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Abstract: Time Petri nets are used as the formalism for the whole life cycle of real-time systems.

We present how to model real-time systems using this formalism and we focus our work on the
code generation for these systems. The first step of this implementation technique consists of the

extraction of the processes (states machines) embedded in the net, each of which is implemented in
an Ada task. The result of the application of this technique is a set of concurrent processes coupled

by means of synchronous or asynchronous communications, with the same behaviour as the model.
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1. INTRODUCTION

In this paper we continue the work started with
Garcfa and Villarroel (1996) in which a way of
modeling real-time systems (using time Petri nets)
and an automatic technique (through the use of an
interpreter) for code generation was shown. Our
objective was and is to improve the reliability in
all steps of the life cycle of a real-time system, by
means of a unique formal method during it: time
Petri nets.

Petri nets have been widely used for modeling
and analyzing discrete event systems because
of the possibility of modeling concurrency,
resource sharing, synchronizations, ... However,
ordinary Petri nets are not suitable either
for the modeling or the analysis of real-time
systems, due to the impossibility of including
time features in the model. This is the reason
why in this paper a time extension of Petri
nets, Time Petri Nets (TPN), is used. TPNs
are useful in order to develop reliable real-time
software due to the possibility of modeling time-
outs, synchronizations, concurrence, periodic or
aperiodic communicating processes.

Other references can be found in the literature
where time Petri nets are used in relation to
real-time systems. Some times they are used for
the modeling and analyzing communication or
control systems (Berthomieu and Diaz (1991);
Buy and Sloan (1994); Aalst and Odijk (1995)).
On other occasions (Shatz et al. (1996)) Petri nets
are used to generate nets models of concurrent
programs (tasking programs) with the purpose
of an analysis of the concurrent behaviour,
especially deadlock properties. Finally another
line of research (Gedela and Shatz (1997)) has
modeled Ada-tasking structures with time Petri
nets as a way of defining precise behaviour
for tasking semantics and providing support for
automated analysis.

In this work we consider just the opposite
approach: TPN are considered as the initial tool
for the modeling of the real-time system. After
analysis and validation, the implementation is
generated from the TPN model, being this last
point the main contribution of this paper. The
use of the same formalism during the life cycle
will allow the detection of bad properties in the
early stages of the cycle and, indeed, will allow
us not to restrict the structure of systems in



order to analyze their temporal constraints. In
this sense, the design flexibility is increased with
respect to the use of classical analytic techniques
such as RMA where, for example, in order to
allow the analysis, the communications between
the periodical tasks must take place through
an intermediate server with no guarded entry.
Moreover, the use of this formal method can
allow us the automatic code generation (Garcia
and Villarroel (1996)), and so it avoids making
mistakes during the codification.

The scope of this paper is limited only to
the modeling and the implementation of real-
time systems. A Petri net implementation is a
program which simulates the firing of the net
transitions. Adaptations of Petri net classical
implementation techniques are used (Colom et al.
(1986)) which can be split into centralized and
decentralized ones. The former use a single
coordinator process responsible for the control
and firnig of the transitions of the net, which
represent the operational part of the system.
This technique (object of study in the related
paper Garcia and Villarroel (1996)) is subject to
several problems related to the presence of the
coordinator, which acts in every transition firing
introducing an overload into the implemented
system. In addition, the coordinator alone is
responsible for the control of the implementation,
sequentializing the control of the implemented
system, which is in fact concurrent, and making
it sensitive to faults, since if the coordinator fails
the whole system fails too. The decentralized
implementations try to solve these problems
by splitting the net into several concurrent
subnets. Ada 95 is used as the language for
the implementation code and only monoprocessor
platforms are considered.

2. MODELING REAL-TIME SYSTEMS
USING TIME PETRI NETS

A Time Petri Net (Berthomieu and Diaz
(1991)) is a tuple (P,T;F, B, M,,SIM), where
(P, T; F,B,M,) defines a marked Petri net, the
underlying Petri net; and SIM is the mapping
called static interval STM : T — Q* x (Q* U ),
where Q* is the set of positive rational numbers.
Thus, TPNs can be seen as Petri nets with labels:
two time values (a;, 8;) associated to transitions.
Assuming that transition ¢; was enabled at time
0y, and is being continuously enabled, the first
time value represents the minimum time, starting
from 6y that £; has to wait until it can be fired,
and the second is the maximum time that ¢; can
be enabled without firing. So these two time values
allow the calculation of the firing interval for each
transition ¢; in the net: (6p+a;, 8o+ 3; ). Once the
transition is to be fired, the firing is instantaneous.

loop

CODE; -- C
select

Proc_B.entry A; -- B
or

delay 10.0;

end select;

delay until Next; -- A
Next := Next + 100.0;

: end loop;

Process B

Fig. 1. Example of TPN model

As an example in fig.1, a TPN modeling a
periodic process that executes a piece of code and
communicates with another process is shown. This
communication has an associated time-out. Three
elements have been highlighted (a piece of Ada
code with the same behaviour is provided for a
better understanding of the model):

¢ Box B shows an action, i.e. code, to be executed
by the process. The execution starts when the
input place gets marked. The computation time
of this activity is between (60,75) time units.

e Box A models the periodic activation of the
process. Every 100 time units the transition fires
and promotes the execution of the process.

¢ Box C shows a communication with another
process which has an associated time-out. Let
us suppose that the place is marked at time
7. If the transition labeled with entry_A does
not fire (starts the communication) before 7 +
10 (expiration time of the time-out), then
transition (10,10) will fire, aborting the starting
of the communication.

Transitions in TPN have the same functionality.
But the different situations that appear in a real-
time system must be highlighted in our models.
Therefore, and with the aim of implementing the
model, we distinguish three kinds of transitions:

e CODE-Transitions (thick segments) together
with its input place, represents the code
associated to an activity, that starts its
execution when the transition gets enabled, i.e.
the input place gets marked. The two time
values (a, 3) represent the execution time of the
activity. At best, the code execution finishes at
time «, and at worst the execution will last 3.
The firing represents the end of the code.

TIME-Ts. (empty thick segment) are transitions
with an associated time event, e.g. a time-

out. These transitions also have associated
time information, described with an interval
(a, @), where a represents the event time. The
firing of this kind of transitions represents the
occurrence of the event.



¢ SYCO-Ts. (thin segment) are
with no temporal meaning used to perform
synchronizations (SY) and control (CO) tasks.
The firing of a SYCO-T leads to plain state
changes.

transitions

3. NET DECOMPOSITION

The idea of decentralized implementations is
quite simple. In order to avoid the problems
of centralized implementations (mentioned in
the introduction) the use of the centralized
coordinator must be avoided. Therefore the
control of the net is split into several sequential
subnets, each of which is implemented in a
separate process, concurrent with the others.
The identification of the concurrent processes
embedded in the net and their inter-connection
through a communication mechanism like a
buffer or a rendezvous is the first step in the
implementation. The basis is to merge into a
single process a set of transitions in mutual
exclusion (ME) with the others in the subnet
(two transitions t;, ¢; are in mutual exclusion,
t; M Et;, if they can not be fired simultaneously).
A set of transitions which are in ME relationship
are not concurrent, so they can be in the
same process (m;) without reducing the actual
concurrence. For the computation of the sets of
transitions in mutual exclusion the net without
time information will be used. The reason is that
two or more transitions which are in ME in
the Petri net, remain in ME in the TPN, but
the opposite it is not true. The application of
temporal mutual exclusion is still under research.
The decomposition techniques used in this work
are based on Colom et al. (1986); Villarroel
(1990). Through the computation of compatibility
classes of transitions in ME a partition of the net
is obtained solving a coverability problem. Each
class is a set of transitions in ME that can be
implemented as a sequential process (7). The ME
of transitions can be achieved by a computation
of monomarked p-invariants. Monomarked p-
invariants are particularly interesting because
they describe a set of places in ME. In fig. 2 either
P1, P2, P3 or pg is marked, but never two or more
of them at the same time. Obviously, a set of
places in ME implies a set of transitions in ME,
the input and output transitions of the places.
Unfortunately it is not always possible to cover a
Petri net with a set of monomarked p-invariants.
To solve this problem Villarroel (1990) proposes
a technique (based in the concept of pipeline)
to make a set of monomarked p-invariants which
cover all transitions of the net.

A place p, with respect to a process m;, can be
either private (every input and output arc of p

Ty Ty

loop loop
CODE (tq) Ps.Demark
Ps.Mark CODE (ty)
CODE (t5) CODE (tsg)
CODE (t3) g, .t,

accept te¢ end loop
end loop

Fig. 2. Decomposition into two sequential
processes. An asynchronous comm. in ps, and
a synchronous communication in tg.

are connected to transitions belonging to m;), or
external (p is only connected to transitions not
belonging to m;), or shared (p is connected both to
transitions belonging and not belonging to ;). In
fact, a shared place is modeling an asynchronous
communication between two processes. A shared
transition represents a synchronous
communication (rendezvous). Moreover, it is
possible to share sets of transitions and places
grouped in a subnet, which are representing the
execution of a piece of code in a rendezvous.

4. PROCESS IMPLEMENTATION

However it is achieved, a partition of the Petri
net which covers every transition of the net
can be found. The partition is made up of
a set of sequential processes, each one having
an associated p-invariant that can be used to
describe the control flow of the process. In this
way, only those transitions whose input place
belonging to the p-invariant is marked, are able
to fire. Each process can be implemented in an
Ada task, using a case structure. Each place of
the p-invariant describes a state which will be
implemented at each branch of the case. The code
associated with each branch depends basically on
the output transition of the place (or transitions
if there is a conflict). It is possible to improve
the implementation using the single token of the
p-invariant as if it were the program counter
of the process. The flow of the token through
the p-invariant defines the execution order of
the transitions, avoiding the use of the case
structure (e.g. see the code shown for the net
in fig.2). Implementing each process in an Ada
task, both control and operational parts of the set
of transitions are integrated in the same process
avoiding the use of a centralized coordinator.

The three kinds of transitions in our modeling
approach will be implemented in a different
manner. A SYCO-transition will be taken into
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Fig. 3. a) Synchronous communication, transition
t; b) asynchronous communication, place py;
¢) simple conflict; d) Periodical activator; e)
Inner conflict inside a process;

account to make decisions inside a process or
to perform synchronous communication between
processes. A CODE-T involves the execution of
their associated code. A TIME-T represents a
delay in the execution of the process. As a first
approximation the delay starts when the input
place of the transition gets marked. When the
delay expires the transition is fired. But this
situation can provoke accumulative drift in the
processes, e.g. due to preemption. To avoid it a
time variable is associated with each process with
TIME-Ts inside. This variable (Last_update)
records the time at which the last marking
update occurred in the process. This time is used
in the computation of the expiration time of
the delays. E.g., consider these implementations
for the fig.3.d. (a periodical activation). The
implementation on the left presents accumulative
drift, solved on the right.

loop Last_update := CLOCK;
delay D; loop
P.Mark; next := Last_update + D;
end loop; delay until next;
Last_update := next;
P.Mark;
end loop;

Sometimes a transition or subnet can be shared
between two processes. This situation represents
a synchronous communication between both
processes, and will be implemented with an Ada
rendezvous (fig.3.a). The remaining non private
places that are not included in a p-invariant act as
asynchronous communications between processes
that will be implemented with a buffer or a relay
process (fig.3.b). There are likely to be several
transitions at the output of a place (conflict
situation). If the transitions belong to different
processes, the place will act as a shared data
between them. The descending processes will
compete for the token of the place (fig.3.c). This
situation is very common, since it is the natural
way of modeling shared data or resources. Since

there are two or more processes involved in the
synchronous or asynchronous communication, in a
general case each one can be marked at a different
time, thus, it is necessary to communicate the
time Last_update of the processes.

If the place originating the conflict belongs to a
p-invariant all its output transitions in conflict
will be implemented in the same process. The
simplest case is when several SYCO-T's depend on
the same place. This situation represents a choice,
implementable with an if structure if there is
no communication involved or with a select
structure with several accept branches if there
are communications. Other conflicts can appear
between different kinds of transitions, as in fig.3.e,
which models the execution of a code abortable by
the expiration of a time-out, or a control action
external to the process. For the implementation of
this kind of conflicts we will use the Ada A.T.C.
structure.

5. AN EXAMPLE

The technique presented in this paper, has been
used for the code generation for the controller of
a real-time mobile robot navigation application.
Off-line planned trajectories and motions are
modified in real-time to avoid obstacles, using
a reactive behaviour. The information about the
environment is provided to the control system of
the robot by a rotating 3D laser sensor with two
degrees of freedom.

The controller must perform three main activities:
motion control, supervision and data sensor
processing. The control loop has a sample period
T=0.25 s obtained in the analysis phase so that
the system meets all the temporal constraints.
The communications between the robot and the
controller have defined time-outs: 0.1 s in position
reading and 0.1 s in setpoint sending. The
objectives of the supervisor activity are: trace the
real trajectory of the robot, test if the actual goal
has been reached, update the actual goal point
and manage the system alarms. At this point
of application development, only alarms related
to the communication time-outs have been taken
into account. The firing of a communication time-
out must stop the system within 0.1 s. The 3D
laser sends a new scan each 0.1s. The controller
must be capable of accepting and processing the
sensor data at this rate. The communication with
the laser has a 0.2 s time-out. Fig.4 shows the TPN
that specifies the control and time restrictions of
the real-time system (time information has been
removed for clarity). This Petri net has been
used in the analysis for the validation of system
specifications and for scheduling the controller
tasks in the processor by priority assignment (not
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Fig. 4. Sequential processes are highlighted and communication places are shaded in grey

considered in this paper). The priority assignment
has been performed using an heuristic method
based on RMA techniques.

For the sequential process recognition a p-
invariant computation has been developed. There
are seven p-invariants: (I1) Supervisor Sj. S,
(I3) Control C..Cy5, (I3) Activation CT, CTs,
(I,) Laser L,..Ls, (Is) Protected Goal Goal, S,
Cy, (Is) Protected State State, Lz, Cy, Sy, (I7)
Protected Scans Scans, Lg, Cs. With these p-
invariants the transition coverability problem can
be solved, see fig 5. In this table it can be
seen that there are four essential p-invariants (I,
I, I3, I4), which cover all the net transitions
(shaded in grey). The first set of transitions in
ME (covered by I;) corresponds to Supervisor
process. The second (covered by I,) corresponds
to the Control process. The third (I3), is the
periodical activator of the Control process, the
Control_Activation process, and the fourth (I4)
is the process which deals with the laser, the
Laser process. There are several places remaining
which do not belong to any process, which are
modeling asynchronous communications between
the processes. The places are CCy, CC3, LCj,
cCy, CTy, LC;, CCy, CCs, all of private

destination, and Goal, State, Scans, of non
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Fig. 5. Covering table of transitions




private destination. E.g. the code corresponding
to Control process is shown:

task body Control is
Read_location_TO: constant duration:=0.1;
Send_Set_Point_TO:constant duration:=0.1;
begin
loop
select
accept Control_Star_Period;

select
delay Read_Location_TO;
CC3.Mark; exit;
then abort

Read_Llocation;
end select;
State.Demark; Store_State;
State.Mark; CC4.Mark;
Scans.Demark; Read_Scans;
Scans.Mark;
Goal.Demark;

Scans_Integration;
Read_Goal;

Goal.Mark; Compute_Setpoint;
select
delay Send_Set_Point_TO;
CC3.Mark; exit;
then abort

Send_Setpoint;
end select;
or
accept Stop_Control;
exit;
or
accept End_0f_Trajectory;
Move_To; exit;
end select;
end loop;
Stop_Robot;
end;

6. CONCLUSIONS AND FUTURE WORK

Time Petri nets have been proposed as the
formalism for the whole life cycle of real-time
systems providing the following advantages: it
allows an unambiguous and easy to understand
system specification due to its graphical nature;
it allows the wverification and validation of
the correction of the system in the early
stages of the cycle; it allows a high modeling
flexibility, since it will no longer be necessary
to impose restrictions on the system in order
to analyze the temporal behaviour and verify
the timing constraints. Structural techniques have
been applied in order to detect the concurrent
sequential processes embedded in the net,
avoiding the problems of centralized techniques.
Moreover, the implementation is automatizable
allowing us the automatic code generation,
preventing us from making mistakes during the
codification and simplifying the development of
the system.

For the computation of sequential processes we
have used the net without time information. But
sometimes, due to time interpretation, a set of
transitions which are not in ME in the underlying

Petri net, are in the time Petri net. In future works
we will try to detect and formalize this temporal
mutual exclusion A further line of research will be
the study of the shedulability of systems modeled
with TPN since, up to now, it has been performed
using heuristic rules. The appropriate priority
assignment policy for a process consisting of a
set of transitions of different priority must be
studied: a static priority equal to the highest of the
transition priority in the set, a dynamic priority
depending on the transition which is currently
fired, or an alternative priority assignment.
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