
j,α(0)
j

sα(n, j). (21)

Proof. From the definition (18),

sα(n, 0) = 0, sα(n, n) = B
(n)
0,α(0) = 1,
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and

sα(n + 1, 1) = 1
n + 1

(
n + 1

1

)
α

B(n+1)
n,α (0). (22)

Thus, we obtain (20). On the other hand, from (15) and that τ0f(x) = f(x), we can write

B(n+1)
n,α (0) = τ0(B(n+1)

n,α )(0) =
n∑

j=0

(
n

j

)
α

B
(n)
n−j,α(0)Bj,α(0)

= B(n)
n,α(0) +

n∑
j=1

(
n

j

)
α

B
(n)
n−j,α(0)Bj,α(0) = B(n)

n,α(0) +
n∑

j=1

n

j

j

n

(
n

j

)
α

B
(n)
n−j,α(0)Bj,α(0)

= B(n)
n,α(0) +

n∑
j=1

n

j
sα(n, j)Bj,α(0).

Applying now the property of the binomial numbers

1
n + 1

(
n + 1

1

)
α

= 1
n + 1

γn+1,α

γ1,αγn,α
= θn+1

2(α + 1)(n + 1) ,

(22) can be expressed by

sα(n + 1, 1) = θn+1

2(α + 1)(n + 1)

⎛
⎝B(n)

n,α(0) +
n∑

j=1

n

j
sα(n, j)Bj,α(0)

⎞
⎠ .

Therefore, (21) is proved. �
Another relationship for the Stirling-Dunkl numbers of the first kind is the following.

Proposition 3.2. Let sα(n, k) be the Stirling-Dunkl numbers of the first kind of order α > −1. Then,

θn+1s
α(n, k) = (α + 1)

n∑
l=k

sα(n + 1, l + 1)(1 − (−1)l+1−k)
(
l + 1
k

)
α

.

Proof. We know that

fn+1,α(x) =
n+1∑
k=0

sα(n + 1, k)xk.

If we apply the operator Δα we have

Δαfn+1,α(x) = θn+1fn,α(x) = θn+1

n∑
k=0

sα(n, k)xk. (23)

On the other hand,

Δαfn+1,α(x) =
n+1∑

sα(n + 1, l)Δαx
l

l=0
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and

Δαx
l = (α + 1)

l∑
j=0

(1 − (−1)j)
(
l

j

)
α

xl−j .

Then,

Δαfn+1,α(x) =
n+1∑
l=0

sα(n + 1, l)(α + 1)
l∑

j=0
(1 − (−1)j)

(
l

j

)
α

xl−j

= (α + 1)
n+1∑
l=1

sα(n + 1, l)
l∑

j=1
(1 − (−1)j)

(
l

j

)
α

xl−j

= (α + 1)
n+1∑
l=1

sα(n + 1, l)
l−1∑
j=0

(1 − (−1)l−j)
(
l

j

)
α

xj

= (α + 1)
n∑

l=0

sα(n + 1, l + 1)
l∑

j=0
(1 − (−1)l+1−j)

(
l + 1
j

)
α

xj

= (α + 1)
n∑

j=0

n∑
l=j

sα(n + 1, l + 1)(1 − (−1)l−j+1)
(
l + 1
j

)
α

xj . (24)

Equaling coefficients in (23) and (24) we obtain the desired result. �
Proposition 3.3. Let sα(n, k) be the Stirling-Dunkl numbers of the first kind of order α > −1. Then,

n∑
k=0

(1 − (−1)k)sα(n, k) = 0.

Proof. From the construction of G−1
α (t) (see [11] for details) we know that

(α + 1)(Eα(G−1
α (t)) − Eα(−G−1

α (t))) = t. (25)

Using (14) and (25) we can obtain

(α + 1)
∞∑
k=0

fk,α(1) − fk,α(−1)
γk

tk = t.

So, equaling coefficients we have proved

f1,α(1) − f1,α(−1) = 2, fk,α(1) − fk,α(−1) = 0, k > 1. (26)

Finally, the result follows from (19). �
The classical Stirling numbers of the first kind have the generating function

∞∑
n=r

s(n, r) t
n

n! = (log(1 + t))r

r! , |t| < 1,

see [14, §51, (3)] or [4, 26.8.8]. In the Dunkl context we have this analogous result:
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Theorem 3.4. The generating function of the Stirling-Dunkl numbers of the first kind of order α > −1, 
sα(n, r), is

∞∑
n=r

sα(n, r) t
n

γn
= G−1

α (t)r

γr
, |t| < Rα (27)

(recall that Rα is the radius of the disk of convergence of G−1
α ), for r ≥ 0 integer.

Proof. From (9) we have

Eα(xG−1
α (t)) =

∞∑
r=0

G−1
α (t)r xr

γr
. (28)

Now, using the definition of the Stirling-Dunkl of the first kind (19) in (14) we can write

Eα(xG−1
α (t)) =

∞∑
n=0

(
n∑

r=0
sα(n, r)xr

)
tn

γn
.

Applying Fubini’s theorem we obtain

Eα(xG−1
α (t)) =

∞∑
r=0

( ∞∑
n=r

sα(n, r) t
n

γn

)
xr. (29)

Equating coefficients of (28) and (29), the theorem is proved. �
Remark. Taking r = 1 in (27) and k = 1 in (18) we obtain Theorem 5.2 of [11], that is,

G−1
α (t) =

∞∑
k=1

1
k

B
(k)
k−1(0)
γk−1

tk. (30)

Using (27) we can deduce the following recurrence relation:

Corollary 3.5. Let sα(n, r) be the Stirling-Dunkl numbers of the first kind of order α > −1. Then for r ≥ 0
integer,

sα(n, r)
γnγr−1

=
n−r+1∑
k=1

sα(n− k, r − 1)
γn−kγk−1

B
(k)
k−1(0)
k

.

Proof. We use (30) and (27) with r − 1 to write

G−1
α (t)r = G−1

α (t)G−1
α (t)r−1 = γr−1

∞∑
k=1

∞∑
m=r−1

sα(m, r − 1)
B

(k)
k−1(0)
k

tm+k

γmγk−1

= γr−1

∞∑
n=r

n−r+1∑
k=1

sα(n− k, r − 1)
B

(k)
k−1(0)
k

tn

γn−kγk−1
.

Equating coefficients with the series (27), the result is proved. �
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4. Stirling-Dunkl numbers of the second kind

The classical Stirling numbers of the second kind, S(n, k), were defined in (2) using the falling factorial. 
Then the Stirling-Dunkl numbers of the second kind, Sα(n, k), can be defined as the coefficients in the 
expansion of xn in terms of the Dunkl factorial

xn =
n∑

k=0

Sα(n, k)fk,α(x). (31)

Once again, note that Sα(n, k) for k > n does not appear in this formula, so we can take Sα(n, k) = 0. With 
this notation, it is equivalent to take 

∑∞
n=0 or

∑∞
n=r in the generating formula (33).

Evaluating (31) in x = 0 and taking into account fk,α(0) = 0 for k > 1 and f0,α(x) = 1, we get

Sα(n, 0) = 0, n ≥ 1.

Moreover, we have the following:

Proposition 4.1. Let Sα(n, k) be the Stirling-Dunkl numbers of the second kind of order α > −1. Then,

1 = Sα(2n + 1, 1).

Proof. Evaluating (31) in x = 1 and x = −1 we have

1 =
n∑

k=0

Sα(n, k)fk,α(1), (−1)n =
n∑

k=0

Sα(n, k)fk,α(−1).

If we subtract,

1 − (−1)n =
n∑

k=0

Sα(n, k)(fk,α(1) − fk,α(−1)).

Then from (26) we obtain the result. �
Now we are going to prove the analogues of the generalized Stirling formula, that in the classical case is

S(n, k) = 1
k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n = 1

k!

k∑
i=0

(−1)k−i

(
k

i

)
in,

see [4, 26.8.6].

Theorem 4.2. Let Sα(n, k) be the Stirling-Dunkl numbers of the second kind of order α > −1. Then,

Sα(n, k) = (α + 1)k

γk

k∑
j=0

(−1)j
(
k

j

)
τk−j
1 ◦ τ j−1(·)n(0). (32)

Proof. If we apply k times the operator Δα in (31) we obtain

Δk
αx

n =
n∑

Sα(n, l) γl
γl−k

fl−k,α(x).

l=0
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Taking x = 0 it holds

Δk
α(·)n(0) = Sα(n, k)γk

γ0
,

because fk,α(0) = 0, k ≥ 1. Therefore,

Sα(n, k) = 1
γk

Δk
α(·)n(0).

The theorem is proved using that

Δk
α(·)n(x) = (α + 1)k

k∑
j=0

(−1)j
(
k

j

)
τk−j
1 ◦ τ j−1(·)n(x). �

The classical Stirling numbers of the second kind have as generating function an exponential function 
given by

∞∑
n=0

S(n, r) t
n

n! = (et − 1)r

r! ,

see [4, 26.8.12]. In the Dunkl context we find the following generating function in terms of Eα(t):

Theorem 4.3. Let Sα(n, k) be the Stirling-Dunkl numbers of the second kind of order α > −1. Then for 
r ≥ 0 integer,

∞∑
n=0

Sα(n, r) t
n

γn
= (α + 1)r

γr
(Eα(t) − Eα(−t))r, t ∈ C. (33)

Proof. First of all we are going to prove that for l, m ∈ N ∪ {0}:

Eα(t)lEα(−t)m =
∞∑

n=0
τ l1 ◦ τm−1(·)n(0) t

n

γn
. (34)

We start taking m = 0. Then we will prove the equation (34) using induction over l. It is trivial to prove 
it for l = 1 because τ1(·)n(0) = τ0(·)n(1) = 1. Now, suppose that the equation holds for l− 1; then applying 
the induction hypothesis we can write

Eα(t)l = Eα(t)Eα(t)l−1 =
∞∑
k=0

tk

γk

∞∑
j=0

τ l−1
1 (·)j(0) t

j

γj
=

∞∑
n=0

n∑
k=0

τ l−1
1 (·)n−k(0)

(
n

k

)
α

tn

γn
. (35)

We develop τ l1(·)n(0) taking account that τa ◦ τb = τb ◦ τa:

τ l1(·)n(0) = τ l−1
1 (τ1(·)n)(0) = τ l−1

1

(
n∑

k=0

(
n

k

)
α

xn−k

)
(0) =

n∑
k=0

(
n

k

)
α

τ l−1
1 (·)n−k(0). (36)

By placing (36) in (35), we have proved (34) with m = 0. Analogously we prove (34) for l = 0. We apply 
induction over m. It is true for m = 1 because τ−1(·)n(0) = (−1)n. Suppose that (34) is true for m −1; then

Eα(−t)Eα(−t)m−1 =
∞∑ (−1)k

γk
tk

∞∑
τm−1
−1 (·)j(0) t

j

γj
=

∞∑ n∑
(−1)kτm−1

−1 (·)n−k(0)
(
n

k

)
α

tn

γn
. (37)
k=0 j=0 n=0 k=0
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We develop τm−1(·)n(0) and we get

τm−1(·)n(0) = τm−1
−1 ◦ τ−1(·)n(0) = τm−1

−1

(
n∑

k=0

(
n

k

)
α

(−1)kxn−k

)
(0) =

n∑
k=0

(−1)k
(
n

k

)
α

τm−1
−1 (·)n−k(0). (38)

By placing (38) in (37), we have proved (34) with l = 0. The next step will be applying induction over l
but with m �= 0. We have proved that the base case, l = 0, is true. Suppose that it is true for l − 1; then

Eα(t)lEα(−t)m = Eα(t)Eα(t)l−1Eα(−t)m =
∞∑
k=0

tk

γk

∞∑
j=0

τ l−1
1 ◦ τm−1(·)j(0) t

j

γj

=
∞∑

n=0

n∑
k=0

τ l−1
1 ◦ τm−1(·)n−k(0)

(
n

k

)
α

tn

γn
. (39)

Developing τ l1 ◦ τm−1(·)n(0) and taking account the commutativity of the translation operator, we obtain

τ l1 ◦ τm−1(·)n(0) = τ l−1
1 ◦ τm−1

(
n∑

k=0

(
n

k

)
α

xn−k

)
(0) =

n∑
k=0

(
n

k

)
α

τ l−1
1 ◦ τm−1(·)n−k(0). (40)

So, placing (40) in (39), we have (34). Finally, we apply induction over m with l �= 0. We have proved the 
base case, m = 0. Supposing that it is true for m − 1,

Eα(t)lEα(−t)m = Eα(−t)Eα(t)lEα(−t)m−1 =
∞∑
k=0

(−1)k

γk
tk

∞∑
j=0

τ l1 ◦m−1
−1 (·)j(0) t

j

γj

=
∞∑

n=0

n∑
k=0

(−1)kτ l1 ◦ τm−1
−1 (·)n−k(0)

(
n

k

)
α

tn

γn
. (41)

Developing τ l1 ◦ τm−1(·)n(0) and taking account the commutativity of the translation operator, we obtain

τ l1 ◦ τm−1(·)n(0) = τ l1 ◦ τm−1
−1

(
n∑

k=0

(−1)k
(
n

k

)
α

xn−k

)
(0) =

n∑
k=0

(−1)k
(
n

k

)
α

τ l1 ◦ τm−1
−1 (·)n−k(0). (42)

So, placing (42) in (41), we have (34).
Finally, we substitute Sα(n, r) by (32) and apply (34), obtaining

∞∑
n=0

Sα(n, r) t
n

γn
=

∞∑
n=0

(α + 1)r

γr

r∑
j=0

(−1)j
(
r

j

)
τ r−j
1 ◦ τ j−1(·)n(0) t

n

γn

= (α + 1)r

γr

r∑
j=0

(−1)j
(
r

j

) ∞∑
n=0

τ r−j
1 ◦ τ j−1(·)n(0) t

n

γn

= (α + 1)r

γr

r∑
j=0

(−1)r
(
r

j

)
Eα(t)r−jEα(−t)j = (α + 1)r

γr
(Eα(t) − Eα(−t))r.

So, we have proved (33). �
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Applying mathematical induction it is easy to prove that

(Eα(t) −Eα(−t))r = 2r
∞∑

jr=0

∑
j1≤j2≤···≤jr

(
2j2 + 2
2j1 + 1

)
α

(
2j3 + 3
2j2 + 2

)
α

· · ·
(

2jr + r

2jr−1 + r − 1

)
α

t2jr+r

γ2jr+r
.

By equating coefficients with (33) we obtain the following:

• If r = 2s + 1 is an odd number,

Sα(2m, 2s + 1) = 0,

Sα(2m + 1, 2s + 1) = (2α + 2)2s+1

γ2s+1

∑
j1≤···≤jr=m−s

(
2j2 + 2
2j1 + 1

)
α

(
2j3 + 3
2j2 + 2

)
α

· · ·
(

2jr + r

2jr−1 + r − 1

)
α

.

• If r = 2s is an even number,

Sα(2m + 1, 2s) = 0,

Sα(2m, 2s) = (2α + 2)2s

γ2s

∑
j1≤···≤jr=m−s

(
2j2 + 2
2j1 + 1

)
α

(
2j3 + 3
2j2 + 2

)
α

· · ·
(

2jr + r

2jr−1 + r − 1

)
α

.

These formulas are the analogous to the classical determination of the Stirling number of the second kind 
given by (see [14, §60, (5), p. 176])

S(n, k) = n!
k!

∑
r1+r2+···+rk=n

1
r1! r2! · · · rk!

.

Now, we are going to relate the Stirling-Dunkl numbers of the second kind with the generalized Bernoulli-
Dunkl numbers.

Corollary 4.4. Let {B(−r)
n,α }∞n=0 be the sequence of generalized Bernoulli-Dunkl polynomials of order −r, with 

r ≥ 0 integer. Then, the Stirling-Dunkl numbers of the second kind, Sα(n, r), can be written as

Sα(n, r) = B
(−r)
n−r (0)

(
n

r

)
α

.

Proof. If we rewrite Iα+1(t) as

Iα+1(t) = (α + 1)(Eα(t) −Eα(−t))
t

and take x = 0 in (12), we obtain

tr

(α + 1)r(Eα(t) − Eα(−t))r =
∞∑

n=0

B
(r)
n,α(0)
γn,α

tn.

So,

(Eα(t) −Eα(−t))r(α + 1)r

γr,α
=

∞∑
n=0

B
(−r)
n,α (0)

γn,αγr,α
tn+r =

∞∑
n=r

B
(−r)
n−r (0)

(
n

r

)
α

tn

γn,α
. (43)

Equating (33) and (43) we have proved the result. �
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Classical Stirling numbers of first and second kind satisfy an inversion formula as we can see, for instance, 
in [4, 26.8.39]:

n∑
j=k

s(j, k)S(n, j) = δn,k =
n∑

j=k

s(n, j)S(j, k),

where δn,k is the Kronecker delta. That is, if A and B are the n × n matrices with (j, k)th elements s(j, k)
and S(j, k), respectively, then A−1 = B.

In the Dunkl context we obtain the analogous result.

Theorem 4.5. Let sα(n, k) and Sα(n, k) be the Stirling numbers of first and second kind, respectively. Then, 
the following formulas hold:

n∑
j=k

sα(j, k)Sα(n, j) = δn,k =
n∑

j=k

sα(n, j)Sα(j, k). (44)

Proof. Using the definitions (31) and (19), and Fubini’s theorem, we can write

xn =
n∑

j=0
Sα(n, j)fj,α(x) =

n∑
j=0

Sα(n, j)
j∑

k=0

sα(j, k)xk =
n∑

k=0

⎛
⎝ n∑

j=k

Sα(n, j)sα(j, k)

⎞
⎠xk.

Equaling coefficients we obtain the first equality of (44). Now, taking first (19) and then (31), and using 
Fubini’s theorem again,

fn,α(x) =
n∑

j=0
sα(n, j)xj =

n∑
j=0

sα(n, j)
j∑

k=0

Sα(j, k)fk,α(x) =
n∑

k=0

⎛
⎝ n∑

j=k

sα(n, j)Sα(j, k)

⎞
⎠ fk,α(x).

Equaling coefficients we obtain the second equality of (44). �
5. Bell-Dunkl numbers and polynomials

The classical Bell numbers and polynomials are usually denoted by Bn (or B(n)) and Bn(x). Here, to 
avoid any kind of confusion with the Bernoulli numbers and polynomials, we will use Belln and Belln(x). 
Actually, the name “Bell polynomials” not always appear in the mathematical literature, and it sometimes 
is used with another meaning; on the other hand, the polynomials that we are denoting by Belln(x) are 
sometimes called as Touchard polynomials and denoted as Tn(x) (see [28], where these polynomials were 
defined, and also [18, §4.6]). With the notation Belln(x) the Bell numbers are Belln = Belln(1), so the 
name Bell polynomials is clearly justified. Taking into account, for instance, [4, 26.7.5 and 26.8.13], the Bell 
polynomials are defined by means of the generating function

e(et−1)x =
∞∑

n=0
Belln(x) t

n

n! , t ∈ C.

One of the main properties of these polynomials is that they are related to the Stirling numbers of the 
second kind as follows (see [4, 26.7.2]):

Belln(x) =
n∑

S(n, k)xk.

k=0
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In the Dunkl context, we define the Bell-Dunkl polynomials of order α > −1, denoted as Bellαn(x), by 
means of the generating function

Eα((α + 1)(Eα(t) − Eα(−t))x) =
∞∑

n=0
Bellαn(x) tn

γn,α
, t ∈ C. (45)

From this generating function, and using Theorem 4.3, we have

∞∑
r=0

( ∞∑
n=0

Sα(n, r) t
n

γn

)
xr =

∞∑
r=0

(α + 1)r(Eα(t) −Eα(−t))rxr

γr

= Eα((α + 1)(Eα(t) − Eα(−t))x),

that, of course, resembles one of the typical properties of the Stirling numbers of the second kind, namely

∞∑
r=0

( ∞∑
n=0

S(n, r) t
n

n!

)
xr = e(et−1)x

(see, for instance, [4, 26.8.13]).
Finally, we have the following:

Theorem 5.1. The Bell-Dunkl polynomials of order α > −1 are related to the corresponding Stirling-Dunkl 
numbers of the second kind by means or

Bellαn(x) =
n∑

k=0

Sα(n, k)xk.

Proof. Applying Fubini’s theorem and Theorem 4.3, we have

∞∑
n=0

(
n∑

k=0

Sα(n, k)xk

)
tn

γn
=

∞∑
k=0

( ∞∑
n=k

Sα(n, k) t
n

γn

)
xk =

∞∑
k=0

(α + 1)k

γk
(Eα(t) −Eα(−t))kxk

= Eα((α + 1)(Eα(t) − Eα(−t))x).

The result follows by equaling coefficients with (45). �
6. Conclusion

In this paper, we have defined the Stirling numbers of the first and the second kind in the Dunkl context, 
as well as the Bell polynomials. We have proved some of their properties and, in every case, we have shown 
how these properties generalize the ones of the classical case.

References

[1] B. Abdelghafour, M. Ahmia, J.L. Ramírez, D. Villamizar, New modular symmetric function and its applications: modular 
s-Stirling numbers, Bull. Malays. Math. Sci. Soc. 45 (2022) 1093–1109.

[2] J. Babini, Polinomios generalizados de Bernoulli y sus correlativos (in Spanish) Rev. Mat. Hisp.-Am. (4) 10 (1935) 23–25.
[3] C. Ballantine, M. Merca, The r-Stirling numbers of the first kind in terms of the Möbius function, Ramanujan J. 55 (2021) 

593–608.
[4] D.M. Bressoud, Combinatorial analysis, in: NIST Handbook of Mathematical Functions, U.S. Dept. Commerce, Washing-

ton, DC, 2010, pp. 617–636, available online in http://dlmf .nist .gov /26.
[5] L. Carlitz, A note on Bernoulli and Euler polynomials of the second kind, Scr. Math. 25 (1961) 323–330.

http://refhub.elsevier.com/S0022-247X(22)00712-0/bibA41B2B01708F18DCBA47D7A4644185BAs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibA41B2B01708F18DCBA47D7A4644185BAs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib34CAFDB9A33D05A68AC5CECDB76B0085s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib5089FA881630360A9B3361469C1A0C5Ds1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib5089FA881630360A9B3361469C1A0C5Ds1
http://dlmf.nist.gov/26
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibE9989DB5DABEEA617F40C8DBFD07F5FBs1


J. Mínguez Ceniceros, J.L. Varona / J. Math. Anal. Appl. 518 (2023) 126698 17
[6] F.M. Cholewinski, The Finite Calculus Associated with Bessel Functions, Contemporary Mathematics, vol. 75, American 
Mathematical Society, Providence, RI, 1988.

[7] Ó. Ciaurri, A.J. Durán, M. Pérez, J.L. Varona, Bernoulli-Dunkl and Apostol-Euler-Dunkl polynomials with applications 
to series involving zeros of Bessel functions, J. Approx. Theory 235 (2018) 20–45.

[8] Ó. Ciaurri, J. Mínguez Ceniceros, J.L. Varona, Bernoulli-Dunkl and Euler-Dunkl polynomials and their generalizations, 
Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113 (2019) 2853–2876.

[9] I.H. Dimovski, V.Z. Hristov, Nonlocal operational calculi for Dunkl operators, SIGMA 5 (2009) 030.
[10] C.F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Am. Math. Soc. 311 (1989) 167–183.
[11] J.I. Extremiana Aldana, E. Labarga, J. Mínguez Ceniceros, J.L. Varona, Discrete Appell-Dunkl sequences and Bernoulli-

Dunkl polynomials of the second kind, J. Math. Anal. Appl. 507 (2022) 125832.
[12] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Addison-

Wesley, Reading, MA, 1994.
[13] C. Jordan, Sur les polynomes analogues aux polynomes de Bernoulli et sur des formules de sommation analogues à celle 

de MacLaurin-Euler (in French) Acta Szeged 4 (1929) 130–150.
[14] C. Jordan, Calculus of Finite Differences, 3rd ed., Chelsea Publ. Co., New York, 1965.
[15] D.E. Knuth, Two notes on notation, Am. Math. Mon. 99 (1992) 403–422.
[16] I. Kucukoglu, Y. Simsek, Construction and computation of unified Stirling-type numbers emerging from p-adic integrals 

and symmetric polynomials, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115 (2021) 167.
[17] J. Mínguez Ceniceros, J.L. Varona, Asymptotic behavior of Bernoulli-Dunkl and Euler-Dunkl polynomials and their zeros, 

Funct. Approx. Comment. Math. 65 (2021) 211–226.
[18] L.M. Navas, F.J. Ruiz, J.L. Varona, Appell polynomials as values of special functions, J. Math. Anal. Appl. 459 (2018) 

419–436.
[19] F.W.J. Olver, L.C. Maximon, Bessel functions, in: NIST Handbook of Mathematical Functions, U.S. Dept. Commerce, 

Washington, DC, 2010, pp. 215–286, available online in http://dlmf .nist .gov /10.
[20] J. Rey Pastor, Polinomios correlativos de los de Bernoulli (in Spanish) Bol. Semin. Mat. Argent. 1 (3) (1929) 1–10.
[21] M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus, Oper. Theory, Adv. Appl. 73 (1994) 

369–396.
[22] M. Rösler, A positive radial product formula for the Dunkl kernel, Trans. Am. Math. Soc. 355 (2003) 2413–2438.
[23] Y. Simsek, Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials 

and their applications, Fixed Point Theory Appl. 2013 (2013) 87.
[24] Y. Simsek, Construction method for generating functions of special numbers and polynomials arising from analysis of new 

operators, Math. Methods Appl. Sci. 41 (2018) 6934–6954.
[25] Y. Simsek, Formulas for Poisson-Charlier, Hermite, Milne-Thomson and other type polynomials by their generating func-

tions and p-adic integral approach, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113 (2019) 931–948.
[26] P. Tempesta, On Appell sequences of polynomials of Bernoulli and Euler type, J. Math. Anal. Appl. 341 (2008) 1295–1310.
[27] S. Thangavelu, Y. Xu, Riesz transform and Riesz potentials for Dunkl transform, J. Comput. Appl. Math. 199 (2007) 

181–195.
[28] J. Touchard, Sur les cycles des substitutions (in French) Acta Math. 70 (1939) 243–297.
[29] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944.

http://refhub.elsevier.com/S0022-247X(22)00712-0/bib6F260C6904C54F7565CCD78BD0ECF2CBs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib6F260C6904C54F7565CCD78BD0ECF2CBs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibB5FC5E44FF290DD81640B8807599BBD5s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibB5FC5E44FF290DD81640B8807599BBD5s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib89A4DDD107EAAC8687564968D1E20226s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib89A4DDD107EAAC8687564968D1E20226s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibFF7A7D0EA68CF95F3D4B14E3F2A30767s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibE76CF8A691823107E27238A4976CD98Es1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibE241344AAAA68272516B54BC4BDABD82s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibE241344AAAA68272516B54BC4BDABD82s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib7C5C9877457052E0245BC3CA188643AEs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib7C5C9877457052E0245BC3CA188643AEs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibC5D708FFDE8000261EE067F2540A97BFs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibC5D708FFDE8000261EE067F2540A97BFs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibC71D5E259674FC5712D6E32015F76453s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib2B222CD1921E7391A41BBFC6F9C96FE9s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibA32356331CF2A7F56E45306FC6D328D9s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibA32356331CF2A7F56E45306FC6D328D9s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib77D96FC8E5C080038B043EAD02DADFC3s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib77D96FC8E5C080038B043EAD02DADFC3s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib7E5023AD1523E858CD94B931A3737240s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib7E5023AD1523E858CD94B931A3737240s1
http://dlmf.nist.gov/10
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibF7D72DCE8894D8776E31351A1EB1620As1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibABA3AA931662562BA28FD1F0A05F64BFs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibABA3AA931662562BA28FD1F0A05F64BFs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib94822F8040A272BD285305A2BAF6B51Fs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibFE092D100C4761D5D95CA7596B940A24s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibFE092D100C4761D5D95CA7596B940A24s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib6B81D700A5E0ED092356169308D8EE34s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib6B81D700A5E0ED092356169308D8EE34s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibF393EC98F3885C1A03333C543CA07057s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibF393EC98F3885C1A03333C543CA07057s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib134678CAFC343B05AB1281FDEEAEEABEs1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibF970B9B8D91E812C5A68CA53B98E3F73s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibF970B9B8D91E812C5A68CA53B98E3F73s1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bib00CF60D921A3FBCCF9F8EE7B9488A61Ds1
http://refhub.elsevier.com/S0022-247X(22)00712-0/bibB664544A4939C8697BCEB9571A142F5Ds1

	Stirling-Dunkl numbers
	1 Introduction
	2 Details for the Dunkl context
	3 Stirling-Dunkl numbers of the first kind
	4 Stirling-Dunkl numbers of the second kind
	5 Bell-Dunkl numbers and polynomials
	6 Conclusion
	References


