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1. Introduction

Today, human activities are highly dependent on fossil fuels and industrialized forms
of agriculture and have reached a level that could damage the Earth’s systems [1,2]. The
energy production domain is a major driver of water stress globally, representing about
15 per cent of the world’s freshwater withdrawals [3]. Likewise, the energy sector is the
dominant contributor to climate change, accounting for about 60 per cent of total global
greenhouse gas emissions [4]. However, 13 per cent of the world’s population still lacks
access to modern electricity [4]. In the domain of water supply, agriculture accounts for
around 70 per cent of freshwater withdrawals globally, and more than 1 billion people still
do not have access to drinking water [4]. In the food domain, each year, one third of all
food produced is wasted or lost, while, paradoxically, nearly 690 million people are living
in hunger [4]. According to the latest projections, the global population is expected grow to
around 8.5 billion in 2030 and 9.7 billion in 2050 [4]. In the land domain, land use changes
have affected almost a third (32%) of the global land area in just six decades (1960–2019) [5].

However, if efforts are just concentrated on one of these domains in isolation, impacts
could shift to the other domains. Therefore, integrated research approaches are needed
to address the interactions among the different domains in the context of a changing
climate [2,6,7]. In terms of decision making, identifying integrated solutions requires
analysing the broader context, contextualizing and complementing water information
with other indicators [8]. In the face of meeting Sustainable Development Goals (SDGs),
integrated assessments covering the water–energy–food–land nexus are needed to ensure
that the gains and trade-offs among domains are considered.

Water footprint (WF) assessment has developed into a fundamentally interdisciplinary
and integrative research field [9,10]. A WF assessment, when properly detailed and disag-
gregated, can be a useful tool to address the nexus [7]. However, in the context of climate
change, several gaps in our understanding of the feedbacks within the water–energy–food–
land nexus remain, which requires advances in the field of WF assessment, as we will argue
in this editorial. Section 2 focuses on the water–energy side of the nexus, Section 3 deals
with the water–food component, and Section 4 covers the water–land interface. Finally,
Section 5 includes a call for action to develop papers that advance the research on WF
assessment in the water–energy–food–land nexus in the context of climate change, trying
to overcome the silos that prevent a more integrated management of water resources.
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2. Towards a Water-Sustainable Energy Transition to Meet Climate Objectives

The energy sector is one of the most water-intensive sectors and the main contributor
to greenhouse gas emissions worldwide [3,4]. The success of the energy transition depends
both on reducing greenhouse gas emissions to meet climate objectives and on achieving a
sustainable energy mix within the limits to freshwater use.

Pioneering research on the WF of energy emerged in 2009. Early work assessed
the WFs for bioethanol and biodiesel derived from food or energy crops, so-called first-
generation biofuels, as they are relatively water-intensive [11–14]. This literature was sub-
sequently broadened through studies assessing the WFs of wood-energy products [15–17],
first-generation biofuels produced in circular systems [18], second-generation biofuels
from crop residues [19,20], and third-generation biofuels from algae [21]. In terms of the
generation of electricity, the existing literature covers practically all generation technologies
(renewable and non-renewable) that use water at some stage [22–27]. Furthermore, the
WFs of energy in specific regions of the world have also been investigated [28,29]. Finally,
some studies have also recently analyzed virtual water trade from the power grid [30,31].

The energy sector is a major contributor to climate change. Consequently, most efforts
have focused on reducing greenhouse gas emissions to achieve the climate targets of the
Paris Agreement. Reducing the carbon footprint can be achieved with a transition to
a cleaner energy mix. However, new energy scenarios may involve trade-offs in terms
of water [32,33] and land. For example, Holmatov et al. [18] assessed the water, land,
and carbon footprints of two energy scenarios with large bioenergy contributions and
found important trade-offs. Hydropower represents another example of a technology with
low emission generation, but with a substantial WF [23,34]. Therefore, considering all
footprints is necessary to better understand the impacts of the energy sector and improve
decision-making regarding the energy transition [29].

Despite previous efforts, there are some limitations and caveats that require further
research. Most research has focused on the consumptive (green and blue) WF of energy.
However, the grey WF, a measure of water pollution, of different energy sources is still
poorly understood. It is expected that considering grey water will have a significant impact
on the WF of some energy sources (e.g., nuclear). Additionally, there is also a lack of
studies analysing the WFs of new fossil fuels such as hydrogen gas, whose potential in the
transport sector is promising. Finally, WF studies generally ignore climate-related shocks.
Including these types of aspects could provide an idea of how resilient possible future
electricity mixes are to climate change. Furthermore, one of the main barriers to proper
accounting of water use of the energy sector is the lack of data availability [35,36], which
calls for efforts to reduce data gaps.

3. Feeding the Growing World Population in a Water-Sustainable Way

WF studies about feeding the world in a water-sustainable way have traditionally
focused on how to increase water productivity in crop production and raise livestock in
order to mitigate water scarcity [9,37].

More recently, since the publication of the first study on the impact of diet on the
WF [38], the WF of diets research has boomed. The WFs of different diets have been
analysed in detail, comparing the existing diet versus recommended ones (healthy diet
with meat, healthy pescetarian diet, and healthy vegetarian diet) [39,40]. Different aspects
such as the nutritional water productivity have also been studied in terms of kilocalories or
grams of protein, fat, or carbohydrates per litre of water [41]. Furthermore, the WF studies
have opened up the possibility of analysing dietary shifts to mitigate climate change and
water crises [42].

However, many studies have focused on diets, providing total WFs per product or
category without differentiating between the WFs of different production systems [41–43],
which can vary quite substantially. For instance, in the case of livestock production,
extensive grassland-based systems generally present lower blue- and nitrogen-related grey
WFs compared with intensive landless systems [44]. Another example is the organic crop
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production versus the conventional production system. Scattered studies comparing both
systems also point to significant differences in blue and grey WFs between them [45,46].
Further research is needed to include the green, blue, and grey WFs and related impacts
of the different types of livestock production systems and organic versus conventional
production systems in diet studies as they vary in terms of water pressure [44–46].

Another focus of research has become the WF of food loss and waste. At the global
level, the blue WF related to the production of food waste is about 250 billion m3, which
is 3.6 times the blue WF of the USA’s total consumption [9]. The WF of food losses has
been applied to different contexts, including China [47], America [48], or Spain [49,50].
According to the USA analysis, the water savings through avoiding food loss and waste is
as much as twice as what could be achieved by dietary shifts [48]. Therefore, a combination
of both dietary shifts and reductions in food loss and waste are effective for mitigating
water scarcity.

Nevertheless, the vast majority of the WF studies on diets and food waste only consider
water use or water use coupled with a few environmental aspects, such as greenhouse
gas emissions, and hardly any adopt a holistic environmental approach. Therefore, the
results obtained from these assessments must be interpreted rigorously, as they may show a
reductionist outlook of the whole environmental impact [51]. For instance, when analysing
the WF alone, one develops preferred strategies from a water-sustainability perspective,
but not preferred in terms of climate change mitigation. Future research could adopt a
systems approach to integrate the different environmental domains to build resilient food
systems [52].

Finally, in the context of climate change, a greater understanding of different coun-
tries’ dependencies on the availability of water in other parts of the world for producing
the different consumer products is key. For instance, Europe’s reliance on soybean im-
ports could disrupt meat and dairy prices, as most soybean producing regions are highly
vulnerable to water scarcity [53]. This would help ensure not only food and water secu-
rity but also economic stability as climate change begins to affect water availability and
drought severity.

4. Reconciling the Sustainable Use of Both Water and Land Resources

Water footprint and virtual water trade have connections with sustainable land man-
agement and biodiversity conservation. A better understanding of these connections in the
context of climate change is needed to reconcile the sustainable water and land use in the
future. We illustrate this with three examples.

First, WF reduction in agriculture can be achieved by increasing crop yields, i.e., land
productivity, by changing agricultural practices and inputs that increase yield but do not
proportionally increase water consumption [54]. Thus, WF reduction comes with trade-offs
between sustainable use of water and land resources, which require further exploration.
For example, by how much can WFs be reduced through sustainable intensification of agri-
culture [55]? Further, what trade-offs are there in consumptive (green and blue) and grey
water use and the intensity of land use of conventional versus organic farming? Exploring
such trade-offs in the context of climate change is especially interesting, since climate
change affects both crop water consumption and yields through changes in precipitation
and evapotranspiration patterns (including the occurrence of shocks such as droughts and
heat waves) and the effects of CO2 fertilization [56–58].

Second, it has been estimated that significant water savings could be achieved at
the regional and global scales through the optimization of cropping and virtual water
trade patterns [59,60]. However, land constraints are crucial in determining the potential
water savings of such optimization procedures, since they determine to what degree the
production of crops can be concentrated in the regions where they have the smallest WF per
unit of production. Therefore, it is interesting to explore water saving potentials through
cropping pattern optimization under different scenarios of crop area expansion when
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considering the changes in the agricultural suitability (and hence WFs) of these areas as a
result of climate change [61].

Lastly, the link between limits to land and green water use have recently been made
explicit. Schyns et al. [62] show that, similar to how environmental flow requirements
subtract from the availability of blue water, biodiversity conservation needs (i.e., environ-
mental land requirements) subtract from the availability of green water for human uses.
However, many questions still remain on how land-use constraints affect water scarcity.
For example, how do alternative scenarios of lands reserved for biodiversity conservation
(in terms of total size and spatial configuration) affect green water availability and scarcity
patterns? Moreover, how will these patterns be different under climate change, which
affects green water resources availability?

5. Call for Action

We have argued that WF assessment has brought many insights to the water–energy–
food–land nexus, but also that advances in the field are needed to better understand
interaction in this nexus in the context of climate change. For this Special Issue, “Water
Footprint and Virtual Water Trade Approaches: Applications to the Water-Energy-Food-
Land Nexus in a Context of Climate Change”, we invite studies that innovatively apply
existing or develop new WFs (green, blue, grey) and virtual water trade approaches to
contribute to the advancement of the field in this direction.
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