Quantum cyber-physical systems

  1. Villalba-Diez, Javier
  2. González-Marcos, Ana
  3. Ordieres-Meré, Joaquín
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  2. 2 Universidad de La Rioja
    info

    Universidad de La Rioja

    Logroño, España

    ROR https://ror.org/0553yr311

Revista:
Scientific Reports

ISSN: 2045-2322

Año de publicación: 2022

Volumen: 12

Número: 1

Tipo: Artículo

DOI: 10.1038/S41598-022-11691-X GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Scientific Reports

Repositorio institucional: lock_openAcceso abierto Editor

Resumen

This paper aims to promote a quantum framework that analyzes Industry 4.0 cyber-physical systems more efficiently than traditional simulations used to represent integrated systems. The paper proposes a novel configuration of distributed quantum circuits in multilayered complex networks that enable the evaluation of industrial value creation chains. In particular, two different mechanisms for the integration of information between circuits operating at different layers are proposed, where their behavior is analyzed and compared with the classical conditional probability tables linked to the Bayesian networks. With the proposed method, both linear and nonlinear behaviors become possible while the complexity remains bounded. Applications in the case of Industry 4.0 are discussed when a component’s health is under consideration, where the effect of integration between different quantum cyber-physical digital twin models appears as a relevant implication.

Información de financiación

Financiadores

  • Ministry of Economy and Competitiveness | Agencia Estatal de Investigación
    • RTI2018-094614-B-I00
  • Hochschule Heilbronn

Referencias bibliográficas

  • Baheti, R. & Gill, H. Cyber-physical systems. Impact Control Technol. 12, 161–166 (2011).
  • Lee, J., Bagheri, B. & Kao, H.-A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001 (2015).
  • Villalba-Diez, J. & Zheng, X. Quantum strategic organizational design: Alignment in industry 4.0 complex-networked cyber-physical lean management systems. Sensors.https://doi.org/10.3390/s20205856 (2020).
  • Nielsen, T. D. & Jensen, F. V. Bayesian Networks and Decision Graphs (Springer Science & Business Media, 2009).
  • Borujeni, S. E., Nannapaneni, S., Nguyen, N. H., Behrman, E. C. & Steck, J. E. Quantum circuit representation of Bayesian networks. Expert Syst. Appl. 176, 114768. https://doi.org/10.1016/j.eswa.2021.114768 (2021).
  • Sporns, O. Networks of the Brain (The MIT Press, 2011).
  • Wohlleben, P. Das geheime Leben der Bäume: Was sie fühlen, wie sie kommunizieren. (The hidden life of trees) (Ludwig Buchverlag, 2016).
  • Aleta, A., Meloni, S. & Moreno, Y. A multilayer perspective for the analysis of urban transportation systems. Sci. Rep. 7, 1–9. https://doi.org/10.1038/srep44359 (2017) (ISBN: 2045-2322 Publisher: Nature Publishing Group).
  • Oro, E., Pizzuti, C., Procopio, N. & Ruffolo, M. Detecting topic authoritative social media users: A multilayer network approach. IEEE Trans. Multimed. 20, 1195–1208. https://doi.org/10.1109/TMM.2017.2763324 (2017) (ISBN: 1520-9210 Publisher: IEEE).
  • Finn, K. R., Silk, M. J., Porter, M. A. & Pinter-Wollman, N. The use of multilayer network analysis in animal behaviour. Anim. Behav. 149, 7–22. https://doi.org/10.1016/j.anbehav.2018.12.016 (2019).
  • Bianconi, G. Multilayer Networks: Structure and Function (Oxford University Press, 2018).
  • Cao, M. & Fang, W. Swarm intelligence algorithms for weapon-target assignment in a multilayer defense scenario: A comparative study. Symmetry.https://doi.org/10.3390/sym12050824 (2020).
  • Baltakys, K., Kanniainen, J. & Emmert-Streib, F. Multilayer aggregation with statistical validation: Application to investor networks. Sci. Rep. 8, 8198. https://doi.org/10.1038/s41598-018-26575-2 (2018).
  • Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122. https://doi.org/10.1016/j.physrep.2014.07.001 (2014).
  • Bertoni, V. B., Saurin, T. A., Fogliatto, F. S., Falegnami, A. & Patriarca, R. Monitor, anticipate, respond, and learn: Developing and interpreting a multilayer social network of resilience abilities. Saf. Sci. 136, 105148. https://doi.org/10.1016/j.ssci.2020.105148 (2021).
  • Burton, R. M., Øbel, B. & Håkonsson, D. D. Organizational Design: A Step-by-Step Approach, 3 edn. (Cambridge University Press, 2015).
  • Bauernhansl, T., Hompel, M. T. & Vogel-Heuser, B. (eds.) Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung$$\cdot$$Technologien$$\cdot$$Migration (Springer Vieweg, 2014).
  • Baxter, G. & Sommerville, I. Socio-technical systems: From design methods to systems engineering. Interact. Comput. 23, 4–17 (2011).
  • Davies, R., Coole, T. & Smith, A. Review of socio-technical considerations to ensure successful implementation of industry 4.0. Proc. Manuf. 11, 1288–1295. https://doi.org/10.1016/j.promfg.2017.07.256 (2017).
  • Bogoviz, A. V. Industry 4.0 as a new vector of growth and development of knowledge economy. In Industry 4.0: Industrial Revolution of the 21st Century (eds. Popkova, E. G., Ragulina, Y. V. & Bogoviz, A. V.) 85–91. https://doi.org/10.1007/978-3-319-94310-7_8 (Springer International Publishing, 2019).
  • Villalba-Diez, J. et al. Geometric deep lean learning: deep learning in industry 4.0 cyber-physical complex networks. Sensors.https://doi.org/10.3390/s20030763 (2020).
  • Zheng, X., Wang, M. & Ordieres-Mere, J. Comparison of data preprocessing approaches for applying deep learning to human activity recognition in the context of industry 4.0. Sensors 18, 2146 (2018).
  • Singh, S. et al. Challenges of Digital Twin in High Value Manufacturing (Tech. Rep, SAE Technical Paper, 2018).
  • Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge University Press, 2010).
  • Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202. https://doi.org/10.1038/nature23474 (2017).
  • Woerner, S. & Egger, D. J. Quantum risk analysis. NPJ Quantum Inf. 5, 15. https://doi.org/10.1038/s41534-019-0130-6 (2019).
  • Villalba-Diez, J., Benito, R. M. & Losada, J. C. Industry 4.0 quantum strategic organizational design configurations. The case of two qubits: One reports to one. Sensors.https://doi.org/10.3390/s20236977 (2020).
  • Wittek, P. & Gogolin, C. Quantum enhanced inference in Markov logic networks. Sci. Rep. 7, 45672. https://doi.org/10.1038/srep45672 (2017).
  • Moreira, C. & Wichert, A. Are quantum-like Bayesian networks more powerful than classical Bayesian networks?. J. Math. Psychol. 82, 73–83. https://doi.org/10.1016/j.jmp.2017.11.003 (2018).
  • Moreira, C., Tiwari, P., Pandey, H. M., Bruza, P. & Wichert, A. Quantum-like influence diagrams for decision-making. Neural Netw. 132, 190–210. https://doi.org/10.1016/j.neunet.2020.07.009 (2020).
  • Britt, B. C. Modeling viral diffusion using quantum computational network simulation. Quantum Eng. 2, e29. https://doi.org/10.1002/que2.29 (2020).
  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: A vision for the road ahead. Science 362, eaam9288 (2018).
  • Villalba-Diez, J. The Hoshin Kanri Forest. Lean Strategic Organizational Design, 1st edn (CRC Press. Taylor and Francis Group LLC, 2017).
  • Villalba-Diez, J., Zheng, X., Schmidt, D. & Molina, M. Characterization of industry 4.0 lean management problem-solving behavioral patterns using EEG sensors and deep learning. Sensors.https://doi.org/10.3390/s19132841 (2019).
  • Schmidt, D. et al. Industry 4.0 lean shopfloor management characterization using EEG sensors and deep learning. Sensors.https://doi.org/10.3390/s20102860 (2020) (Publisher: Multidisciplinary Digital Publishing Institute).
  • Villalba-Diez, J. et al. Deep learning for industrial computer vision quality control in the printing industry 4.0. Sensors.https://doi.org/10.3390/s19183987 (2019).
  • Huang, Z., Kim, J., Sadri, A., Dowey, S. & Dargusch, M. S. Industry 4.0: Development of a multi-agent system for dynamic value stream mapping in SMEs. J. Manuf. Syst. 52, 1–12. https://doi.org/10.1016/j.jmsy.2019.05.001 (2019).
  • Tortorella, G. L. et al. Designing lean value streams in the fourth industrial revolution era: Proposition of technology-integrated guidelines. Int. J. Prod. Res. 58, 5020–5033. https://doi.org/10.1080/00207543.2020.1743893 (2020) (Publisher: Taylor & Francis).
  • Cross, R., Singer, J., Colella, S., Thomas, R. & Silverstone, Y. The organizational network fieldbook: Best practices, techniques and exercises to drive organizational innovation and performance, 1 edn (Jossey-Bass, 2010).
  • Manavalan, E. & Jayakrishna, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Comput. Ind. Eng. 127, 925–953. https://doi.org/10.1016/j.cie.2018.11.030 (2019).
  • Schuh, G., Potente, T., Varandani, R. & Schmitz, T. Methodology for the assessment of structural complexity in global production networks. Proc. CIRP 7, 67–72 (2013).
  • Del Gaudio, D. & Hirmer, P. Seamless integration of devices in industry 4.0 environments. Internet Things 12, 100321. https://doi.org/10.1016/j.iot.2020.100321 (2020).
  • Villalba-Diez, J. & Ordieres-Mere, J. Improving manufacturing operational performance by standardizing process management. Trans. Eng. Manag. 62, 351–360. https://doi.org/10.1109/TEM.2015.2424156 (2015).
  • Shin, W. S., Dahlgaard, J. J., Dahlgaard-Park, S. M. & Kim, M. G. A quality scorecard for the era of industry 4.0. Total Qual. Manag. Bus. Excell. 29, 959–976. https://doi.org/10.1080/14783363.2018.1486536 (2018) (Publisher: Routledge).
  • Gunasekaran, A., Subramanian, N. & Ngai, W. T. E. Quality management in the 21st century enterprises: Research pathway towards Industry 4.0. Int. J. Prod. Econ. 207, 125–129. https://doi.org/10.1016/j.ijpe.2018.09.005 (2019).
  • Villalba-Diez, J., Ordieres-Meré, J., Chudzick, H. & López-Rojo, P. Nemawashi: Attaining value stream alignment within complex organizational networks. Proc. CIRP 37, 134–139 (2015).
  • Khrennikov, A. Y. Ubiquitous Quantum Structure (Springer, 2014).
  • Mosseri, R. & Dandoloff, R. Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Gen. 34, 10243–10252. https://doi.org/10.1088/0305-4470/34/47/324 (2001) (Publisher: IOP Publishing).
  • Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014).
  • Bossomaier, T., Barnett, L., Harré, M. & Lizier, J. T. An Introduction to Transfer Entropy Vol. 65 (Springer International Publishing, 2016).
  • Long, G.-L. & Sun, Y. Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A 64, 014303. https://doi.org/10.1103/PhysRevA.64.014303 (2001).
  • Maruyama, K. & Knight, P. L. Upper bounds for the number of quantum clones under decoherence. Phys. Rev. A 67, 032303. https://doi.org/10.1103/PhysRevA.67.032303 (2003).
  • Qi, Q. & Tao, F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access 6, 3585–3593. https://doi.org/10.1109/ACCESS.2018.2793265 (2018).
  • Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212. https://doi.org/10.1038/s41586-019-0980-2 (2019).
  • Kimeldorf, G. & Wahba, G. Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33, 82–95. https://doi.org/10.1016/0022-247X(71)90184-3 (1971).
  • Gupta, S. & Zia, R. Quantum Neural Networks. arXiv:quant-ph/0201144 (2002).
  • Agmarcos. agmarcos/qcps: Qicps code. https://doi.org/10.5281/ZENODO.4837469 (2021).
  • Zhang, Y. & Ni, Q. Design of quantum neuron model for quantum neural networks. Quantum Eng.https://doi.org/10.1002/que2.75 (2021).
  • Wei, S., Chen, Y., Zhou, Z. & Long, G. A quantum convolutional neural network on NISQ devices. AAPPS Bull.https://doi.org/10.1007/s43673-021-00030-3 (2022).
  • Sundar, B., Walschaers, M., Parigi, V. & Carr, L. D. Response of quantum spin networks to attacks. J. Phys. Complex. 2, 032008. https://doi.org/10.1088/2632-072X/abf5c2 (2020).
  • Zhang, C. et al. Experimental observation of quantum nonlocality in general networks with different topologies. Fundam. Res. 1, 22–26. https://doi.org/10.1016/J.FMRE.2020.11.002 (2021).
  • Bogdan, P., Jonckheere, E. & Schirmer, S. Multi-fractal geometry of finite networks of spins: Nonequilibrium dynamics beyond thermalization and many-body-localization. Chaos Solitons Fractals 103, 622–631. https://doi.org/10.1016/J.CHAOS.2017.07.008 (2017).