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Abstract: In this paper, we consider the motion of an asymmetric heavy gyrostat, when its center of
mass lies along one of the principal axes of inertia. We determine the possible permanent rotations
and, by means of the Energy-Casimir method, we give sufficient stability conditions. We prove that
there exist permanent stable rotations when the gyrostat is oriented in any direction of the space,
by the action of two spinning rotors, one of them aligned along the principal axis, where the center
of mass lies. We also derive necessary stability conditions that, in some cases, are the same as the
sufficient ones.
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1. Introduction

A gyrostat G is a mechanical system made up of a rigid body P , called the platform,
and other bodies R, called the rotors, connected to the platform in such a way that the
motion of the rotors does not modify the distribution of mass of the gyrostat G. Due to this
double spinning, the platform, on the one hand, and the rotors, on the other, the gyrostat is
also known under the name of a dual-spin body, especially in astrodynamics, where these
artifacts are widely used in spacecraft dynamics in order to stabilize their rotations; see,
e.g., [1–5].

In the absence of external torques, this problem is an extension of the free rigid body
motion. It seems (see [6]) that Zhukovskii [7] was the first to consider the gyrostat problem
and, soon after, Volterra [8] used this model to represent the Earth’s rotational motion,
assuming that, in the interior of the Earth, there was a cavity filled with an inviscid, homo-
geneous fluid. Moreover, he obtained the solution in terms of elliptic functions. Although
it is known that the problem is integrable, much work has been dedicated to it, because it
depends on several parameters, such as the principal moments of inertia and the gyrostatic
moments, and there is a rich choreography of bifurcations; see, for instance, [9–18], to quote
only a few references. As expected, scientists have moved a step forward by adding some
complexity to the problem, by considering generalized models to be of interest in practical
applications, mainly in the field of astrodynamics. In this way, most of the works are
devoted to the consideration of external torques or inner perturbations. For instance, some
authors assume elasticity or periodic time dependence of the moments of inertia [4,5],
while other authors focus on the attitude dynamics of a gyrostat rotating and moving on a
circular orbit [15,19,20], or under the action of a uniform gravity field [21–29].

The paper that we present here is related to the latter problem, and it is an extension
of the work previously presented by the authors [26,27]. We consider the rotation of a
tri-axial gyrostat under a uniform gravity field. We assume that there are two rotors, one

Mathematics 2022, 10, 1882. https://doi.org/10.3390/math10111882 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10111882
https://doi.org/10.3390/math10111882
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2859-1116
https://doi.org/10.3390/math10111882
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10111882?type=check_update&version=1


Mathematics 2022, 10, 1882 2 of 17

along the direction of a principal axis of inertia, where we assume the center of mass lies
(z-axis), and another one along another principal axis of inertia (x-axis). In particular, we
are interested in the existence of stable permanent rotations. When the rotors are at relative
rest with respect to the platform, many works are devoted to studying the stability of
particular motions, such as Staude’s permanent rotations [30,31], planar motions [32,33],
pendulum-like motions [34,35] or regular precessions [16,36], to mention a few. However,
the action of the rotors plays an important role in the stabilization of the motion of a
heavy gyrostat and it is a key point in obtaining stable solutions, mainly for its practical
applications [15,18,24,37,38].

Different approaches can be followed to derive conditions on the stability of permanent
rotations. The classical approach uses Lyapunov functions [17,21,22] but it is also possible
to obtain insight by analyzing the invariant manifolds and their bifurcations [39]. In the
case treated in this work, we use the Energy-Casimir method [40,41], as a complementary
approach to derive sufficient stability conditions for the existence of stable permanent
rotations. This method has been used successfully in previous works [23,26,27,42,43].
In this way, from the equations of motion—see, e.g., [6]—we focus on two families of
equilibria; we denote E0 and E1, which constitute a generalization of those obtained in [27]
and potentially cover any orientation of the gyrostat in the space. The family E1 proves to
be stable if I2 is the largest moment of inertia or if I3 > I2 > I1 and the angular velocity of
rotation |ω| is small enough or, equivalently, if the gyrostatic moment l3 is great enough. In
cases not covered by the above conditions—that is to say, when I1 is the largest principal
moment of inertia or I3 > I1 > I2—we can obtain stable rotations by switching l1 and l2,
i.e., by turning on the gyrostatic moment l2 and l1 off.

In respect to the other family of equilibria, E0, we find that it is a limit case of the other
one and stability is also obtained if |ω| is small enough, although it can be extended for
every value of ω. Hence, in the case here considered, given a rotation axis, the action of the
rotors leads to stable permanent rotations provided that the center of mass is lying on the
vertical axis, which is the most frequent practical case.

The paper is organized as follows. In Section 2, we consider the equations of the
motion and discuss the equilibrium solutions. Section 3 is devoted to the stability analysis,
where the main results about sufficient and necessary conditions of stability are presented.
Finally, conclusions are given in Section 4.

2. Equations of Motion and Equilibrium Solutions

We consider an asymmetric heavy gyrostat with two rotors, whose axes are aligned
with the principal axes of the platform, in a uniform gravity field. It is assumed that the
mass distribution of the gyrostat is not modified by the relative motion of the rotors and
that the whole gyrostat rotates with a fixed point O, which may be different from the center
of mass G.

We use two orthonormal reference frames centered at the fixed point O (see Figure 1).
On the one hand, we use the space or inertial reference frame F{O, X, Y, Z}, fixed in the
space, with the direction of the Z-axis opposite to the acceleration g of the gravity field.
On the other hand, we use the body frame B{O, x, y, z}, fixed with the gyrostat, so that
the axes coincide with the principal axes of inertia of the gyrostat. The relative attitude
between these two reference frames results from three consecutive rotations involving
three angles, such as the Euler angles. Note that, as we study the permanent rotations
of the gyrostat, we only need two of these angles to define the orientation of the rotating
gyrostat in the inertial fixed frame F . Let I = (I1, I2, I3) be the inertia tensor in the body
frame B and ω = (ω1, ω2, ω3) the angular velocity of the gyrostat expressed in the body
frame. Then, the angular momentum of the gyrostat, considered as a rigid body, is given
by π = Iω. Results about the stability of permanent rotations under the action of only one
rotor are given in [26,27]. The combination of these two cases, a rotor acting on the z axis
and another rotor on one of the other principal axes of inertia, will be considered here. In
this sense, we take l2 = 0 in the vector l = (l1, l2, l3), the angular momentum of the rotors
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in the body frame. The vector k̂ = (k1, k2, k3) is the unitary vector in the direction of the
fixed Z axis, expressed in the body frame B. This vector can be expressed as

k̂ = (sin ϕ sin θ, cos θ, cos ϕ sin θ), (1)

where the angles θ ∈ [0, π] and ϕ ∈ [0, 2π] give us the orientation of the gyrostat with
respect to the inertial reference frame F (see Figure 1). If (0, 0, z0) are the coordinates of the
center of mass G in the body frame, the equations of motion result to be (see, e.g., [6,44])

dπ1

dt
=

(
I2 − I3

I2 I3

)
π2π3 −

l3π2

I2
+ mgz0k2,

dπ2

dt
=

(
I3 − I1

I1 I3

)
π1π3 +

l3π1

I1
− l1π3

I3
−mgz0k1,

dπ3

dt
=

(
I1 − I2

I1 I2

)
π1π2 +

l1π2

I2
,

dk1

dt
=

k2π3

I3
− k3π2

I2
,

dk2

dt
=

k3π1

I1
− k1π3

I3
,

dk3

dt
=

k1π2

I2
− k2π1

I1
.

(2)

Under these hypotheses, permanent rotations appear as the equilibrium points of
Equation (2) and we have the following result.

Figure 1. Asymmetric gyrostat and reference frames.

Theorem 1. There are two families of equilibrium points. The first one is given by those points of
the form

E0 ≡ (I1ω sin ϕ, 0, I3ω cos ϕ, sin ϕ, 0, cos ϕ),
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where ϕ ∈ [0, 2π) and ω ∈ R such that

(l3ω− gmz0) sin ϕ−ω cos ϕ(l1 + (I1 − I3)ω sin ϕ) = 0. (3)

The second one is defined by points of the form

E1 ≡ (I1ω sin ϕ sin θ, I2ω cos θ, I3ω cos ϕ sin θ, sin ϕ sin θ, cos θ, cos ϕ sin θ),

where ϕ ∈ [0, 2π), θ ∈ [0, π/2) ∪ (π/2, π] and ω ∈ R such that

l1 + (I1 − I2)ω sin ϕ sin θ = 0, (I2 − I3)ω
2 cos ϕ sin θ + gmz0 − l3ω = 0. (4)

Proof. In terms of the angles θ and ϕ, introduced in (1), the components of the angular
momentum can be written as

π1 = ωI1 sin ϕ sin θ, π2 = ωI2 cos θ, π3 = ωI3 cos ϕ sin θ, (5)

where ω is the modulus of the angular velocity. Now, it is easy to verify that, under this
parameterization, the last three equations of system (2) vanish. Thus, we have to check
when the three first equations vanish, which is found to be

cos θ(gmz0 − l3ω + (I2 − I3)ω
2 cos ϕ sin θ) = 0,

sin θ((gmz0 − l3ω) sin ϕ + ω cos ϕ(l1 + (I1 − I3)ω sin ϕ sin θ)) = 0,

ω cos θ(l1 + (I1 − I2)ω sin ϕ sin θ) = 0.

(6)

Discarding the case ω = 0, there are two kinds of solutions: those verifying cos θ = 0
and those that do not.

If cos θ = 0, the first and the third equations (6) vanish. Thus, provided that θ ∈ [0, π],
sin θ = 1, and then all the equations are satisfied if and only if

(l3ω− gmz0) sin ϕ−ω cos ϕ(l1 + (I1 − I3)ω sin ϕ) = 0.

If cos θ 6= 0, the third equation in (6) vanishes if

l1 + (I1 − I2)ω sin ϕ sin θ = 0.

By substitution of l1 in the second equation, the first two equations vanish at the same
time if the condition

(I2 − I3)ω
2 cos ϕ sin θ + gmz0 − l3ω = 0

holds.

Remark 1. This result is very similar to Theorem 1 in [27], but replacing gmz0 by gmz0 − l3ω.
Moreover, the family E0 is a limit case of the family E1. However, the two conditions (4) do not need
to be satisfied at the same time, but only the linear combination (3).

It is worth noting that E0 and E1 give rise to equilibrium solutions with the gyrostat
oriented along any direction of the space, provided that the corresponding gyrostatic
moments verify appropriate conditions, as they are (3) or (4). Our next step will be to
determine under which conditions they are stable.
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3. Stability Analysis

Let us consider the stability of the solutions in Theorem 1. It is known that (2) is a
Lie–Poisson system (see [6,23]). The associated Hamiltonian function is given by

H =
1
2

(
π2

1
I1

+
π2

2
I2

+
π2

3
I3

)
+ mgz0k3, (7)

while the corresponding Poisson bracket is defined as

{F ,G}(π, k̂) = −(π + l) · (∇πF ×∇πG)− k̂ · (∇πF ×∇kG +∇kF ×∇πG). (8)

Moreover, there are two Casimir functions:

C1 ≡ k2
1 + k2

2 + k2
3 = 1, (9)

C2 ≡ (π1 + l1)k1 + π2k2 + (π3 + l3)k3 = pψ, (10)

being pψ the component of the total angular momentum π + l along the fixed Z axis. These
two Casimir functions are used to define the augmented Hamiltonian given by

HA =
1
2

(
π2

1
I1

+
π2

2
I2

+
π2

3
I3

)
+ mgz0k3 + ((π1 + l1)k1 + π2k2

+ (π3 + l3)k3)λ + (k2
1 + k2

2 + k2
3)µ,

(11)

where λ and µ are suitable parameters such that the equilibrium positions are critical points
ofHA.

Under these considerations, in order to establish sufficient stability conditions, we
will make use of the classical Energy-Casimir method [43,45] and, more precisely, of a
generalized result given by Ortega and Ratiu [41], which reads as

Theorem 2 (Generalized Energy-Casimir method). Let (M, {., .}, h) be a Poisson system, and
m ∈ M be an equilibrium of the Hamiltonian vector field Xh. If there is a set of conserved quantities
C1, . . . , Cn ∈ C∞(M) for which

d(h + C1 + · · ·+ Cn)(m) = 0,

and
d2(h + C1 + · · ·+ Cn)(m)

∣∣∣
W×W

is definite for W = ker dC1(m)∩ · · · ∩ ker dCn(m), then m is stable. If W = {0}, m is always stable.

Let us proceed to the application of this result. To begin with, we need to identify the
space W, which is defined from Equations (9) and (10) as

W = ker dC1 ∩ ker dC2.

Taking into account the parameterization (1), (5), we obtain

dC1 = sin ϕ sin θdπ1 + cos θdπ2 + cos ϕ sin θdπ3+

(l1 + ωI1 sin ϕ sin θ)dk1 + ωI2 cos θdk2 + (l3 + ωI3 cos ϕ sin θ)dk3,

dC2 = 2 sin ϕ sin θdk1 + 2 cos θdk2 + 2 cos ϕ sin θdk3.
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Solving the system dC1 = dC2 = 0, and identifying the six vectors of the canonic basis
in R6, (ê1, ê2, ê3, ê4, ê5, ê6) with (dπ2, dπ1, dπ3, dk2, dk1, dk3), we find that W is generated by
the following four vectors

v1 = ê1 cos ϕ sin θ − ê3 cos θ,
v2 = ê2 cos ϕ sin θ − ê3 sin ϕ sin θ,
v3 = ê3(l3 sec ϕ cot θ + (I3 − I2)ω cos θ) + ê4 cos ϕ sin θ − ê6 cos θ,
v4 = ê3(l3 tan ϕ− l1 − (I1 − I3)ω sin ϕ sin θ) + ê5 cos ϕ sin θ − ê6 sin ϕ sin θ,

provided cos ϕ sin θ 6= 0. Now, let us consider a vector v in W, expressed as

v = x1v1 + x2v2 + x3v3 + x4v4,

where xi ∈ R, i = 1, . . . , 4. Thus, the quadratic form

d2(h + C1 + · · ·+ Cn)(m)
∣∣∣
W×W

in the variables xi is obtained from vT ·Hess(HA) · v. In this way, we obtain

Hess(HA)
∣∣∣
W×W

=


h11 h12 h13 h14
h12 h22 h23 h24
h13 h23 h33 h34
h14 h24 h34 h44

, (12)

where

h11 =
1

I2 I3
(I2 cos2 θ + I3 cos2 ϕ sin2 θ),

h12 =
1
I3

sin ϕ sin θ cos θ,

h13 =
1
I3

[
(I3λ + (I2 − I3)ω) cos2 θ − l3 sec ϕ cos θ cot θ + I3λ cos2 ϕ sin2 θ

]
,

h14 =
1
I3
[l1 + (I3λ + (I1 − I3)ω) sin ϕ sin θ − l3 tan ϕ] cos θ,

h22 =
1

I1 I3
(I3 cos2 ϕ + I1 sin2 ϕ) sin2 θ,

h23 =
1
I3
[(I3λ + (I2 − I3)ω) sin ϕ sin θ − l3 tan ϕ] cos θ,

h24 =
1
I3

[
(I3λ + (I1 − I3)ω sin2 ϕ) sin θ + (l1 − l3 tan ϕ) sin ϕ

]
sin θ,

h33 =
1
I3

[
(2I3µ + 2(I2 − I3)I3λω + (I2 − I3)

2ω2) cos2 θ−

2(I3λ + (I2 − I3)ω)l3 sec ϕ cos θ cot θ + l2
3 sec2 ϕ cot2 θ + 2I3µ cos2 ϕ sin2 θ

]
,

h34 =
1
I3
[(l3 tan ϕ− l1)l3 sec ϕ cot θ + (l1(I3λ + (I2 − I3)ω) cos θ +

((I1 − I3)(I2 − I3)ω
2 + (I1 + I2 − 2I3)I3ωλ + 2I3µ) sin ϕ sin θ cos θ−

(2I3(λ−ω) + (I1 + I2)ω)l3 tan ϕ cos θ]

h44 =
1
I3

[
2I3µ cos2 ϕ sin2 θ + (2I3µ + 2(I1 − I3)I3λω + (I1 − I3)

2ω2) sin2 ϕ sin2 θ +

2(I3λ + (I1 − I3)ω)(l1 − l3 tan ϕ) sin ϕ sin θ + (l1 − l3 tan ϕ)2
]
.

(13)
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3.1. Stability of the Equilibrium E1

We first focus on the equilibrium E1 in order to give both sufficient and necessary con-
ditions of stability. In this way, for the sufficient conditions, we obtain the following result.

Theorem 3. If cos ϕ sin θ 6= 0, the equilibrium E1 is stable if I2 is the largest moment of inertia,
or if I3 > I2 > I1 and

|l3| > max
∣∣∣∣2(I2 − I3)ω cos ϕ sin θ ± w

√
(I3 − I2)(I2 − (I2 − I3) cos2 ϕ sin2 θ)

∣∣∣∣ (14)

Proof. First of all, it is deduced that E1 is a critical point of the augmented Hamiltonian
(11) if

λ = −ω, µ =
I2

2
ω2. (15)

Substituting this value into Equation (13), the corresponding reduced Hessian matrix
is positive definite if all the principal minors are positive. In this case, if we denote the
minors by Dj (j = 1, . . . , 4), we have

D1 =
1

I2 I3
(I2 cos2 θ + I3 cos2 ϕ sin2 θ),

D2 =
cos2 ϕ sin2 θ

I1 I2 I3
(I2 cos2 θ + (I1 sin2 ϕ + I3 cos2 ϕ) sin2 θ),

D3 =
cos2 ϕ cos2 θ sin2 θ

I1 I2 I3
B0,

D4 =
ω2 cos4 ϕ cos2 θ sin4 θ

I1 I2 I3
(I2 − I1)B1,

(16)

where

B0 = (l3 − 2(I2 − I3)ω cos ϕ sin θ)2 + ω2(I2 − I3)(I2 cos2 θ + (I1 sin2 ϕ + I3 cos2 ϕ) sin2 θ),
B1 = (l3 − 2(I2 − I3)ω cos ϕ sin θ)2 + ω2(I2 − I3)(I2 − (I2 − I3) cos2 ϕ sin2 θ).

(17)

Taking into account that D1 and D2 are positive (cos ϕ sin θ 6= 0), we only need to
verify whether D3 and D4 are positive. On the one hand, it is clear that if I2 is the largest
moment of inertia, both B0 and B1 are positive, as well as D3 and D4. As a consequence, E1
is stable.

On the other hand, if I2 is not the largest moment of inertia, we distinguish two cases,
depending on the sign of I2 − I1.

Case 1. I2 − I1 > 0. In this case, as I2 is not the largest moment of inertia, it must be
I3 > I2 > I1 and the sign of B0 and B1 can be either positive or negative. To have stability,
both of them must be positive. However,

B1 − B0 = (I2 − I1)(I2 − I3)ω
2 sin2 ϕ sin2 θ ≤ 0

and, if B1 is positive, also B0 is positive. Thus, it is enough to check when B1 > 0. By
considering B1 as a second-degree polynomial in l3, it is easy to verify that it has two real
roots given by

r1,2;B1 = 2(I2 − I3)ω cos ϕ sin θ ±ω

√
(I3 − I2)(I2 − (I2 − I3) cos2 ϕ sin2 θ). (18)

Taking into account that the coefficient of l2
3 is positive, B1 is positive if |l3| >

max |r1,2;B1 |, and the theorem is proven.
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Case 2. I2 − I1 < 0. In this case, if I2 > I3, both B0 and B1 are positive and, as a
consequence, D4 < 0, and nothing can be said about the stability. On the contrary, if I2 < I3,
we have

B1 − B0 = (I2 − I1)(I2 − I3)ω
2 sin2 ϕ sin2 θ ≥ 0,

and B0 cannot be positive if B1 is negative. Thus, D3 and D4 cannot be positive at the same
time and, again, nothing can be said about the stability.

Remark 2. In the case sin θ = 0, the equations of motion (2) reduce to

(0,±(l3ω− gmz0),±l1ω, 0, 0, 0).

Then, we have an equilibrium solution if l1 = 0 and l3ω − gmz0 = 0. In this way, we
recover a particular case of the equilibrium E2, mentioned in [26], where it is established that there
is stability if I2 is the largest moment of inertia, or if I2 > I1 and

l4
3 > I2(I3 − I2)m2g2z2

0, (19)

in agreement with the result stated in Theorem 3. It is worth noting that the last condition, (19), is
no more than a limiting case of Theorem 3. Indeed, when sin θ → 0, the roots given by Equation (18)
tend to the limit value

r1,2;B1 = ±ω
√
(I3 − I2)I2

and stability is achieved if |l3| > |ω
√
(I3 − I2)I2|. Taking into account the relation between l3 and

ω, we obtain the condition (19). Nonetheless, if we proceed from the very beginning, computing the
principal minors of the reduced Hessian matrix in W ×W when sin θ = 0, we arrive at

D1 =
1
I2

+
I2ω2

l2
3

, D2 =
l2
3 + I2

2 ω2

I1 I2l2
3

,

D3 =
l2
3 + I2(I2 − I3)ω

2

I1 I2 I3l2
3

, D4 =
(I2 − I1)(l2

3 + I2(I2 − I3)ω
2)ω2

I1 I2 I3l2
3

.
(20)

From here, it follows that, if I2 > I1 and l2
3 + I2(I2 − I3)ω

2 > 0, all the principal minors are
positive. In this way, we recover again the conditions of stability of Theorem 3, which are the same
as given in [26].

To complete the analysis of the sufficient stability conditions for the equilibrium E1,
we are left with the case cos ϕ = 0. In this way, we have the following result.

Theorem 4. If cos ϕ = 0, the equilibrium E1 is stable if I2 is the largest moment of inertia, or if
I3 > I2 > I1 and ω satisfies the inequality

|gmz0| >
√
(I3 − I2)I2ω2. (21)

Proof. In this case, the equilibrium E1 is a critical point of the augmented Hamiltonian
if Equation (15) is satisfied. Moreover, we have permanent rotations when the gyrostatic
moments are given by

l3 =
gmz0

ω
, l1 = (I2 − I1)ω sin θ. (22)

Now, we follow the steps for the application of Theorem 2, taking into account that
cos ϕ = 0. We only consider the case ϕ = π/2, as the case ϕ = −π/2 is analogous. It can
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be seen that if sin θ 6= 0 (the case sin θ = 0 has been already considered in Remark 2), the
reduced space W is generated by the vectors

v1 = ê1 −
1
l3

ê6 cos θ,

v2 = ê2 −
1
l3

ê6 sin θ,

v3 = ê3,

v4 = ê4 − ê5 cot θ +
1
l3

ê6(l1 + (I1 − I2)ω sin θ) cot θ.

Now, the Hessian matrix for the augmented Hamiltonian in the reduced space W ×W
is given by

Hess(HA)
∣∣∣
W×W

=


h11 h12 h13 h14
h12 h22 h23 h24
h13 h21 h33 h34
h14 h24 h34 h44

, (23)

where

h11 =
1
I2

+
I2ω4 cos2 θ

g2m2z2
0

,

h12 =
I2ω4 cos θ sin θ

g2m2z2
0

, h22 =
1
I1

+
I2ω4 sin2 θ

g2m2z2
0

,

h13 =
ω2 cos θ

gmz0
, h23 =

w2 sin2 θ

gmz0
, h33 =

1
I3

,

h14 = −ω, h24 = ω cot θ, h34 = 0, h44 = I2ω2 csc2 θ.

By means of the Sylvester criterion, the matrix is positive definite if the principal
minors are all positive. For them, we obtain

D1 =
1
I2

+
I2ω4 cos2 θ

g2m2z2
0

,

D2 =
g2m2z2

0 + I2ω4(I2 cos2 θ + I1 sin2 θ)

I1 I2g2m2z2
0

,

D3 =
B2

I1 I2 I3g2m2z2
0

,

D4 =
(I2 − I1)ω

2B3 cot2 θ

I1 I2 I3g2m2z2
0

,

(24)

where

B2 =g2m2z2
0 + (I2 − I3)ω

4(I2 cos2 θ + I1 sin2 θ)

B3 =g2m2z2
0 + I2(I2 − I3)ω

4.
(25)

It is clear that, if I2 is the largest moment of inertia, all the principal minors are positive
and the equilibrium is stable. On the contrary, if I2 is not the largest moment of inertia and
I2 > I1, it follows that I3 > I2 > I1 and D4 > 0 if B3 > 0, or equivalently, if the inequality
of the hypothesis of the theorem holds. Since

B2 − B3 = (I2 − I3)(I1 − I2)ω
4 sin2 θ > 0.

and B3 > 0, it follows that B2 > 0 and then D3 > 0. Therefore, the equilibrium point is
stable if (21) is satisfied, as stated in the theorem.
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In the case I1 > I2, as is the case in Theorem 3, D3 and D4 cannot be positive at the
same time. On the one hand, if I2 > I3, B3 > 0 and consequently D4 < 0. On the other
hand, if I2 < I3, it must be B3 < 0. However,

B2 − B3 = (I2 − I3)(I1 − I2)ω
4 sin2 θ < 0

and, then, B2, as well as D3, is negative.

Remark 3. We note that Theorem 4 is also a limit case of Theorem 3. Indeed, if cos ϕ = 0, taking
into account that l3ω = gmz0, condition (14) reduces to |gmz0| >

√
(I3 − I2)I2ω2.

Remark 4. For the three situations not covered by Theorems 3 and 4, namely I1 is the largest
moment of inertia, and I3 > I1 > I2, we can also obtain stable rotations by acting on the l2
gyrostatic moment. Indeed, the result is analogous by considering the parameterization

k2 = sin ϕ sin θ, k1 = cos θ, k3 = cos ϕ sin θ
π2 = ωI2 sin ϕ sin θ, π1 = ωI1 cos θ, π3 = ωI3 cos ϕ sin θ.

As a consequence, it is enough to replace l1 by l2 and interchange I1 and I2.

Remark 5. It follows from Theorem 4 that, if I3 > I2 > I1, there exist stable permanent rotations
if |ω| is small enough. The same conclusion is obtained from Theorem 3, introducing the relation
between l3 and ω, given by the second constraint in (4), into (14). Indeed, we can derive stability
curves for each orientation, once the moments of inertia and the position of the center of mass are
fixed. In this way, Equation (4) determines in the plane ω–l3 a curve of equilibria, with a stable
part where sufficient conditions, given by Equation (14), are satisfied. This curve is depicted in
Figure 2 for a test example with I1 = 5, I2 = 5.1, I3 = 5.2, gmz0 = 1 and a given orientation
θ = ϕ = π/3. The green part of the curve corresponds to stable rotations and the red one to the
part where sufficient conditions are not satisfied. Figure 3 shows the evolution of a trajectory close to
the equilibrium point, when the starting orientation is θ = ϕ = π/3 + 0.012. In the upper panel,
we observe the stable character of the equilibrium position when ω = 1.1 is chosen in the green part
of the curve, whereas the lower one shows the unstable character when ω = 1.23 is on the red part.

0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

10

l3

ω

Figure 2. Existence of equilibrium E1, in the plane ω–l3, for I1 = 5, I2 = 5.1, I3 = 5.2, gmz0 = 1 and
a given orientation θ = ϕ = π/3. The green part represents stable rotations whereas the red one
represents the case where sufficient conditions of stability are not satisfied.
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Figure 3. Time evolution of the orientation of the gyrostat for I1 = 5, I2 = 5.1, I3 = 5.2, gmz0 = 1 and
an initial condition close to the prescribed equilibrium E1, located at θ = ϕ = π/3. The upper panel
corresponds to the stable case, ω = 1.1, and the lower one to ω = 1.23. The blue dot represents the
equilibrium position.

This behavior suggests that sufficient and necessary conditions can be the same. How-
ever, necessary conditions are readily derived by analyzing the associated linear system.

Theorem 5. If the equilibrium E1 is stable and cos ϕ sin θ 6= 0, then D4 ≥ 0, where D4 is given
by (16). Analogously, if cos ϕ sin θ = 0, E1 is stable if D4 ≥ 0, where D4 is given by (20) if
sin θ = 0 and by (24) if cos ϕ = 0.

Proof. Stability of E1 implies spectral stability, so that the real part of the eigenvalues
associated with the linear system at E1 cannot be greater than 0. It can be seen that the
eigenvalues are the roots of a polynomial equation of the form

λ2(λ4 + bλ2 + a), (26)

where a cos4 ϕ sin4 θ = D4, in the case cos ϕ sin θ 6= 0. If (26) does not have roots with a
positive real part, it must be a ≥ 0 and, consequently, D4 ≥ 0. The case cos ϕ sin θ = 0 is
proven in the same way.

As a consequence, sufficient and necessary conditions are the same when I2 is the
largest moment of inertia or I3 > I2 > I1. For the remaining cases, further investigation is
needed. However, taking into account Remark 4, by acting on the gyrostatic moment l2 in
these situations, we obtain a coincidence between necessary and sufficient conditions.
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3.2. Stability of the Equilibrium E0

From the results in the previous subsection, we conclude that two rotors are enough to
have stable permanent rotations around an axis oriented in any direction, regardless of the
values of the moments of inertia, if the center of mass lies on one of the principal axes and
one of the rotors is aligned with the same axis. The only possible exception is the family
E0, which is a limit case of E1 when θ = π/2. Unfortunately, previous results cannot be
applied because some of the principal minors are singular for θ = π/2. This is the reason
that it must be considered separately, using the condition (3). In this way, we arrive at the
following result.

Theorem 6. The equilibrium E0 is stable if

1. cos ϕ > 0 and l3ω > K1,
2. cos ϕ < 0 and l3ω < K2,
3. ϕ = ±π/2 and ±l1ω > K3,

where K1 and K2 are the maximum and minimum, respectively, of

gmz0 + (I2 − I3)ω
2 cos ϕ,

I1ω2mgz0 + (I1 − I3)ω
2 cos2 ϕ(I3ω2 cos ϕ−mgz0 cos 2ϕ)−m2g2z2

0 cos ϕ sin2 ϕ

ω2(I1 sin2 ϕ + I3 cos2 ϕ)
,

and K3 is the maximum of

(I2 − I1)ω
2,

(I3 − I1)I1ω4 − g2m2z2
0

I1ω2 .

Proof. First of all, E0 is a critical point of the augmented Hamiltonian if

λ = −ω, µ =
I3ω2 + (l3ω− gmz0) sec ϕ

2
. (27)

Substituting these values into Equation (13), we obtain that the principal minors of
the reduced Hessian matrix are given by

D1 =
cos2 ϕ

I2
, D2 =

(I3 cos2 ϕ + I1 sin2 ϕ) cos2 ϕ

I1 I2 I3
,

D3 =
G0G1 cos3 ϕ

I1 I2 I3
, D4 =

G1G2 cos2 ϕ

I1 I2 I3ω2 .
(28)

where

G0 = I1 sin2 ϕ + I3 cos2 ϕ,
G1 = l3ω− gmz0 + (I3 − I2)ω

2 cos ϕ,
G2 = (I3 − I1)I3ω4 cos3 ϕ + (I1 − (I1 − I3) cos2 ϕ)l3ω3+

(2(I1 − I3) cos4 ϕ− (I1 − I3) cos2 ϕ− I1)gmz0ω2 + g2m2z2
0 cos ϕ sin2 ϕ.

(29)

We note that D1, D2 and G0 are positive, and the sufficient stability conditions reduce
to G1 cos ϕ > 0 and G1G2 > 0. Let us assume that cos ϕ > 0; then, both G1 and G2 must
be greater than zero. It is easy to verify that G1,2 > 0 under the hypothesis of item 1 in the
theorem. Indeed, it is enough to solve G1,2 > 0 in terms of l3ω.

A similar situation appears if cos ϕ < 0. In this case, both G1 and G2 must be negative,
which immediately follows from the conditions of item 2.

We are left with the case cos ϕ = 0, which corresponds to the two equilibrium positions

(I1ω, 0, 0,±1, 0, 0),
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where the plus sign stands for ϕ = π/2 and the minus sign for ϕ = −π/2. They appear
if the existence condition l3ω = gmz0 is verified. Moreover, they are critical points of the
augmented Hamiltonian when

λ = −ω, µ =
1
2
(±l1 + I1ω)ω.

The space W is now generated by the vectors

ê1, ê1 −
1
l3

ê6, ê3, ê4,

and the corresponding reduced Hessian matrix reads as

Hess(HA)
∣∣∣
W×W

=



1
I2

0 0 −ω

0
1
I1

+
(±l1 + I1ω)ω3

g2m2z2
0

ω2

gmz0
0

0
ω2

gmz0

1
I3

0

−ω 0 0 (±l1 + I1ω)ω


.

From here, the principal minors are given by

D1 =
1
I2

, D2 =
g2m2z2

0 + I1ω3(±l1 + I1ω)

I1 I2g2m2z2
0

,

D3 =
I1ω3(±l1 + (I1 − I3)ω) + g2m2z2

0
I1 I2 I3g2m2z2

0
, D4 = D3(±l1 + (I1 − I2)ω)ω.

(30)

We note that all the minors are positive if l1ω satisfies the conditions in item 3. Thus, by
the Sylvester criterion, the reduced Hessian matrix is positive definite and the equilibrium
position is stable.

To finish the stability analysis, we provide necessary stability conditions for the family
of equilibria E0, which arise from the spectral stability of the associated linear system.

Theorem 7. If E0 is stable, then D4 ≥ 0, where D4 is given by (28) if cos ϕ 6= 0 and by (30) if
cos ϕ = 0.

Proof. We proceed as in Theorem 5. In this way, the characteristic polynomial associated
with the equilibrium E0 has also the form

λ2(λ4 + bλ2 + a).

For the case cos ϕ 6= 0, we obtain a cos4 ϕ = D4, where D4 is given by (28). A necessary
condition to have spectral stability is a ≥ 0, which implies D4 ≥ 0. In the case cos ϕ = 0, we
obtain aω2 = g2m2z2

0D4, with D4 as in (30) and, again, spectral stability implies D4 ≥ 0.

Remark 6. Note that, in the case D3 > 0, sufficient and necessary stability conditions are the same.
However, it seems that necessary conditions are enough to have stable rotations. As an example,
we take the case of a gyrostat with I1 = 5, I2 = 5.1, I3 = 5.2, mgz0 = 1 and ϕ = π/3. Figure 4
shows, in the plane ω–l1, the regions where the necessary stability conditions are satisfied, and the
green color represents the region where the sufficient stability conditions are also satisfied. Besides
the expected symmetry with respect to the origin, the green and red regions have in common the
points (±1.443,±0.12497). Let us take ω = 1.443 and two values of l1, one inside the green
region (l1 = 0.5) and another one inside the red one (l1 = −0.1). Figure 5 shows the time evolution
of the vector k̂, when the initial condition is slightly deviated from the equilibrium position. The
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upper panel corresponds to the case l1 = 0.5, inside the green area, and the lower one to the case
l1 = −0.1, inside the red area. There is no significant difference between the two time histories,
which constitutes evidence that necessary stability conditions are, probably, sufficient ones.

Remark 7. It is worth noting that D4 = 0 when the conditions (4) vanish. Thus, the stability
boundary corresponds to the bifurcation of the E1 family into the E0 family.

Remark 8. We stress that all the above results are also valid for a more general case. Indeed, by
adding to the three first equations of the differential system (2) with circular gyroscopic forces M
with components

L(t, k̂, π)

(
k2π3

I3
− k3π2

I2
,

k3π1

I1
− k1π3

I3
,

k1π2

I2
− k2π1

I1

)
,

where L(t, k̂, π) is an arbitrary function, we obtain the same equilibrium solutions reported in
Theorem 1. Furthermore, as proven in [46], (7), (9) and (10) remain as first integrals and the
stability results are also valid for this generalized system.

-4 -2 0 2 4

-4

-2

0

2

4

l1

ω

Figure 4. Necessary stability conditions for E0 in the plane ω–l1, for I1 = 5, I2 = 5.1, I3 = 5.2,
gmz0 = 1 and a given orientation ϕ = π/3. The green part represents both sufficient and necessary
conditions, whereas the red region only represents necessary ones.
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Figure 5. Time evolution of the orientation of the gyrostat for I1 = 5, I2 = 5.1, I3 = 5.2, gmz0 = 1 and
an initial condition close to the prescribed equilibrium E0, located at θ = π/2, ϕ = π/3. The upper
panel corresponds to ω = 1.443 and l1 = 0.5, inside the green area of Figure 4, and the lower one to
ω = 1.443 and l1 = −0.1, in the red area. The blue dot represents the equilibrium position.

4. Conclusions

The main conclusion of this work is about the existence of permanent stable rotations
around an axis oriented in any direction of the space by the action of two rotors, one of
them aligned along the principal axis where the center of mass lies. Indeed, from the results
in Section 3, it follows that, given a particular gyrostat and a concrete orientation, it is
possible to find appropriate gyrostatic moments and angular velocities in such a way that
the gyrostat maintains its orientation along time, even in the case of small perturbations.
This is achieved if the gyrostatic moments are chosen in order that the sufficient stability
conditions stated in Theorems 3, 4 and 6 hold. In the case cos θ 6= 0, the constraints (4)
reduce in great manner the possible choices of l1, l3 and ω. However, if cos θ = 0, there
is an extra degree of freedom and, for every ω, it is possible to obtain suitable l1 and l3,
giving rise to stable rotations. Moreover, necessary and sufficient stability conditions match
in many cases and there is evidence that necessary conditions are also sufficient ones.
However, this result cannot be proven using the Energy-Casimir method.
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10. Comănescu, D. The stability problem for the torque-free gyrostat investigated by using algebraic methods. Appl. Math. Lett. 2012,

25, 1185–1190. [CrossRef]
11. Elipe, A.; Arribas, M.; Riaguas, A. Complete analysis of bifurcations in the axial gyrostat problem. J. Phys. A Math. Gen. 1997, 30,

587–601. [CrossRef]
12. Elipe, A.; Lanchares, V. Two equivalent problems: Gyrostats in free motion and parametric quadratic Hamiltonians. Mech. Res.

Commun. 1997, 24, 583–590. [CrossRef]
13. Elipe, A.; Lanchares, V. Phase flow of an axially symmetrical gyrostat with one constant rotor. J. Math. Phys. 1997, 38, 3533–3544.

[CrossRef]
14. Elipe, A.; Lanchares, V. Exact solution of a triaxial gyrostat with one rotor. Celest. Mech. Dyn. Astr. 2008, 101, 49–68. [CrossRef]
15. Gutnik, S.A.; Sarychev, V.A. Dynamics of an axisymmetric gyrostat satellite. Equilibrium positions and their stability. J. Appl.

Math. Mech. 2014, 78, 249–257. [CrossRef]
16. Markeev, A.P. On the Stability of Regular Precessions of a non-symmetric Gyroscope. Regul. Chaotic Dyn. 2003, 8, 297–304.

[CrossRef]
17. Rumiantsev, V.V. On the stability of motion of gyrostats. J. Appl. Math. Mech. 1961, 25, 9–19. [CrossRef]
18. Schentinina, E.K. The motion of a symmetric gyrostat with two rotors. J. Appl. Math. Mech. 2016, 80, 121–126. [CrossRef]
19. Gutnik, S.A.; Santos, L.; Sarychev, V.A.; Silva, A. Dynamics of gyrostat satellite subjected to the action of gravity moment.

Equilibrium attitude and their stability. Equilibrium positions and their stability. J. Comp. Syst. Sci. Int. 2015, 54, 468–482.
20. Sarychev, V.A. Dynamics of an axisymmetric gyrostat satellite under the action of a gravitational moment. Cosmic. Res. 2010, 48,

188–193. [CrossRef]
21. Anchev, A. On the stability of permanent rotations of a heavy gyrostat. J. Appl. Math. Mech. 1962, 26, 26–34. [CrossRef]
22. Anchev, A. Permanent rotations of a heavy gyrostat having a stationary point. J. Appl. Math. Mech. 1967, 31, 48–58. [CrossRef]
23. de Bustos Muñoz, M.T.; García Guirao, J.L.; Vera López, J.A.; Vigueras Campuzano, A. On Sufficient Conditions of Stability of the

Permanent Rotations of a Heavy Triaxial Gyrostat. Qual. Theory Dyn. Syst. 2015, 14, 265–280. [CrossRef]
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