

29th International

Carbohydrate Symposium

14th - 19th July 2018

Faculdade de Ciências, Universidade de Lisboa

Book of Abstracts

Logo and Cover Design: Ana Marta de Matos

Edited by: Amélia Pilar Rauter, Ana Marta de Matos, Rafael Nunes, João Pais, Nuno M. Xavier, Rita Gonçalves Pereira, Maria Teresa Blázquez-Sánchez, Filomena Martins, Tânia Morais, Ana Paula Paiva, Teresa Pamplona, Luísa Roseiro, Maria Soledade Santos, Ana Isabel Tomaz, Ana Paula Carvalho, Eduarda Araújo, Christopher Maycock, Carlos Borges.

TABLE OF CONTENTS

Welcome	1
International Carbohydrate Organization	2
Committee of Honour	3
International Advisory Board	7
Scientific Committee	7
Organizing Committee	8
Acknowledgements and Sponsors	9
General Information	11
Meeting Venue	11
Lunches	12
Wifi Access	12
Official Language	12
Social Programme	13
General Scientific Information	13
Presentation Preview Rooms	14
Posters	14
Awards and Prizes	14
Special Issues dedicated to ICS 2018	18
Pure and Applied Chemistry	18
Marine Drugs	18
Pharmaceuticals	18
Scientific Programme	19
ICS Iberian Day	20
ICS Young Researchers' Workshop	22
ICS Glycoinformatics Masterclass	24
International Carbohydrate Symposium	25
Detailed Programme	37
ICS Iberian Day	70
Invited Lectures	71
Oral Communications	85
Flash Communications	92
ICS Young Researchers' Workshop	110
Plenary Lectures	111
Flash Communications	114

International Carbohydrate Symposium	140
Award Lectures	141
Plenary Lectures	144
Invited Lectures	164
Young Scientist Invited Lectures	216
Oral Communications	227
Flash Communications	362
Poster Presentations	394
S – Synthesis	395
A — Analysis	510
BS – Biomolecule Structure	529
MD – Carbohydrates for Medicine and Diagnosis	560
GD – Glycosylation and Disease	612
ID – Inflammation and Disease	633
V – Vaccines	638
PM – Glycosciences and Personalized Medicine	647
NG – Natural Glycoconjugates	654
G – Glycans	660
PB — Polysaccharide Biotechnology	683
LBV – Carbohydrates in Lignocellulosic Biomass Valorisation	697
GM – Glycomaterials	705
CN – Carbohydrates and Nutrition	725
GMP – Gut Microbiota and Prebiotics	730
GI – Glycoinformatics	739
List of Communications	749
ICS Iberian Day	750
ICS Young Researchers' Workshop	753
International Carbohydrate Symposium	756
Poster Presentations	776
Author Index	805

MUC1 GLYCOPEPTIDES RECOGNITION PROFILING BY MACROPHAGE GALACTOSE LECTIN TO TARGET DENDRITIC CELLS

<u>Fayna Garcia-Martin</u>,^{[a],*} Gerard Artigas,^[a] João T. Monteiro,^[b] Bernd Lepenies,^[b] Hiroshi Hinou,^[a] and Shin-Ichiro Nishimura^[a]

- [a] Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, 001-0021 Sapporo, Japan, faynagm@sci.hokudai.ac.jp
- [b] Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ),
 - University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany

Lectin–carbohydrate interactions have essential roles on the modulation of the immune system. In literature, many examples focused on how single carbohydrate moieties bind to the immune system receptors. However, in the surface of cells many glycans are linked to proteins. In here, we hypothesize the contribution of both glycan and protein backbone on the binding to lectins. In this regard, here we confined our attention on macrophage galactose lectin (MGL), present on dendritic cells (DCs) and macrophages, and it can bind to galactose (Gal) and *N*-acetylgalactosamine (GalNAc). As potential ligand, we chose mucin 1 (MUC1) glycoprotein as it expresses altered truncated glycans as terminal Gal and GalNAc during malignant processes. These structural differences have placed MUC1 as a prioritized objective of study to create an efficient cancer vaccine.

In the present study, we employ a MUC1-based glycopeptide microarray to characterize the specificities of three MGL (Clec10a) orthologs: human MGL (hMGL), murine MGL1 (mMGL1) and MGL2 (mMGL2). This research work covers (i) synthetic chemical library of 35 compounds, (ii) evanescent-field fluorescence microarrays as a high-throughput screening approach to detect lectin ligands with high reproducibility¹ and (iii) internalization assays on DCs.

As result, by using our microarray platform we were able to monitor, under equilibrium conditions, the similar recognition profile of hMGL and mMGL2 with natural mimetic MUC1 glycoforms. Herein, we have shown the so far unprecedented role of mucin-based peptides on the recognition by lectins of GalNAc moieties expressed in tumour-altered mucins. On this account, we have demonstrated the relevance of the sugar site in the MUC1-mMGL1 binding. In addition, for three orthologs, we have also proved a positive direct correlation the bivalency effect and the binding affinity. To assess the utility of the glycopeptide binders of the MGL orthologs for MGL targeting, we performed uptake assays with fluorescein-MUC1 using murine DCs. The diglycosylated MUC1 peptide was highly internalized in an MGL-dependent fashion, thus showing the utility for bivalent GalNAc to target MGL.²

In conclusion, the MGL-dependent uptake of MUC1-derived glycopeptides into murine DCs highlights the potential of MGL-based DC targeting which may be used to design novel anticancer vaccines with an enhanced effectiveness.

References

^[1] G. Artigas, H. Hinou, F. García-Martín, H.-J. Gabius, S.-I. Nishimura. *Chem. Asian J.* **2017**, *12*, 159-167. ^[2] G. Artigas, J. T. Monteiro, H. Hinou, S.-I. Nishimura, B. Lepenies, F. García-Martín. *J. Med. Chem.* **2017**, *60*, 9012-9021.