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In this paper, we present a method to determine the volume of wine in different types of glass liquid containers 
from a single-view image. The proposed model predicts red wine volume from a photograph of the glass 
containing the wine. Experimental results demonstrated satisfactory performance of our image-based wine 
measurement system, with a Mean Absolute Error lower than 10 mL. To train and evaluate our system, we 
introduced the WineGut_BrainUp dataset, a new dataset of glasses of wine that contains 24305 laboratory images, 
including a wide range of containers, volumes of wine, backgrounds, object distances, angles and lightning, with 
or without calibration object. The proposed methodology is a suitable analytical tool for automate measurement 
of red wine volume. Indeed, it has potential real life applications in diet monitoring and wine consumption 
studies.
1. Introduction

Accurate measurement of dietary intakes is crucial for researchers 
and public health institutions in studies aiming to improve general/spe-
cific health outcomes (De Rijk et al., 2021; González-Alzaga et al., 
2022). Diet assessment is mainly based on Food Frequency Question-
naires (FFQs) that inquire individuals about the frequency at which they 
consume different food items from a predefined list (Sotos-Prieto et al., 
2015). To calculate the grams of each food item consumed per day, 
frequency data are multiplied by the portion size of each food. Then, 
data (grams of food/day) are converted into daily nutrients intake by 
using food composition databases. Finally, daily nutrient intakes from 
the different food items are summed to obtain total daily intake of each 
nutrient. Main limitations of FFQs are that they rely on subject’s re-
call and might not accurately estimate the portion size/volume, and, 
consequently, are associated with misreporting. In the case of wine, es-
timation of its consumption through FFQs is particular quite imprecise 
as a portion (glass of wine) consumed is standardized to 100 cc, when 
this is not always real. Besides, and depending above all on the type of 
glass, this volume may be lower or higher than that estimated through 
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surveys (Pechey et al., 2016). Thus, the use of images could improve 
the quality of the data obtained on dietary assessment improving the 
estimation of portion size/volume (Yang et al., 2021; Jia et al., 2019; 
Fang et al., 2015). In fact, the problem of measuring liquid volume in 
an image can be solved applying Machine Learning & Artificial Intel-
ligence techniques, but is not deeply supported by research yet. One 
of the main challenges faced by this task is the fact that, in order to 
provide a measurement in milliliters, images shall include reference in-
formation, which is given by a calibration object inserted in the image, 
such as a checkerboard pattern (Fang et al., 2015, 2016; Siswantoro et 
al., 2014).

Food portion size/volume measurement from a single image of food 
items contained on a plate has been explored by (Chen et al., 2013). The 
proposed model includes a sophisticated implementation with adaptive 
thresholding and snake modelling. After food portion segmentation, a 
general 3D model that represented typical shapes of food had to be se-
lected. The accuracy reached was quite high even though a single-view 
2D photographic image does not contain the complete spatial infor-
mation of the object (Chen et al., 2013). The authors presented an 
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Fig. 1. Flowchart followed for the construction of WineGut_BrainUP dataset.
average error of 4% in food volume estimation. This method used the 
plate as scale reference and required measurements of its radius and 
depth parameters, that were provided by the user. Related research has 
been done towards volume measurement of irregular shape food using 
a computer vision system based on Monte Carlo method (Siswantoro et 
al., 2014). In spite of the refined hardware and software developed to 
carry out the measurements, the initial requirement of taking five im-
ages from different views of the object obscures real life diet monitoring 
applications of the system.

Container volume estimation and liquid content estimation are some 
of the tasks in which (Mottaghi et al., 2017) focused on. Their pictures 
included at least four extra objects in each image in order to avoid 
inconclusive results, as these objects were able to provide contextual 
information which was helpful in the task of estimating the volume 
of the container. The proposed convolutional neural network (CNN) 
followed a classification problem approach as it led to a better per-
formance (Mottaghi et al., 2017). The suggested method achieved 32%
per-class accuracy in content estimation, which is an insufficient over-
all performance for our use case, also due to the inherent challenges 
posed by the problem.

With this background, in this paper, we propose a method to esti-
mate from a single-view RGB (Red, Green and Blue) photograph the 
volume of red wine in a glass without the need to incorporate a refer-
ence pattern in the image. For this purpose, we trained a deep learning 
model to estimate wine volume on the most common types of wine 
glasses. Our experimental evaluations on the specific dataset developed 
for our study, the WineGut_BrainUp dataset, show promising results, 
with a performance that reduces the Mean Absolute Error (MAE) to less 
than 10 mL. This method is suitable to measure in a fast, simple and ef-
ficient way the volume of wine in a glass, overcoming the limitations 
of FFQs, where volume estimations are subjective and error-prone. In-
stead, our proposed model is aimed to provide a generalized automatic 
tool for measuring liquid volume in nutritional studies and dietary as-
sessment.
2

2. Material and methods

We propose a regression convolutional neural network (CNN) to 
carry out red wine volume estimation from photos of wine glasses. The 
code is based on the image classification module available in the DEEP 
Open Catalogue (García et al., 2020). The original classification model 
developed in the DEEP framework was adapted for regression1 (Cobo, 
2021), as such approach led to an improved performance in our task.

2.1. WineGut_BrainUP dataset

The WineGut_BrainUP dataset (Bartolomé et al., 2021) is the specific 
dataset that was created to develop our study. It includes 24305 labora-
tory photographs of glasses containing red wine that were taken in the 
laboratories of the Institute of Food Science Research (CIAL-CSIC), In-
stitute of Grapevine and Wine Sciences (ICVV-CSIC) and the Center for 
Biomedical Research of La Rioja (CIBIR). Three commercial red wines 
representative of “joven”, “crianza” and “reserva” wines were selected 
to take the photographs. For each wine, the same flowchart was fol-
lowed, as represented in Fig. 1. Photographs were taken indoors and 
outdoors considering the following fields:

• Type of glass (n = 9): balloon wine glass, Bourgogne wine glass, 
Bordeaux wine glass, Chardonnay wine glass, wine tasting glass, 
coffee glass, water glass, short rock glass, and rock glass. The wine 
tasting glass shape used is the wine glass with specifications defined 
in ISO 3591:1977 (International Organization for Standardization, 
1977). An example of each of the glasses is depicted in Fig. 2. The 
average measurements of these glasses are included in Table 1.

• Volume of wine (n = 11): 50, 75, 100, 125, 150, 175, 200, 225, 
250, 275 and 300 mL. Measurements were done using a test tube 
with ±0.5 mL precision.

1 https://github .com /MiriamCobo /BrainGut -WineUp .git.

https://github.com/MiriamCobo/BrainGut-WineUp.git
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Fig. 2. Glasses used in the WineGut_BrainUp dataset. In these examples, glasses were filled with 150 mL (balloon, Bourgogne Bordeaux, tasting and Chardonnay 
wine glasses) or 100 mL (coffee, short rock, rock and water glasses) of red wine.

Table 1. Average size of the wine glasses used in this study.

Type of glass Volume (mL) Height (cm) Maximum diameter (cm) Opening diameter (cm)
Balloon wine glass 765 11.0 10.9 8.4

Bourgogne wine glass 815 13.5 10.8 7.0

Bordeaux wine glass 495 12.0 8.5 6.6

Chardonnay wine glass 315 9.8 8.0 6.0

Wine tasting glass 215 10.0 6.5 5.4

Coffee glass 185 5.8 8.1 8.1

Water glass 315 8.9 8.4 8.4

Short rock glass 135 7.4 7.2 7.2

Rock glass 235 9.5 7.6 7.6
• Object distance (n = 3): far (50-70 cm), medium (20-30 cm) and 
close (10-15 cm).

• Angle (n = 4): upper 1 (0, 30)◦, upper 2 (30, 60)◦, central (0◦), 
low (-30, 0)◦.

Additionally, the following fields were considered for indoors pic-
tures:

• Photographic background (n = 2): white, dark blue.
• Reference (n = 2): yes, no. A 1e coin was taken as possible refer-

ence (calibration object).
• Lighting (n =2): flash, no flash.

Fig. 3 shows four examples of laboratory images for different con-
tainers, backgrounds (outdoors, white and blue photographic back-
grounds), angles, object distances and reference examples. This refer-
3

ence was not taken into consideration in the model as a calibration 
object. The purpose of the reference is to serve as an example of an ex-
tra object incorporated in the image and see if it has an influence in the 
predictions (see an example in Fig. 3).

2.2. Model training

The procedure to estimate wine volume in a glass container first 
consisted in training the convolutional neural network with laboratory 
images. Convolutional neural networks (also known as CNNs or Con-
vNets) are a type of deep learning neural networks particularly designed 
for analyzing image data, both with numerical or categorical labels. To 
predict continuous numerical data, convolutional neural networks in-
clude a regression layer at the end of the network. As a result, the 
output of our model is a real number (regression approach) instead 
of being an integer class (classification problem). The regression layer 
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Table 2. Number of images available in the WineGut_BrainUP dataset for every wine volume.

Volume (mL) 50 75 100 125 150 175 200 225 250 275 300
# train 2187 2194 2194 2195 2025 2025 1508 1393 1261 1178 919

# validation 300 300 300 301 277 277 207 191 173 161 126

# test 299 301 301 300 277 278 206 191 173 161 126

# all 2786 2795 2795 2796 2579 2580 1921 1775 1607 1500 1171
Fig. 3. Examples of laboratory images in the WineGut_BrainUP dataset.

is a fully-connected (dense) layer with a single node and a linear ac-
tivation function, which replaces the fully-connected softmax classifier 
layer typically used for classification (Rosebrock, 2019). In addition, 
CNN regression models are trained with a continuous value prediction 
loss function, which in our case was the mean squared error function.

From the 24305 total number of photographs available, we sepa-
rated around 80% for training (19079 photographs), 10% for validation 
(2613 photographs) and 10% for testing (2613 photographs). The num-
ber of images available for each volume and set is shown in Table 2. All 
sets were balanced with respect to the number of photographs belong-
ing to each volume class. The training set is used to train the model. 
During the training phase, the hyperparameters are tuned in order to 
optimize the model’s performance over the validation set. The test set 
contains photographs that the model has not previously seen and thus 
is used to assess the final unbiased accuracy of the model.

All types of liquid containers were included in the same network, as 
predictions showed similar validation metrics performance if separate 
models were trained for the proper wine glasses (balloon wine glass, 
Bourgogne wine glass, Bordeaux wine glass, Chardonnay wine glass and 
wine tasting glass) and the other glasses (coffee glass, water glass, short 
rock glass, and rock glass). In addition, training independent models for 
each type of image background gave similar results, and the network 
precision was comparable to the precision of the global CNN model 
presented in this paper.
4

Table 3. Regression metrics (MAE and 
RMSE) evaluation for wine volume pre-
dictions with our model.

Set MAE (mL) RMSE (mL)
Training 2 3

Validation 8 12

Test 8 11

We use a Xception (Chollet, 2017) neural network with images of 
size 528 × 528 pixels. In our method, dataset images were resized in or-
der to meet this requirement. The batch size was set to 16, the number 
of training epochs was fixed up to 50 and we employed Adam optimizer 
(Kingma and Ba, 2017; Loshchilov and Hutter, 2019). A pretrained Im-
ageNet base model was first loaded. Then, custom layers were included 
to adapt the model to the volume estimation task by using a linear acti-
vation function in the last layer. As the number of available images was 
quite high (24305 laboratory images), we disabled data augmentation 
in our model, also in order to reduce computation time.

The model was trained with a GPU Tesla V100-PCIE-32GB for 20 
hrs. The model was coded using Keras (Chollet et al., 2015) and Ten-
sorFlow version 1.14.0 (Abadi et al., 2015) in Ubuntu 18.04.2 LTS.

3. Results and discussion

Different experiments were conducted to assess the quality of the 
developed models. Independent CNN were trained and evaluated with 
test laboratory images. The following results are referred to the final 
CNN model which was described in Section 2.2.

3.1. Performance evaluation of the proposed model in laboratory images

3.1.1. Saliency maps examples for predicted images

In this section we present saliency maps for two sample test images, 
in order to detect those parts of the image in which the model fo-
cused to make the wine volume estimation. We depict gradient saliency 
(also known as vanilla gradient) (Simonyan et al., 2013) and integrated 
gradients maps (Sundararajan et al., 2017) both in its standard and 
smoothed (Smilkov et al., 2017) version (Anh, 2018), as it is illustrated 
in Fig. 4.

The explanation provided in Fig. 4(a) by the saliency maps high-
lights both the glass and its content, whereas the gradients’ visualization 
avoids any misleadingness that could have occurred due to the outdoors 
background surrounding the glass.

The explanation given by the saliency maps in Fig. 4(b) emphasizes 
the glass and the wine in it, while it does not pay attention to the coin. 
Therefore, our model is focusing on the container and its content in 
order to make the prediction, as it was expected.

3.1.2. Regression metrics analysis on wine volume estimation results

Wine volume model’s predictions were evaluated using the follow-
ing regression metrics: Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE) and Coefficient of Determination (𝑅2). MAE and RMSE 
results for training, validation and test sets are listed in Table 3. The 
coefficient of determination was calculated with test images, giving a 
value of 𝑅2 = 0.97.

Fig. 5 shows violin plots for the predictions of each wine volume 
class available in the dataset. As it can be inferred from the shape of 
the violin plots distribution, predicted volumes are in general highly 
concentrated around the median.
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Fig. 4. Standard and smoothed saliency maps examples. (a) Saliency maps of Chardonnay wine glass filled with 150 mL. The predicted volume is 146.5 mL (2.3%
relative error). (b) Saliency maps of Bordeaux wine glass filled with 275 mL. The estimated volume is 259.6 mL (5.6% relative error).

Fig. 5. Violin plots of the volumes distribution for model’s predictions.
The amount of volume in the glass reduces the precision of the pre-
diction when wine content is over 250 mL, usually predicting lower 
volumes than expected. One reason for this behaviour can be attributed 
to the lower number of images corresponding to higher volumes com-
pared with the others, as listed in Table 2.

However, it should be noticed that, for real applications of the 
model, filling a glass of red wine with more than one third of its ca-
pacity is unusual, thus, volume content is hardly ever over 200 mL.

3.1.3. Effect of different image conditions on wine volume estimation

The above evaluations and saliency maps show an overview of our 
model’s performance. In Appendix we present Fig. 6, which depicts 
various graphs representing the Mean Absolute Error under different 
conditions (type of glass, volume content, background, object distance, 
angle, light and reference).

The main results show that glass type, angle, object distance, light-
ning state and reference objects in the image have no significant in-
fluence in volume estimations, whereas background sometimes has a 
negative impact on the precision of the predictions. In fact, when the 
glass of wine is placed in an environment that includes other objects 
(i.e. outside background in the dataset), model’s performance is more 
likely to drop because of the presence of these items, that sometimes 
confuse the CNN. Moreover, WineGut_BrainUP dataset is unbalanced 
5

when taking into account the number of images for the different back-
grounds that are available: white (10896), blue (10827) and outside 
(2582), where a significant reduced number of outdoors pictures were 
included. Thus, the performance of the model slightly decreases for im-
ages with outside backgrounds.

3.2. Comparison of the proposed model with existing methods

The precision of our model has been compared with the evalua-
tion metrics of the state-of-the-art systems in liquid volume estimation 
found in the literature. As already mentioned in section 1, (Mottaghi et 
al., 2017) CNN model is the most comparable existing method with 
our model, in terms of operation and measurement conditions. The 
other referenced systems either incorporated a more sophisticated im-
plementation that required more than one photograph in order to cover 
different views of the object to be measured, such as (Siswantoro et al., 
2014), or were not developed specifically for liquids, like (Chen et al., 
2013).

As a result, we compare the performance of our model with the 
suggested method by (Mottaghi et al., 2017) that followed a classifica-
tion approach, reaching a 32% per class accuracy. We cannot directly 
compare this evaluation metric with our previous analysis, as we fol-
lowed a regression approach, but it is straightforward to deduce that 
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our reported 8 mL MAE is lower than the cited precision, as it will be 
shown in the following lines. Briefly explained, (Mottaghi et al., 2017) 
divided the space of volumes into 10 classes, where the maximum vol-
umes in each class were 50, 100, 200, 300, 500, 750, 1000, 2000, 3000, 
∞ (unit of measurement: mL). Consequently, their method cannot ex-
ceed in performance the minimum space in mL between the volume 
classes with which it was trained, therefore, our approach outperforms 
the mentioned system.

3.3. Model limitations

The range of application of our model would be limited to the 
use of glass containers in the photos that are similar in shape and 
size to the ones with which our model was trained. However, the 
WineGut_BrainUP dataset covers all kinds of glass containers that are 
representative in the wine world, so this requirement is not likely to 
have an impact in real life applications. Indeed, our method predicts 
red wine volume from a photograph without requiring any information 
about the type of glass, nor its measurements. The reason for this be-
haviour is that our model was trained with all representative glasses in 
the wine world using photographs that were taken under different con-
ditions, which cover a wide range of perspectives in terms of angles and 
object distances. Therefore, our model has learnt to recognize the out-
line of the glass container regardless of the possible small variations in 
size, height or shape that could occur between different manufacturers.

Additionally, our model provides a volume estimation for an image 
that contains a single glass of red wine. One challenging problem is 
automatic estimation of liquid volumes for all kinds of liquids and con-
tainers, or even in the case when there is more than one glass container 
in the image. To handle this issue, a larger dataset including enough 
samples of these elements would be required for estimating liquid vol-
ume.

Furthermore, from the proposed model (Cobo, 2021), the incorpora-
tion of new liquids is straightforward, the only requirement is to include 
in a new training phase of the model photographs of glasses containing 
the desired liquid. However, as the model has already been trained to 
recognize the glasses’ outline, the number of images necessary for this 
new development would not be has high as in the WineGut_BrainUP 
dataset. In fact, in the testing phase of the model, in an independent 
test, we successfully estimated the liquid volume of a glass filled with 
white wine, although this was not the target wine in our method.

4. Conclusion

We have presented a new CNN based regression model to determine 
red wine volume in a glass container from single-view RGB images. 
This method does not require any reference object in the image, out-
performing similar systems that were developed in the literature for 
related tasks. The proposed model efficiently estimates wine volume in 
almost any kind of wine glass container showing that in order to solve 
the liquid volume estimation challenge it is not needed to include a 
calibration object in the image. In contrast, this presumed deficiency 
can be overcome with a larger training dataset including enough pho-
tographs of all representative situations that could occur, so that the 
system is able to recognize the shape and size of the glass recipient 
containing the liquid. We introduced WineGut_BrainUP dataset to train 
and evaluate our system, which has potential real life applications in 
diet monitoring and wine consumption studies. In the future, we plan 
to incorporate volunteers’ photographs in a subsequent study so that we 
can generalize our model with new real world backgrounds and setups, 
solving a long-standing problem in nutrition science, where FFQs-based 
dietary assessment often results subjective and time-consuming. This 
study aims to provide an automated tool for red wine volume estima-
tion based on the proposed model, in a simple and efficient way that 
only requires the subject to take a photograph of the glass of wine with 
6

a mobile phone, instead of having to carry a beaker or any other instru-
ment to perform the measurement. Overall, this modelling will facilitate 
accurate measurement of liquid volume in diet and consumption stud-
ies.
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