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Quasi-Banach space
Banach lattice

1. Introduction and background

An important long-standing problem in Banach space theory, eventually solved in the 
negative by Gowers and Maurey in 1997 [18], asked whether any two Banach spaces X
and Y such that X is isomorphic to a complemented subspace of Y and such that Y is 
isomorphic to a complemented subspace of X are isomorphic (X � Y , for short). This 
is known, by analogy with a similar result for cardinals in the category of sets, as the 
Schröder-Bernstein problem for Banach spaces.

Pełczyński had noticed much earlier, back in 1969, that a little extra information 
about each space, namely being isomorphic to their squares, is all that is needed for 
the Schröder-Bernstein problem for Banach spaces to have a positive outcome [32]. This 
observation, nowadays known as Pełczyński’s decomposition method, highlighted the role 
played by the squares of the spaces, and the question arose whether any two Banach 
spaces X and Y such that X2 � Y 2 are isomorphic. This problem was also settled in the 
aforementioned article by Gowers and Maurey. Indeed, the authors constructed in [18]
a Banach space X with X � X3 but X �� X2. Then, if we put Y = X2, we have that 
X is isomorphic to a complemented subspace of Y , that Y is isomorphic to a subspace 
of X, that X2 � Y 2, and that X �� Y . So, the pair of spaces X and Y serves as a 
counterexample for both questions.

The Schröder-Bernstein problem for Banach spaces is a very basic and natural prop-
erty that arises most of the time when one is trying to show that two Banach (or 
quasi-Banach) spaces are isomorphic. However, its practical implementation depends 
on knowing a priori large classes of spaces where the property holds. And this might be 
an intractable problem in almost any general setting.

Wójtowicz [36] and Wojtaszczyk [35] discovered independently, with a lapse of 11 
years, the following beautiful criterion in the spirit of the Schröder-Bernstein problem to 
check whether two unconditional bases (in possibly different quasi-Banach spaces) are 
permutatively equivalent.

Theorem 1.1 (see [35, Proposition 2.11] and [36, Corollary 1]). Let (xn)∞n=1 and (yn)∞n=1
be two unconditional bases of quasi-Banach spaces X and Y , respectively. Suppose that 
(xn)∞n=1 is permutatively equivalent to a subbasis of (yn)∞n=1 and that (yn)∞n=1 is permu-
tatively equivalent to a subbasis of (xn)∞n=1. Then (xn)∞n=1 and (yn)∞n=1 are permutatively 
equivalent. In particular, X � Y .

The validity of the Schröder-Bernstein principle for unconditional bases has a played 
a crucial role in the development of the subject of uniqueness of unconditional basis in 
quasi-Banach spaces (see, e.g., [5–9]). Casazza and Kalton brought this principle to the 
reader’s awareness in [13] and used it to give new examples of Banach spaces with a 
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unique unconditional basis up to permutation. The simplifying power of the Schröder-
Bernstein principle for unconditional bases would have made life much easier also for all 
the authors who had previously worked on the problem of uniqueness of unconditional 
basis up to permutation and who, in order to obtain the same conclusions, had to impose 
additional properties to the bases in relation to other general techniques such as the 
decomposition method (see e.g. [10, Proposition 7.7]). It is indeed remarkable that, 
although the combinatorial arguments used by Wojtaszczyk to prove Theorem 1.1 are 
somewhat standard, they went unnoticed until close to the 21st century!

The state of art of the Schröder-Bernstein problem for Banach spaces in the pre-
Gowers era was described by Casazza in [12]. His paper with Kalton [13] appeared 
just one year after Gowers and Maurey disproved the Schröder-Bernstein problem for 
Banach spaces and Wojtaszczyk’s reinterpreted the Schröder-Bernstein principle for un-
conditional bases. Thus, it is not surprising that the following question was timely raised 
in [13]:

Question 1.2. (See [13, Remarks following the proof of Theorem 5.7].) Suppose that 
(xn)∞n=1 and (yn)∞n=1 are two unconditional bases whose squares are permutatively equiv-
alent. Does it follow that (xn)∞n=1 and (yn)∞n=1 are permutatively equivalent?

This problem was a driving force for the present investigation and we solve it in 
the affirmative. In fact we show that the result still holds replacing the assumption on 
the square of the bases with the weaker assumption that some powers of the bases are 
permutatively equivalent. We will do that in Section 2.

Answering Question 1.2 in the positive offers a new paradigm to tackle the prob-
lem of uniqueness of unconditional basis up to permutation in the general setting of 
quasi-Banach spaces. The necessary ingredients and preparatory results leading to the 
main theoretical tool, namely Theorem 3.9, are presented in a self-contained fashion in 
Section 3.

In Sections 4 and 5 we embark on a comprehensive survey of quasi-Banach spaces 
with a unique unconditional basis up to permutation to which the scheme of Section 3
can be applied.

In Section 6 we further exploit the usefulness of Theorem 3.9 to show that the unique-
ness of unconditional basis is preserved when we take finite direct sums of a wide class of 
quasi-Banach spaces with this property. When combined with the spaces from Sections 4
and 5 we obtain a myriad of new examples of spaces with uniqueness of unconditional 
basis up to permutation. Among them, we find locally convex quasi-Banach spaces, i.e.,
Banach spaces. As far as we are aware, these examples are the first contribution to the 
theory of uniqueness of unconditional basis of Banach spaces since [14].

We use standard terminology and notation in Banach space theory as can be found, 
e.g., in [4]. Most of our results, however, will be established in the general setting of 
quasi-Banach spaces; the unfamiliar reader will find general information about quasi-
Banach spaces in [24]. We next gather the notation that it is more heavily used. In 
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keeping with current usage we will write c00(J) for the set of all (aj)j∈J ∈ FJ such that 
|{j ∈ J : aj �= 0}| < ∞, where F could be the real or complex scalar field. Given s ∈ N

we put N[s] = {1, . . . , s}. Given a quasi-Banach space X and s ∈ N we denote by κ[s, X]
the smallest constant C such that for all vectors (fj)sj=1 ∈ X we have

∥∥∥∥∥∥
s∑

j=1
fj

∥∥∥∥∥∥ ≤ C

⎛
⎝ s∑

j=1
‖fj‖

⎞
⎠ .

Note that κ[2, X] is the so called modulus of concavity of the space X (see [24]). If X is 
a p-Banach space, 0 < p ≤ 1, then κ[s, X] ≤ s1/p−1.

The closed linear span of a subset V of X will be denoted by [V ]. A countable family 
B = (xn)n∈N in X is an unconditional basic sequence if for every f ∈ [xn : n ∈ N ] there is 
a unique family (an)n∈N in F such that the series 

∑
n∈N an xn converges unconditionally 

to f . If B is an unconditional basic sequence, there is a constant K ≥ 1 such that∥∥∥∥∥
∑
n∈N

an xn

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∑
n∈N

bn xn

∥∥∥∥∥
for any finitely non-zero sequence of scalars (an)n∈N with |an| ≤ |bn| for all n ∈ N
(see [2, Theorem 1.10]). If this inequality is satisfied for a given K we say that B is 
K-unconditional. If we additionally have [xn : n ∈ N ] = X then B is an unconditional 
basis of X. If B is an unconditional basis of X, then the map

F : X → FN , f =
∑
n∈N

an xn 
→ (x∗
n(f))n∈N = (an)n∈N

will be called the coefficient transform with respect to B, and the functionals (x∗
n)n∈N

the coordinate functionals of B.
Given a countable set N , we write EN := (en)n∈N for the canonical unit vector system 

of FN , i.e., en = (δn,m)m∈N for each n ∈ N , where δn,m = 1 if n = m and δn,m = 0
otherwise. A sequence space will be a quasi-Banach space X ⊆ FN for which EN is a 
normalized 1-unconditional basis.

The Banach envelope of a quasi-Banach space X consists of a Banach space xX together 
with a linear contraction JX : X → xX satisfying the following universal property: for 
every Banach space Y and every linear contraction T : X → Y there is a unique linear 
contraction pT : xX → Y such that pT ◦ JX = T . We say that a Banach space Y is the 
Banach envelope of X via J : X → Y if the associated map pJ : xX → Y is an isomorphism.

Other more specific terminology will be introduced in context when needed.

2. Permutative equivalence of powers of unconditional bases

Suppose that Bx = (xn)n∈N and Bu = (un)n∈N are (countable) families of vectors 
in quasi-Banach spaces X and Y , respectively. We say that Bx = (xn)n∈N C-dominates
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Bu = (un)n∈N if there is a linear map T from the closed subspace of X spanned by Bx into 
Y with T (xn) = un for all n ∈ N such that ‖T‖ ≤ C. If T is an isomorphic embedding, 
Bx and Bu are said to be equivalent. We say that Bx is permutatively equivalent to a family 
By = (ym)n∈M in Y , and we write Bx ∼ By, if there is a bijection π : N → M such that 
Bx and (yπ(n))n∈N are equivalent. A subbasis of an unconditional basis Bx = (xn)n∈N
is a family (xn)n∈M for some subset M of N .

Let (Xi)i∈F be a finite collection of (possibly repeated) quasi-Banach spaces. The 
Cartesian product 

⊕
i∈F Xi equipped with the quasi-norm

‖(xi)i∈F ‖ = sup
i∈F

‖xi‖, xi ∈ Xi

is a quasi-Banach space. Suppose that Bi = (xi,n)n∈Ni
is an unconditional basis of Xi

for each i ∈ F . Set

N =
⋃
i∈F

{i} × Ni. (2.1)

Then the countable sequence 
⊕

i∈F Bi := (xi,n)(i,n)∈N given by xi,n = (xi,n,j)j∈F , 
where

xi,n,j =
{
xi,n if i = j,

0 otherwise,

is an unconditional basis of 
⊕

i∈F Xi. If F = N[s] and Xi = X for all i ∈ F , the resulting 
direct sum is called the s-fold product of X and we simply write Xs. Similarly, if Bi = B
for all i ∈ F = N[s], we put Bs and say that Bs is the s-fold product of B. We will 
refer to the 2-fold product of a basis as to the square of that basis. We start with an 
elementary lemma.

Lemma 2.1. Let B = (xn)n∈N be an unconditional basis of a quasi-Banach space X. For 
a given s ∈ N, consider the s-fold product Bs = (xi,n)(i,n)∈N[s]×N . Then for any function 
α : N → N[s], the basic sequence (xα(n),n)n∈N (which is permutatively equivalent to a 
subbasis of Bs) is equivalent to B.

Proof. Suppose that B is K-unconditional. If we put Ni = α−1(i) for i ∈ N[s] then
∥∥∥∥∥
∑
n∈N

an xα(n),n

∥∥∥∥∥ = sup
i∈N[s]

∥∥∥∥∥
∑
n∈Ni

an xn

∥∥∥∥∥ ,
for all (an)∞n=1 ∈ c00. Hence,

1
κ[s,X]

∥∥∥∥∥
∑

an xn

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

an xα(n),n

∥∥∥∥∥ ≤ K

∥∥∥∥∥
∑

an xn

∥∥∥∥∥ . �

n∈N n∈N n∈N
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The following version of the Hall-König Lemma (also known as Marriage Lemma) for 
infinite families of finite sets is essential in the proof of Theorem 2.4.

Theorem 2.2 (see [19, Theorem 1]). Let N be a set and (Ni)i∈I be a family of finite 
subsets of N . Suppose that

|F | ≤
∣∣∣∣∣
⋃
i∈F

Ni

∣∣∣∣∣
for every F ⊆ I finite. Then there is a one-to-one map φ : I → N with φ(i) ∈ Ni for 
every i ∈ I.

Theorem 2.3. Let Bx and By be two unconditional bases of quasi-Banach spaces X and 
Y , respectively. Suppose that Bs

x is permutatively equivalent to a subbasis of Bs
y for some 

s ≥ 2. Then Bx is permutatively equivalent to a subbasis of By.

Proof. Put Bx = (xn)n∈N , By = (yn)n∈M, Bs
x = (xi,n)(i,n)∈N[s]×N and Bs

y =
(yi,n)(i,n)∈N[s]×M. By hypothesis there is a one-to-one map

π = (π1, π2) : N[s] ×N → N[s] ×M

such that the unconditional bases Bs
x and (yπ(i,n))(i,n)∈N[s]×N are equivalent. For n ∈ N

set Mn = {π2(i, n) : i ∈ N[s]}. If F is a finite subset of N we have

π(N[s] × F ) ⊆ N[s] ×
⋃
n∈F

Mn,

and since π is one-to-one,

s |F | ≤ s

∣∣∣∣∣
⋃
n∈F

Mn

∣∣∣∣∣ .
Hence, |F | ≤ | ∪n∈F Mn|. We also have |Mn| ≤ s for all n ∈ N . Therefore, by The-
orem 2.2, there exist a one-to-one map φ : N → M, a map α : N → N[s], and a map 
β : M → N[s] such that

π(α(n), n) = (β(n), φ(n)), n ∈ N ,

from where it follows that the unconditional basic sequences B′
x = (xα(n),n)n∈N and 

B′
y = (yβ(n),φ(n))n∈N are equivalent. Since, on the other hand, by Lemma 2.1, B′

x is 
equivalent to B and B′

y is permutatively equivalent to (ym)m∈M′ , where M′ = φ(N ), 
we are done. �
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Theorem 2.4. Let Bx and By be two unconditional bases of quasi-Banach spaces X and 
Y . Suppose that Bs

x ∼ Bs
y for some s ≥ 2. Then Bx ∼ By.

Proof. Applying Theorem 2.3 yields that Bx is permutatively equivalent to a subbasis
of By, and switching the roles of the basis also the other way around. An appeal to 
Theorem 1.1 finishes the proof. �
Corollary 2.5. Let B be an unconditional basis of a quasi-Banach space. Suppose that Bt

is permutatively equivalent to a subbasis of Bs for some t > s ≥ 1. Then B2 ∼ B.

Proof. Since t ≥ s +1, Bs+1 is permutatively equivalent to a subbasis of Bs. By induction 
we deduce that Bu+1 is permutatively equivalent to a subbasis of Bu for every u ≥ s, 
and so by transitivity, Bu is permutatively equivalent to a subbasis of Bs for every 
u ≥ s. In particular, B2s is permutatively equivalent to a subbasis of Bs. Therefore, by 
Theorem 2.3, B2 is permutatively equivalent to a subbasis of B. Since B is permutatively 
equivalent to a subbasis of B2, applying Theorem 1.1 we are done. �
3. A new theoretical approach to the uniqueness of unconditional basis in 
quasi-Banach spaces

From a structural point of view, it is useful to know if a given space has an uncon-
ditional basis and, if the answer is yes, whether this is the unique unconditional basis 
of the space. Recall that a quasi-Banach space X with an unconditional basis B is said 
to have a unique unconditional basis, if every semi-normalized unconditional basis of X
is equivalent to B. For convenience, from now on all bases will be assumed to be semi-
normalized. Note that, if B = (xn)n∈N is a semi-normalized unconditional basis then it 
is equivalent to the normalized basis (xn/‖xn‖)n∈N .

For a Banach space with a symmetric basis it is rather unusual to have a unique 
unconditional basis. It is well-known that �2 has a unique unconditional basis [26], and 
a classical result of Lindenstrauss and Pełczyński [28] asserts that �1 and c0 also have 
a unique unconditional basis. Lindenstrauss and Zippin [29] completed the picture by 
showing that those three are the only Banach spaces in which all unconditional bases 
are equivalent.

Once we have determined that a Banach space does not have a symmetric basis (a task 
that can be far from trivial) we must rethink the problem of uniqueness of unconditional 
basis. In fact, an unconditional non-symmetric basis admits a continuum of nonequivalent 
permutations (cf. [20, Theorem 2.1]). Hence for Banach spaces without symmetric bases 
it is more natural to consider instead the question of uniqueness of unconditional bases 
up to (equivalence and) a permutation, (UTAP) for short. We say that X has a (UTAP) 
unconditional basis B if every unconditional basis in X is permutatively equivalent to 
B. The first movers in this direction were Edelstein and Wojtaszczyk, who proved that 
finite direct sums of c0, �1 and �2 have a (UTAP) unconditional basis [16]. Bourgain et al. 
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embarked on a comprehensive study aimed at classifying those Banach spaces with unique 
unconditional basis up to permutation, which culminated in 1985 with their Memoir
[10]. They showed that the spaces c0(�1), c0(�2), �1(c0), �1(�2) and their complemented 
subspaces with unconditional basis all have a (UTAP) unconditional basis, while �2(�1)
and �2(c0) do not. However, the hopes of attaining a satisfactory classification were 
shattered when they found a nonclassical Banach space, namely the 2-convexification 
T (2) of Tsirelson’s space having a (UTAP) unconditional basis. Their work also left 
many open questions, most of which remain unsolved as of today.

In turn, in the context of quasi-Banach spaces that are not Banach spaces, the unique-
ness of unconditional basis seems to be the norm rather than an exception. For instance, 
it was shown in [21] that a wide class of nonlocally convex Orlicz sequence spaces, in-
cluding the �p spaces for 0 < p < 1, have a unique unconditional basis. The same is true 
in many nonlocally convex Lorentz sequence spaces ([6,23]) and (UTAP) in the Hardy 
spaces Hp(T ) for 0 < p < 1 ([35]).

This section is geared towards Theorem 3.9, which tells us that, under three man-
ageable conditions regarding a space and a basis, the unconditional bases of a space 
are all permutatively equivalent. The techniques used in the proof of this theorem are a 
development of the methods introduced by Casazza and Kalton in [13,14] to investigate 
the problem of uniqueness of unconditional basis in a class of Banach lattices that they 
called anti-Euclidean. The subtle but crucial role played by the lattice structure of the 
space in the proof of Theorem 3.9 has to be seen in that it will permit to simplify the 
untangled way in which the vectors of one basis can be written in terms of the other. 
These techniques have been extended to the nonlocally convex setting and efficiently 
used in the literature to establish the uniqueness of unconditional basis up to permuta-
tion of the spaces �p(�q) for p ∈ (0, 1] ∪ {∞} and q ∈ (0, 1] ∪ {2, ∞} (see [5–9]), with the 
convention that �∞ here means c0.

Before moving on, recall that the support of a vector f ∈ X relative to an unconditional 
basis B = (xn)n∈N with coordinate functionals (x∗

n)n∈N ∈ X∗ is the set

supp(f) = {n ∈ N : x∗
n(f) �= 0},

while the support of a functional f∗ ∈ X∗ is the set

supp(f∗) = {n ∈ N : f∗(xn) �= 0}.

Although the dual of a quasi-Banach space X could be trivial, the existence of a basis 
for X guarantees the existence of a rich dual space. This will allow us to use the support 
of vectors and functionals on X in a decisive way. To that aim we need to introduce a 
few more definitions.

An unconditional basic sequence Bu = (um)m∈M in a quasi-Banach space X is said 
to be complemented if its closed linear span U = [Bu] is a complemented subspace of 
X, i.e., there is a bounded linear map P : X → U with P |U = IdU . Notice that the 
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unconditional basic sequence Bu = (um)m∈M is complemented in X if and only if there 
exists a sequence (u∗

m)m∈M in X∗ such that u∗
m(un) = δm,n for all (m, n) ∈ M2 and 

there is a bounded linear map Pu : X → X given by

Pu(f) =
∑

m∈M
u∗
m(f)um, f ∈ X. (3.1)

We will refer to (u∗
m)m∈M as a sequence of projecting functionals for Bu. A family Bu =

(um)m∈M in X with mutually disjoint supports with respect to a given unconditional 
basis B is an unconditional basic sequence. In the case when, moreover, supp(um) is finite 
for every m ∈ M we say that Bu is a block basic sequence (with respect to B). Notice 
that, usually, by a block basic sequence of a basis B = (xn)∞n=1 we mean a sequence 
(um)∞m=1 of nonzero vectors with

max(supp(um)) < min(supp(um+1)), m ∈ N.

However, when dealing with an unconditional basis B = (xn)n∈N indexed by a countable 
set N where the order is unimportant, it is more convenient to use our alternative (yet 
valid) definition of block basic sequence.

We say that a block basic sequence Bu is well complemented (with respect to B) if 
we can choose a sequence of projecting functionals B∗

u = (u∗
m)m∈M with supp(u∗

m) ⊆
supp(um) for all m ∈ M. In this case, B∗

u is said to be a sequence of good projecting 
functionals for Bu.

The following definition identifies and gives relevance to an unstated feature shared 
by some unconditional bases. Examples of such bases can be found, e.g., in [6,13,21], 
where the property naturally arises in connection with the problem of uniqueness of 
unconditional basis.

Definition 3.1. An unconditional basis B = (xn)n∈N of a quasi-Banach space will be said 
to be universal for well complemented block basic sequences if for every semi-normalized 
well complemented block basic sequence Bu = (um)m∈M of B there is a map π : M → N
such that π(m) ∈ supp(um) for every m ∈ M, and Bu is equivalent to the rearranged 
subbasis (xπ(m))m∈M of B.

The ideas in the following definition and proposition are implicit in [21].

Definition 3.2. An unconditional basis B = (xn)n∈N of a quasi-Banach space X will be 
said to have the peaking property if every semi-normalized well complemented block basic 
sequence Bu = (um)m∈M with respect to B satisfies

inf
m∈M

sup
n∈N

|u∗
m(xn)| |x∗

n(um)| > 0 (3.2)

for some sequence (u∗
m)m∈M of good projecting functionals for Bu.
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Proposition 3.3. Suppose B = (xn)n∈N is an unconditional basis of a quasi-Banach space 
X. If B has the peaking property then it is universal for well complemented block basic 
sequences.

Proof. Let Bu = (um)m∈M be a semi-normalized well complemented block basic se-
quence and B∗

u = (u∗
m)m∈M be a sequence of good projecting functionals for Bu such 

that (3.2) holds. There is π : M → N one-to-one with

inf
m∈M

|x∗
π(m)(um)| |x∗

π(m)(um)| > 0.

For m ∈ M let us put

λm = x∗
π(m)(um), μm = xπ(m)(u∗

m),

and set

vm = λm xπ(m), v∗
m = μm x∗

π(m).

By [1, Lemma 3.1], Bv = (vm)m∈M is equivalent to Bu. In particular, Bv is semi-
normalized so that infm λm > 0 and supm λm < ∞. It follows that Bv is equivalent to 
(xπ(m))m∈M. �

The last ingredient in the deconstruction process we are carrying out is the following 
feature about the lattice structure of a quasi-Banach space.

Definition 3.4. A quasi-Banach space (respectively, a quasi-Banach lattice) X is said to 
be sufficiently Euclidean if �2 is crudely finitely representable in X as a complemented 
subspace (respectively, complemented sublattice), i.e., there is a positive constant C
such that for every n ∈ N there are bounded linear maps (respectively, lattice homomor-
phisms) In : �n2 → X and Pn : X → �n2 with Pn ◦ In = Id�n2 and ‖In‖ ‖Pn‖ ≤ C. We say 
that X is anti-Euclidean (resp. lattice anti-Euclidean) if it is not sufficiently Euclidean.

Any (semi-normalized) unconditional basis of a quasi-Banach space X is equivalent 
to the unit vector system of a sequence space and so it induces a lattice structure on 
X. In general, we will say that an unconditional basis has a property about lattices if 
its associated sequence space has it. And the other way around, i.e., we will say that a 
sequence space enjoys a certain property relevant to bases if its unit vector system does.

A quasi-Banach lattice X is said to be L-convex (or lattice-convex) if there is ε > 0
so that whenever f and (fi)ki=1 in X satisfy 0 ≤ fi ≤ f for every i = 1, . . . , k, and 
(1 − ε)kf≤

∑k
i=1 fi we have ε‖f‖ ≤ max1≤i≤k ‖fi‖. Kalton [22] showed that a quasi-

Banach lattice is L-convex if and only if it is p-convex for some p > 0. So, most quasi-
Banach lattices (and unconditional bases) occurring naturally in analysis are L-convex.
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The space �1 is the simplest and most important example of anti-Euclidean space 
(see e.g. [1, Comments previous to Remark 2.9]). So, it is helpful to be able to count on 
conditions that guarantee that the Banach envelope of a given quasi-Banach space is �1.

Lemma 3.5 (see [1, Proposition 2.10]). Suppose X is a quasi-Banach space with an un-
conditional basis B that dominates the unit vector basis of �1. Then the Banach envelope 
of X is �1 via the coefficient transform.

The following lemma is useful when dealing with unconditional bases that dominate 
the canonical basis of �1.

Given an unconditional basis B = (xn)n∈N with coordinate functionals (x∗
n)n∈N and 

A ⊆ N finite we will put

1A[B] =
∑
n∈A

xn and 1∗A[B] =
∑
n∈A

x∗
n.

If B is clear from context we simply write 1A = 1A[B] and 1∗A = 1∗A[B].

Lemma 3.6 (cf. [5, Lemma 4.1]). Let B = (xn)n∈N be an unconditional basis of a quasi-
Banach space X. Suppose that B dominates the canonical basis of �1. Then every semi-
normalized well complemented block basic sequence of X with respect to B is equivalent 
to a well complemented block basic sequence (um)m∈M for which (1∗supp(um))m∈M is a 
sequence of good projecting functionals.

Proof. Let C1 be such that 
∑

n∈N |x∗
n(f)| ≤ C1‖f‖ for all f ∈ X. Set

C2 = sup
m∈M

‖um‖, C3 = sup
m∈M

‖u∗
m‖, and C4 = sup

n∈N
‖xn‖.

Fix m ∈ M and put

Am =
{
n ∈ N : |u∗

m(xn)| > 1
2C1C2

}
.

We have
∑

n∈N\Am

|x∗
n(um)u∗

m(xn)| ≤ 1
2C1C2

∑
n∈N\Am

|x∗
n(um)| ≤ 1

2 .

Hence,

λm : =
∑

n∈Am

|x∗
n(um)u∗

m(xn)|

≥ −1
2 +

∑
|x∗

n(um)u∗
m(xn)|
n∈N
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≥ −1
2 + u∗

m(um) = 1
2 .

Let

vm = λ−1
m

∑
n∈Am

|x∗
n(um)u∗

m(xn)|xn

and v∗
m = 1∗Am

. For every n ∈ N we have

v∗
m(vm) = 1, λ−1

m |u∗
m(xn)| ≤ 2C3C4,

and for every n ∈ Am,

1 ≤ 2C1C2|u∗
m(xn)|.

Hence, the result follows from [1, Lemma 3.1]. �
We will use the full force of the lattice structure induced by the basis in the following 

reduction lemma.

Lemma 3.7. Let X be a quasi-Banach space whose Banach envelope is anti-Euclidean. 
Suppose that B is an L-convex, unconditional basis of X which is universal for well 
complemented block basic sequences. Then, if Bu is another unconditional basis of X, 
there are positive integers s and t such that Bu is permutatively equivalent to a subbasis 
of Bs and B is permutatively equivalent to a subbasis of Bt

u.

Proof. Since Bu is lattice anti-Euclidean, [5, Theorem 3.4] yields that Bu is permutatively 
equivalent to a well complemented block basic sequence of Bs for some s ∈ N. By [1, 
Proposition 3.4], Bs is universal for well complemented block basic sequences so that 
Bu is permutatively equivalent to a subbasis of Bs. Since Bs inherits the convexity from 
B, the basis Bu is L-convex and universal for well complemented block basic sequences. 
Switching the roles of B and Bu yields the conclusion of the lemma. �
Remark 3.8. A remark on the inherited order structure in a quasi-Banach lattice is in 
order here. Kalton showed in [22, Theorem 4.2] that every unconditional basic sequence 
B0 of a quasi-Banach space with an L-convex unconditional basis B is L-convex. This 
argument would have, indeed, simplified the proof of Lemma 3.7. However, here we want 
to make the point that the validity of the lemma does not depend on such a deep theorem 
as Kalton’s.

We are ready to prove the main result of this section.

Theorem 3.9. Let X be a quasi-Banach space whose Banach envelope is anti-Euclidean. 
Suppose B is an unconditional basis for X such that:
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(i) B is L-convex, i.e., the lattice structure induced by B in X is L-convex;
(ii) B is universal for well complemented block basic sequences; and
(iii) B ∼ B2.

Then X has a unique unconditional basis up to permutation.

Proof. Let Bu be another unconditional basis of X. Since Br ∼ B for every r ∈ N, 
applying Lemma 3.7 yields that Bu is permutatively equivalent to a subbasis of B and 
that Bt is permutatively equivalent to a subbasis of Bt

u for some t ∈ N. Combining 
Theorem 2.3 with Theorem 1.1 yields Bu ∼ B. �

Theorem 2.3 becomes instrumental in reaching the conclusion of the previous theorem. 
Indeed, without it, and under the same hypotheses as in Theorem 3.9, we would have 
only been able to guarantee that given another unconditional basis Bu of X, Bu is 
permutatively equivalent to a subbasis of B and that B is permutatively equivalent to a 
subbasis of some s-fold product of Bu. Thanks to Theorem 2.3 we can close the “gap” 
between B and Bu and arrive at the permutative equivalence of the two bases. Although 
this gap might seem small, we would like to emphasize that in the lack of Theorem 3.9
the specialists were forced to use additional properties of B to infer that B is the unique 
unconditional basis of X. For instance, in the proof that �1(�p) for 0 < p < 1 has a 
unique unconditional basis up to permutation, the authors used that all subbases of the 
canonical basis of �1(�p) are permutatively equivalent to their square (see [5]).

4. Applicability of our scheme to anti-Euclidean spaces

Most anti-Euclidean spaces scattered through the literature with a unique uncon-
ditional basis (up to permutation) fulfill the hypotheses of Theorem 3.9. This can be 
checked by looking up the corresponding references contained herein. Still, with the aim 
to be as self-contained as possible and for the convenience of the reader we next survey 
how to verify the hypotheses of Theorem 3.9 in all known spaces (Banach and non-
Banach) with a unique unconditional basis as well as in other new cases. The spaces in 
this section and the next will be the protagonists of Section 6, where we will combine 
them to get the uniqueness of unconditional basis up to permutation of their finite direct 
sums.

In what follows, the symbol αi � βi for i ∈ I means that the families of positive real 
numbers (αi)i∈I and (βi)i∈I verify supi∈I αi/βi < ∞. If αi � βi and βi � αi for i ∈ I

we say (αi)i∈I are (βi)i∈I are equivalent, and we write αi ≈ βi for i ∈ I.

4.1. The space �1

As we mentioned above, �1 is anti-Euclidean. Since its canonical basis is perfectly 
homogeneous (see, e.g., [4, Section 9.1]), it is universal for well complemented block 



14 F. Albiac, J.L. Ansorena / Advances in Mathematics 410 (2022) 108695
basic sequences. Finally, since the canonical basis of �1 is symmetric, it is equivalent to 
its square.

4.2. Orlicz sequence spaces

An Orlicz function will be a right-continuous increasing function ϕ : [0, ∞) → [0, ∞)
such ϕ(0) = 0, ϕ(1) = 1 and ϕ(s + t) ≤ C(ϕ(s) + ϕ(t)) for some constant C and all 
s, t ≥ 0. The Orlicz space �ϕ is the space associated to the Luxembourg quasi-norm 
defined from the modular (an)∞n=1 
→

∑∞
n=1 ϕ(|an|). Our assumptions on ϕ yield that �ϕ

is a symmetric sequence space. Kalton proved in [21] that if ϕ satisfies

t � ϕ(t), 0 ≤ t ≤ 1, (4.1)

and

Λϕ := lim
ε→0+

inf
0<s<1

−1
log ε

1∫
ε

ϕ(sx)
sx2 dx = ∞, (4.2)

then �ϕ has a unique unconditional basis up to permutation. It is easy to show that (4.1)
implies that the Banach envelope of �ϕ is anti-Euclidean, and it is implicit in [21] that if 
(4.1) and (4.2) hold, then the unit vector system of �ϕ is universal for well complemented 
block basic sequences. For the sake of completeness and further reference, we record these 
results and sketch a proof of them.

Proposition 4.1 (cf. [21]). Let ϕ be an Orlicz function such that both (4.1) and (4.2) hold. 
Then:

(i) The Banach envelope of �ϕ is �1 via the inclusion map.
(ii) The unit vector system of �ϕ has the peaking property.

Proof. Since �1 is the Orlicz sequence space associated to the function t 
→ t, we have 
�ϕ ⊆ �1. Then, (i) follows from Lemma 3.5.

Assume by contradiction that Bu = (um)m∈M is a well complemented block basic 
sequence of �ϕ, that (u∗

m)m∈M is a family of well complemented projecting functionals 
for Bu, but that

inf
m∈M

sup
n∈N

|u∗
m(en)| |e∗n(um)| = 0.

Then, by [21, Theorem 6.5], �ϕ has a complemented basic sequence By such that Y = [By]
is locally convex. Using (i) and [1, Lemma 2.1], it follows that the restriction of the 
inclusion map of �ϕ in �1 to Y is an isomorphism. Therefore, by [21, Theorem 5.3], we 
reach the absurdity that Λϕ < ∞. �
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4.3. Lorentz sequence spaces

Let w = (wn)∞n=1 be a weight, i.e., a sequence of positive scalars, and let 0 < p < ∞. 
Suppose that w decreases to zero. The Lorentz space d(w, p) is the quasi-Banach space 
consisting of all f = (an)∞n=1 ∈ FN such that

‖f‖d(w,p) = sup
π∈Π

( ∞∑
n=1

|aπ(n)|p wn

)1/p

< ∞,

where Π is the set of all permutations of N. The unit vector system is a symmetric basis 
of d(w, p). It was proved in [6] that if the weight fulfills the condition

inf
k∈N

k∑
n=1

wn

kp
> 0, (4.3)

then d(w, p) has a unique unconditional basis up to permutation. Next, we deduce this 
result by combining Theorem 3.9 with arguments from [6].

Proposition 4.2 (cf. [6]). Let 0 < p < 1 and let w = (wn)∞n=1 be a weight decreasing to 
zero. Then d(w, p) ⊆ �1 if and only if (4.3) holds. Moreover, if (4.3) holds, then

(i) the Banach envelope of d(w, p) is �1 via the inclusion map, and
(ii) the unit vector system of d(w, p) has the peaking property.

Proof. For k ∈ N write sk =
∑k

n=1 wn. Assume that d(w, p) ⊆ �1 and let C be the norm 
of the inclusion map. If |A| = k we have

‖1A‖1 = k, and ‖1A‖w,p = s
1/p
k .

Thus k ≤ Cs
1/p
k for every k ∈ N.

We will use the weak-Lorentz space d∞(u, p) associated to a weight u = (un)∞n=1 and 
0 < p < ∞, which consists of all sequences f ∈ c0 whose non-increasing rearrangement 
(a∗k)∞k=1 satisfies

‖f‖d∞(u,p) = sup
k

(
k∑

n=1
un

)1/p

a∗k < ∞.

We have d∞(u, p) ⊆ d(u, p) for every 0 < p < ∞ and every weight u. If up = (np − (n −
1)p)∞j=1 the rearrangement inequality and the mere definition of the spaces yields

[d(up, p)]p · [d∞(up, p)]1−p ⊆ �1.
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We also have the obvious inclusion

d(up, p) ⊆ [d(up, p)]p · [d(up, p)]1−p.

Summing up, we obtain d(up, p) ⊆ �1.
Assume that w fulfills (4.3). We deduce that d(w, p) ⊆ d(up, p). Therefore, d(w, p) ⊆

�1. Then, (i) follows from Lemma 3.5. To prove (ii), we pick a semi-normalized well com-
plemented block basic sequence (um)m∈M with good projecting functionals (u∗

m)m∈M. 
By Lemma 3.6, we can suppose that u∗

m = 1∗supp(um) so that

sup
n∈N

|u∗
m(en)| |e∗n(um)| = sup

n∈N
|e∗n(um)|.

Finally, note that the proof of [6, Theorem 2.4] gives

inf
m∈M

sup
n∈N

|e∗n(um)| > 0. �

4.4. Tsirelson’s space

Casazza and Kalton established in [13] the uniqueness of unconditional basis up to 
permutation of Tsirelson’s space T and its complemented subspaces with unconditional 
basis as a byproduct of their study of complemented basic sequences in lattice anti-
Euclidean Banach spaces. Their result answered a question by Bourgain et al. ([10]), who 
had proved the uniqueness of unconditional basis up to permutation of the 2-convexifyed 
Tsirelson’s space T (2) of T (see Example 5.10 in Section 5 for the definition). Unlike T (2), 
which is “highly” Euclidean, the space T is anti-Euclidean. To see the latter requires the 
notion of dominance, introduced in [13].

Let B = (xn)∞n=1 be a (semi-normalized) unconditional basis of a quasi-Banach space 
X. Given f , g ∈ X, we write f ≺ g if m < n for all m ∈ supp(f) and n ∈ supp(g). The 
basis B is said to be left (resp. right) dominant if there is a constant C such that whenever 
(fi)Ni=1 and (gi)Ni=1 are disjointly supported families with fi ≺ gi (resp. gi ≺ fi) and 
‖fi‖ ≤ ‖gi‖ for all i ∈ N[N ], then ‖ 

∑N
i=1 fi‖ ≤ C‖ 

∑N
i=1 gi‖. If X is a Banach space with 

a left (resp. right) dominant unconditional basis B there is a unique r = r(B) ∈ [1, ∞]
such that �r is finitely block representable in X. In the case when r(B) ∈ {1, ∞}, X is 
anti-Euclidean (see [13, Proposition 5.3]).

The canonical basis of the Tsirelson space T is right dominant [13, Proposition 5.12], 
and r(T ) = 1. Moreover, by [13, Proposition 5.5] and [15, page 14], the canonical basis 
(as well as each of its subbases) is equivalent to its square. In our language, [13, Theorem 
5.6] says that every left (resp. right) dominant unconditional basis is universal for well 
complemented block basic sequences. Finally, since it is locally convex, T is trivially an 
L-convex lattice.
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4.5. Bourgin-Nakano spaces

Let N be a countable set. A Bourgin-Nakano index is a family (pn)n∈N in (0, ∞) with 
p = infn pn > 0. The Bourgin-Nakano space �(pn) is the quasi-Banach space built from 
the modular

m(pn) : FN → [0,∞), (an)n∈N 
→
∑
n∈N

|an|pn .

Note that, by the Monotone Convergence Theorem, the closed unit ball of �(pn) is the 
set

B�(pn) = {f ∈ FN : m(pn)(f) ≤ 1}.

If we endow �(pn) with the natural ordering, it becomes a p-convex quasi-Banach lattice. 
The separable part h(pn) = [en : n ∈ N ] of �(pn) is a sequence space. We have �(pn) =
h(pn) if and only if supn pn < ∞.

These spaces were introduced by Bourgin [11] in the particular case that pn ≤ 1 for 
all n ∈ N . Nakano [30] studied the case when pn ≥ 1 for all n ∈ N , so that the resulting 
spaces are locally convex, i.e., Banach spaces.

Let us record some results on Bourgin-Nakano spaces of interest for the purposes of 
this paper.

Lemma 4.3. Let (pn)n∈N and (qm)m∈M be Bourgin-Nakano indices. Let Bu = (uj)∞j=1
and Bv = (vj)∞j=1 be normalized block basic sequences in �(pn) and �(qn) respectively. 
Suppose that pn ≤ qm for all (n, m) ∈ supp(uj) × supp(vj) and all j ∈ N. Then Bu

1-dominates Bv.

Proof. Let j ∈ N. Pick rj ∈ [1, ∞) such that pn ≤ r ≤ qm for all n ∈ Aj := supp(uj)
and all m ∈ Bj := supp(vj). Put uj =

∑
n∈Aj

aj ej and vj =
∑

n∈Aj
bj ej . Since 

‖uj‖ = ‖vj‖ = 1,

∑
n∈Aj

|aj |pn = 1 =
∑

m∈Bj

|bm|qm .

Let f =
∑∞

j=1 cj uj ∈ B�(pn). Since |cj | ≤ 1 for all j ∈ N, it follows that

m(qn)

⎛
⎝ ∞∑

j=1
cj vj

⎞
⎠ =

∞∑
j=1

∑
m∈Bj

|cj |qm |bm|qm

≤
∞∑

|cj |r
∑

|bm|qm

j=1 m∈Bj
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=
∞∑
j=1

|cj |r
∑
n∈Aj

|an|pn

≤
∞∑
j=1

∑
n∈Aj

|cj |pn |an|pn

≤ 1.

Therefore, 
∑∞

j=1 cj uj ∈ B�(qn). �
Proposition 4.4 (see [13, Proof of Theorem 5.8]). Let (pn)∞n=1 be a non-increasing (resp. 
non-decreasing) Bourgin-Nakano index. Then, the unit vector system of �(pn) is right 
(resp. left) dominant. Moreover, r(�(pn)) = limn pn.

Proof. It is a consequence of Lemma 4.3. �
Given (pn)n∈N we put (xpn)n∈N = (max{1, pn})n∈N .

Proposition 4.5. Let (pn)n∈N be a Bourgin-Nakano index. Then the Banach envelope of 
�(pn) is �(xpn) via the inclusion map.

Proof. Put Nb = {n ∈ N : pn < 1} and Nk = {n ∈ N : pn ≥ 1}. The obvious map 
from FN onto FNb ×FNk restricts to a lattice isomorphism from �(pn) onto �(pn)n∈Nb

⊕
�(pn)n∈Nk

. Hence, by [1, Lemma 2.3], we can assume without loss of generality that 
Nk = ∅. In this particular case, since 

∑
n∈N |an| ≤ 1 for all (an)n∈N ∈ B�(pn) and 

en ∈ B�(pn) for all n ∈ N , the closed convex hull of B�(pn) in �1(N ) is the closed unit 
ball of �1(N ). Since �(xpn) = �1(N ) isometrically, we infer that the Banach envelope of 
�(pn) is �(xpn) isometrically via the inclusion map. �
Corollary 4.6. Let (pn)n∈N be a Bourgin-Nakano index. Suppose that lim supn pn ≤ 1. 
Then the Banach envelope of �(pn) is anti-Euclidean.

Proof. Just combine Propositions 4.4 and 4.5. �
Proposition 4.7. Let (pn)∞n=1 be a Bourgin-Nakano index. Then the unit vector system of 
�(pn) is universal for well complemented block basic sequences.

Proof. Let By = (ym)m∈M be a semi-normalized well complemented block basic se-
quence and let (u∗

m)m∈M be a sequence of good projecting functionals. Since
∑
n∈N

e∗n(ym)y∗
m(en) = y∗

m(ym) = 1

for every m ∈ M, there are families (Am)m∈M and (Bm)m∈M of subsets of N and 
π : M → N such that, if
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λm =
∑

n∈Am

e∗n(ym)y∗
m(en) and μm =

∑
n∈Bm

e∗n(ym)y∗
m(en),

then min{|λm|, |μm|} ≥ 1/2, Am ∪Bm = supp(ym), Am ∩Bm = {π(m)}, and

max
n∈Am

pn = min
n∈Bm

pn = pπ(m)

for all m ∈ M. Let um = SAm
(ym), u∗

m = S∗
Am

(y∗
m), vm = SBm

(ym), and v∗
m =

S∗
Bm

(ym) for m ∈ M. Since for every m ∈ M, u∗
m(um) = λm and v∗

m(vm) = μm, 
applying [1, Lemma 3.1] yields that both Bu = (um)m∈M and Bv = (vm)m∈M are well 
complemented block basic sequences equivalent to By. By Lemma 4.3, Bu dominates B :=
(eπ(m))m∈M and, in turn, B dominates Bv. We infer that By and B are equivalent. �
Proposition 4.8. Let (pn)n∈N be a Bourgin-Nakano index. The unit vector system of 
�(pn) is equivalent to its square if and only if there is a partition (N1, N2) of N and 
bijections πi : N → Ni, i = 1, 2, such that, for some 0 < c < 1,

∑
n∈N

c
pnqi,n

|pn−qi,n| < ∞, i = 1, 2,

where qi,n = pπi(n).

Proof. This result follows from [31, Theorem 1], which characterizes when two (a priori 
different) Bourgin-Nakano spaces are identical. �

We remark that, in certain cases, we can give a simpler characterization of those 
Nakano spaces which are lattice isomorphic to their square. For instance, if (pn)∞n=1 is a 
monotone sequence, then �(pn) is lattice isomorphic to its square if and only if

∣∣∣∣ 1
pn

− 1
p2n

∣∣∣∣ � 1
1 + log(n) , n ∈ N

(see [13, Proof of Theorem 5.8]).

Theorem 4.9. Suppose that a Bourgin-Nakano index (pn)n∈N satisfies lim supn pn ≤ 1. 
Suppose also that there exist a partition (N1, N2) of N , and bijections πi : N → Ni, 
i = 1, 2, so that

∑
n∈N

c1/|pn−pπi(n)| < ∞, i = 1, 2,

for some 0 < c < 1. Then �(pn) has a unique unconditional basis up to permutation.

Proof. Just combine Corollary 4.6, Proposition 4.7, Proposition 4.8 and Theorem 3.9. �
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An important class of anti-Euclidean spaces arises from a special type of bases called 
strongly absolute. We tackle this case separately in the next section.

5. Applicability to spaces with strongly absolute bases

In the category of bases one could say that strongly absolute bases are “purely nonlo-
cally convex” bases, in the sense that if a quasi-Banach space X has a strongly absolute 
basis, then its unit ball is far from being a convex set and so X is far from being a Banach 
space. The term strongly absolute for a basis was coined in [23]. A (semi-normalized) 
unconditional basis B = (xn)n∈N of a quasi-Banach space X is strongly absolute if for 
every ε > 0 there is a constant 0 < Kε such that

∑
n∈F

|an| ≤ Kε sup
n∈F

|an| + ε

∥∥∥∥∥
∑
n∈F

anxn

∥∥∥∥∥ ,
for all sequences of scalars (an)n∈F and all finite sets F ⊆ N . Here we work with 
a slightly different, yet equivalent, definition. A (semi-normalized) unconditional basis 
B = (xn)n∈N of a quasi-Banach space X is strongly absolute if for every ε > 0 there is 
a constant 0 < C(ε) such that

∑
n∈N

|x∗
n(f)| ≤ max

{
C(ε) sup

n∈N
|x∗

n(f)|, ε‖f‖
}
, f ∈ X.

This second definition makes the proof of the following key property of strongly ab-
solute bases straightforward.

Lemma 5.1. Let B = (xn)n∈N be a strongly absolute unconditional basis of a quasi-
Banach space X. Suppose that V ⊆ X is such that inff∈V ‖f‖−1‖F(f)‖1 > 0. Then, 
inff∈V ‖f‖−1‖F(f)‖∞ > 0.

Proposition 5.2 (cf. [23]). Let B be a strongly absolute unconditional basis of a quasi-
Banach space X. Then:

(i) The Banach envelope of X is �1 via the coefficient transform.
(ii) B has the peaking property.

Proof. It is clear that B dominates the unit vector system of �1, so that (i) follows from 
Lemma 3.5.

Let Bu = (um)m∈M be a semi-normalized well complemented block basic sequence. 
By Lemma 3.6 we may assume that (u∗

m)m∈M = (1∗supp(um))m∈M is a sequence of good 
projecting functionals for Bu. Using (i) and [1, Lemma 2.1] we deduce that the sequence 
(F(um))∞m=1 is semi-normalized in �1. Therefore,
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inf
m

‖um‖−1‖F(um)‖1 > 0.

Lemma 5.1 yields

inf
m∈M

sup
n∈N

|u∗
m(xn)| |x∗

n(um)| = inf
m∈M

‖F(um)‖∞

≥ inf
m∈M

‖um‖ inf
m∈M

‖F(um)‖∞
‖um‖ > 0. �

Combining Proposition 5.2 with Theorem 3.9 immediately yields the following general 
result.

Corollary 5.3. Let X be a quasi-Banach space with a strongly absolute unconditional basis 
which induces an L-convex structure on X. If B is equivalent to its square, then X has 
a unique unconditional basis up to permutation.

Wojtaszczyk obtained in [35] the uniqueness of unconditional basis of a quasi-Banach 
space X under the same hypotheses as in Corollary 5.3 replacing B2 ∼ B with the weaker 
assumption that Xs � X for some s ≥ 2. For the sake of completeness, we next show 
how we can combine the techniques from [35] to pass from the condition “Xs � X for 
some s ≥ 2” to “B2 ∼ B”.

Theorem 5.4 (cf. [35, Theorem 2.12]). Let X be a quasi-Banach space with a strongly 
absolute unconditional basis B that induces an L-convex lattice structure on X. If Xs �
X for some s ≥ 2 then B2 ∼ B; in particular X2 � X.

Proof. Put Bs = (ym)m∈M. The sequence Bs2 = (yi,m)(i,m)∈N[s]×M is permutatively 

equivalent to a basis of X � Xs2 . Hence, by [35, Proposition 2.10], there is α : M →
N[s] such that B′ = (yα(m),m)m∈M is permutatively equivalent to a subbasis of B. By 
Lemma 2.1, Bs is equivalent to B′. Since B is permutatively equivalent to a subbasis of 
B2 and B2 is permutatively equivalent to a subbasis of Bs, applying Theorem 1.1 yields 
Bs ∼ B2 ∼ B. �

As we said before, a strongly absolute unconditional basis can be thought of as a 
basis that dominates the canonical basis of �1 but it is far from it. This intuition is 
substantiated by the following elementary result whose proof we omit.

Lemma 5.5. Let Bx and By be unconditional bases of quasi-Banach spaces X and Y , 
respectively. Suppose that Bx dominates By and that By is strongly absolute. Then By is 
strongly absolute.

To complement the theoretical contents of this section we shall introduce a quanti-
tative tool from approximation theory that measures how far an unconditional basis is 
from the canonical �1-basis.
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Given an unconditional basis B of a quasi-Banach space X, its lower democracy func-
tion is defined as

ϕl
m[B] = inf

|A|≥m
‖1A[B]‖, m ∈ N.

Note that if B is strongly absolute then

lim
m→∞

1
m
ϕl
m[B] = ∞.

The following result establishes that, conversely, if (ϕl
m[B])∞m=1 is sufficiently far away 

from the sequence (m)∞m=1, then the basis B is strongly absolute.

Proposition 5.6. Let B = (xn)∞n=1 be an unconditional basis of a quasi-Banach space X. 
Suppose that there exists 0 < p < 1 such that for some constant 0 < C we have

m1/p ≤ Cϕl
m[B], m ∈ N.

Then B is strongly absolute.

Proof. We may regard X as a sequence space whose basis B is just the unit vector 
system. Pick r ∈ (p, 1). By [3, Lemma 6.1](a),

X ⊆ �p,∞ ⊆ �r

continuously. Since the canonical basis of �r is strongly absolute (see [27, Lemma 2.2]), 
by Lemma 5.5 the proof is over. �

We will use Proposition 5.6 to readily deduce that the following important examples 
of bases, which are permutatively equivalent to their square, are strongly absolute.

Example 5.7. Given 0 < pi < 1 for i ∈ N[n], the canonical basis of the mixed norm 
space �p1(· · · �pi

(· · · (�pn
))) is unconditional, strongly absolute, and induces a structure 

of L-convex lattice on the whole space.

Example 5.8. Let d ∈ N. The canonical basis B of the Hardy spaces Hp(Td), 0 < p < 1
(see [23]) satisfies

m1/p ≈ ϕl
m[B, Hp(Td)], m ∈ N.

Hence, B is strongly absolute.

Example 5.9. Given a dimension d ∈ N, let Θd = {0, 1}d \ {0} and consider the set of 
indices



F. Albiac, J.L. Ansorena / Advances in Mathematics 410 (2022) 108695 23
Λd = Z× Zd × Θd.

The homogeneous Triebel-Lizorkin sequence space 
◦
ts,dp,q of indices p ∈ (0, ∞) and q ∈

(0, ∞] and smoothness s ∈ R consists of all scalar sequences f = (aλ)λ∈Λ for which

‖f‖tsp,q =

∥∥∥∥∥∥∥
⎛
⎝ ∞∑

j=−∞

∑
δ∈Θd

∑
n∈Zd

2jq(s+d/2)|aj,n,δ|qχQ(j,n)

⎞
⎠

1/q
∥∥∥∥∥∥∥
p

< ∞,

were Q(j, n) denotes the cube of length 2−j whose lower vertex is 2−jn. If we restrict 
ourselves to non-negative “levels” j and we add �p as a component we obtain the inho-
mogeneous Triebel-Lizorkin sequence spaces. To be precise, set

Λ+
d = {(j, n, δ) ∈ Λd : j ≥ 0},

and define

ts,dp,q = �p(Zd) ⊕ {f = (aλ)λ∈Λ+
d

: ‖f‖tsp,q < ∞}.

It is known that the wavelet transforms associated to certain wavelet bases normalized in 
the L2-norm are isomorphisms from F s

p,q(Rd) (resp., 
◦
F s
p,q(Rd) onto tsp,q(Rd) (resp., onto 

◦
ts,dp,q). See [17, Theorem 7.20] for the homogeneous case and [34, Theorem 3.5] for the 
inhomogeneous case. Thus, Triebel-Lizorkin spaces are isomorphic to the corresponding 
sequence spaces, and the aforementioned wavelet bases (regarded as distributions on 
Triebel-Lizorkin spaces) are equivalent to the unit vector systems of the corresponding 
sequence spaces.

A similar technique to the one used by Temlyakov in [33] to prove that the Haar 
system is a democratic basis for Lp when 1 < p < ∞ allows us to prove that the unit 
vector system E of 

◦
ts,dp,q satisfies

m1/p ≈ ϕl
m[E ,

◦
ts,dp,q], m ∈ N.

Consequently, if p < 1, the unit vector system of both 
◦
ts,dp,q and ts,dp,q is a strongly absolute 

unconditional basis.

Example 5.10. Given 0 < p < ∞, the p-convexified Tsirelson’s space, denoted T (p), is 
obtained from T by putting

‖x‖T (p) = ‖(|an|p)∞n=1‖
1/p
T (5.1)

for those sequences of real numbers x = (an)∞n=1 such that (|an|p)∞n=1 ∈ T . Equation (5.1)
defines a norm for 1 ≤ p and a p-norm when 0 < p < 1. Obviously, the space (T (1),

‖ · ‖T (1)) is simply (T , ‖ · ‖T ).
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For 0 < p < ∞, the canonical basis E of T (p) is 1-unconditional, permutatively 
equivalent to its square, and satisfies

m1/p ≈ ϕl
m[E , T (p)], m ∈ N.

Hence in particular if 0 < p < 1, E is strongly absolute.

6. Uniqueness of unconditional basis of sums of anti-Euclidean spaces

Our last application of Theorem 3.9 establishes that the uniqueness of unconditional 
bases up to permutation of anti-Euclidean quasi-Banach spaces is preserved by finite
direct sums.

Theorem 6.1. Let (Xi)i∈F be a finite family of quasi-Banach spaces whose Banach en-
velopes are anti-Euclidean. Suppose that for each i ∈ F , Bi is an unconditional basis of 
Xi such that

(i) The lattice structure induced by Bi in Xi is L-convex;
(ii) Bi is universal for well complemented block basic sequences; and
(iii) Bi ∼ B2

i .

Then the space 
⊕

i∈F Xi has a unique unconditional basis up to permutation.

Proof. Combining [14, Proposition 2.4] and [1, Lemma 2.3] we see that the Banach 
envelope of X =

⊕
i∈F Xi is anti-Euclidean. It is clear that the basis B =

⊕
i∈F Bi is L-

convex and permutatively equivalent to its square. By [1, Proposition 3.4], B is universal 
for well complemented block basic sequences. So, the result follows from Theorem 3.9. �

Merging the results from Sections 4 and 5 with Theorem 6.1 provides new additions 
to the list of spaces with unique unconditional basis up to a permutation.

Corollary 6.2. Let F be a finite set of indices. Suppose that for each i ∈ F , Xi is one of 
the following spaces:

(i) �ϕ, where ϕ verifies (4.1) and (4.2), in particular �p for p < 1;
(ii) d(w, p), where w verifies (4.3);
(iii) T ;
(iv) �(pn), where (pn)∞n=1 verifies the hypothesis of Theorem 4.9; in particular �1;
(v) h(pn), where (pn)∞n=1 increases to ∞ and satisfies supn(1/pn − 1/p2n) logn < ∞; 

in particular c0;
(vi) �p1(· · · �pi

(· · · (�pn
))), where 0 < pi < 1 for i ∈ N[n];

(vii) Hp(Td) for d ∈ N and 0 < p < 1;
(viii)

◦
ts,dp,q or ts,dp,q as in Example 5.9;
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(ix) T (p) for 0 < p < 1.

Then X =
⊕

i∈F Xi has a unique unconditional basis up to permutation.

If the reader prefers to remain within the bounds of locally convex spaces, we point 
out that Corollary 6.2 also provides new examples of Banach spaces with a unique 
unconditional basis up to a permutation. Indeed, the space in (iii), the spaces in (v), and 
the spaces in (iv) in the case when infn pn ≥ 1 are all locally convex.

Our results have applications also in connection with the topic of uniqueness of greedy 
basis (see [3]). Recall that a basis (xn)n∈N is said to be democratic if

∥∥∥∥∥
∑
n∈A

xn

∥∥∥∥∥ ≤ C

∥∥∥∥∥
∑
n∈B

xn

∥∥∥∥∥ , |A| = |B| < ∞.

Even though this notion had already been implicitly used in classical Banach space 
theory before, it was the celebrated characterization of Konyagin-Telmyakov of greedy 
bases as those bases that are simultaneously unconditional and democratic [25] that 
made democratic bases all-pervading within approximation theory. To the best of our 
knowledge, the list of known Banach spaces with a unique unconditional basis up to a 
permutation which in addition is democratic reduces to �1, c0, �2, T and T (2). A warning 
is in order here: before the alert reader begins to do their math, we advance that the 
unit vector system of Bourgin-Nakano spaces is not democratic unless it is equivalent to 
the unit vector system of �p for some p (see [3, Theorem 3.10]). Corollary 6.2 allows us 
to enlarge this scant list with one of the examples that we highlight from Corollary 6.2.

Theorem 6.3. The space �1 ⊕ T has a unique unconditional basis up to a permutation, 
and this basis is greedy. Hence, �1 ⊕ T has a unique greedy basis up to a permutation.
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