
9th International Symposium on
Symbolic Computation in

Software Science (SCSS 2021),
short and work-in-progress

papers

Temur Kutsia (editor)

August 2021

RISC Report Series No. 21-16

ISSN: 2791-4267 (online)

Available at https://doi.org/10.35011/risc.21-16

This work is licensed under a CC BY 4.0 license.

Editors: RISC Faculty

B. Buchberger, R. Hemmecke, T. Jebelean, T. Kutsia, G. Landsmann,

P. Paule, V. Pillwein, N. Popov, J. Schicho, C. Schneider, W. Schreiner,

W. Windsteiger, F. Winkler.

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

https://doi.org/10.35011/risc.21-16
https://creativecommons.org/licenses/by/4.0/


Ninth International Symposium on

SYMBOLIC COMPUTATION IN

SOFTWARE SCIENCE

SCSS 2021

SHORT AND WORK-IN-PROGRESS PAPERS

Temur Kutsia (editor)

September 8–10, 2021

Research Institute for Symbolic Computation

Johannes Kepler University Linz, Austria



T. Kutsia (Ed.): Symbolic Computation

in Software Science (SCSS’21)

Short and work-in-progress papers, pp. 6–10

c© J. Cuevas-Rozo, J. Divasón, L. Lambán & A. Romero

This work is licensed under the

Creative Commons Attribution License.

Q-learning and MCTS techniques for improving an algorithm

to compute discrete vector fields on finite topological spaces∗

Julián Cuevas-Rozo

National University of Colombia

University of La Rioja, Spain

jucuevas@unirioja.es

Jose Divasón

University of La Rioja, Spain

jose.divason@unirioja.es

Laureano Lambán

University of La Rioja, Spain

lalamban@unirioja.es

Ana Romero

University of La Rioja, Spain

ana.romero@unirioja.es

Abstract. In this work we present an ongoing project on the improving of a previous symbolic

computation algorithm computing discrete vector fields on finite topological spaces. To this aim, we

consider different strategies to choose each one of the possible vectors at each step of the algorithm

and we apply some reinforcement learning techniques.

1 Introduction

A finite topological space (or simply a finite space) is a topological space with finitely many points.

Finite spaces and finite preordered sets are basically the same objects considered from different perspec-

tives [1]. The study of homotopical invariants can be restricted to the class of finite T0-spaces, since any

finite topological space is known to be homotopy equivalent to a finite T0-space [17]. Finite T0-spaces

correspond to finite partially ordered sets or posets. Given a finite T0-space X , the incidence matrix cor-

responding to the order relation of its associated poset and the adjacency matrix of the Hasse diagram

H (X) are called topogenous matrix and Stong matrix of the space, respectively.

In [6], some algorithms and programs to compute topological invariants of finite spaces have been

presented, which are based on new developed constructive versions of theoretical results [4, 11]. In

particular, a new module for the Kenzo symbolic computation system [7] was developed allowing the

computation of homology groups of h-regular spaces without constructing the order complex associated

with the poset, by defining a chain complex directly from the finite space. Moreover, our new Kenzo

module includes an algorithm to determine homologically admissible Morse matchings on finite spaces,

in order to use the Minian’s version of discrete Morse theory. A Morse matching M on a finite space X

is a set of edges of its Hasse diagram where no edges share a common vertex and such that the directed

graph H (X), modified by reversing the orientation of the edges in M, is acyclic. If a Morse matching

satisfies the property of being homologically admissible (see [11] for details), the homology of X can be

determined by means of a chain complex smaller than the canonical one associated to the finite space

generated by the critical points of the matching, which are the elements of X that are not incident to any

edge in M. A Morse matching on a finite space can also be seen as a discrete vector field [14] on the

associated chain complex. Then, the longer the Morse matching is, the smaller the number of generators

we need to describe a chain complex to compute homology by means of the critical complex is.

∗Partially supported by the Spanish Ministry of Science, Innovation and Universities, projects MTM2017-88804-P and

PID2020-116641GB-I00.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


J. Cuevas-Rozo, J. Divasón, L. Lambán & A. Romero 7

In this work, we try to improve the algorithms presented in [6] by studying different strategies and

methods to maximize the size of a discrete vector field. To this aim, we first consider 25 different

strategies to choose which vector should be added in each step of the Morse matching algorithm. We also

try some reinforcement learning techniques such as Q-learning and MCTS. The code and the experiments

of our work can be found at:

https://github.com/jodivaso/Q_Learning_MCTS_DVF

2 Strategies for computing discrete vector fields on finite spaces

In our algorithm for computing Morse matchings on finite topological spaces presented in [6], we search

for homologically admissible edges such that the set of such edges does not contain cycles in the modified

Hasse diagram of the poset associated to the finite space. In this searching, we go through the columns

and the rows of the Stong matrix in ascending order (an edge in the Morse matching, or a vector in the

associated chain complex, corresponds to an element equal to 1 in the Stong matrix). The algorithm

finishes when it is not possible to add a new edge to the matching satisfying the desired property, so that

the corresponding discrete vector field is maximal. However, a different vector field could exist with a

bigger size (the problem of finding a vector field of maximal length is difficult for big spaces).

In order to improve our algorithm and try to find Morse matchings on a finite space as big as possible,

we have decided to consider different strategies to sort rows and columns of the Stong matrix, and

compare them analyzing if there exist remarkable differences between the size of the discrete vector fields

obtained in each case. We have considered five different strategies to sort a list of elements in a finite

T0-space: :standard (in ascending order, the one used in our initial implementation of the algorithm),

:indegree (sorted by the number of “head ends” adjacent to each vertex), :reverse-indegree (reverse

order to the previous one), :outdegree (sorted by the number of “tail ends” adjacent to a vertex), and

:reverse-outdegree (reverse order to the previous one).

The strategies considered above have been tested in random finite h-regular spaces of different sizes

between 10 and 100 elements. On each one of these spaces, we have computed 25 discrete vector fields

in Kenzo by using the five strategies in order to sort the column and row indexes of the Stong matrices. In

these experiments we have observed that the strategy :outdegree - :reverse-outdegree (that is, considering

outdegree order for column indexes and reverse-outdegree for row indexes) predominates over the others,

obtaining the maximum of all strategies in 81.5% of all spaces. The second best strategy is :outdegree -

:indegree (maximum in 68% of all cases) and the third one is :outdegree - :standard (65%). We can also

observe that there is not a unique strategy which performs well in all cases and, moreover, in most of the

finite spaces we have considered, the different strategies have produced discrete vector fields with low

difference between their lengths.

3 Application of Q-learning algorithm

After trying the different strategies to compute discrete vector fields on finite topological spaces intro-

duced in the previous section and seeing that there is not a unique strategy which performs the best in

all spaces, we have tried to improve our symbolic computation algorithm by means of machine learning

methods. Due to the type of problem we are studying, we have focused on the so-called reinforce-

ment learning. Machine learning methods have already been applied in other computer algebra prob-

lems [3, 13, 16].

https://github.com/jodivaso/Q_Learning_MCTS_DVF


8 Q-learning and MCTS techniques for improving an algorithm on finite topological spaces

Reinforcement learning is a type of machine learning technique where the key point of is to establish

a suitable reward system. That is, when the process has reached a concrete state and it has to select a

possible action in order to continue, a reward is applied, which depends on the profit obtained after the

corresponding change of state. In particular, we use the Q-learning algorithm [18], which is a particular

case of reinforcement learning. This algorithm requires the definition of states (the possible situations

which can be encountered), actions (transitions from one state to another state) and (positive or nega-

tive) rewards received after each transition. More concretely, the Q-learning algorithm is based on the

construction of a Q-table, which is a matrix where we have a row for every state and a column for ev-

ery action. It is first initialized to 0, and then values are updated after training, taking into account the

rewards obtained. The process of training is done by iterating a sequence of actions starting from the

initial state, combining exploration (choosing a random action) and exploitation (choosing actions based

on already learned Q-values). For each state (each row in the table), the best action is supposed to be the

one with the highest value in the corresponding column of the Q-table. See [18] for more details.

In our problem, we have chosen to use the Python library for reinforcement learning Gym [12]. We

construct a new class called DVFMatrixEnv which implements the interface gym.Env, which represents

a learning environment. This interface requires the definition of a set of states and a set of actions,

and the implementation of four methods: init, reset, render and step. The most important method

is step, which, for an input pair of state and action, returns a new state, a reward and a boolean variable

called done which determines if the problem ends or not after applying the action.

The input data to construct an environment of type DVFMatrixEnv is the Stong matrix of the finite

T0-space where we want to compute a discrete vector field. The elements of the set of actions are the

possible vectors we can select in the space. Then, a state represents a set of possible vectors (some of the

sets are not valid, but this will be specified in the algorithm by means of a negative reward). The number

of possible states is 2numberOfActions. Both actions and states are represented as numbers. The initial state

is 0. Once we have defined our environment, we perform the training of the Q-learning algorithm with a

given number of repetitions. After a high number of iterations, the Q-table allows one to define a good

process to obtain a Morse matching as big as possible.

We have tested the method on some of the random examples studied in the previous section. In all

the cases where the algorithm works, the Q-learning technique has provided us satisfactory results. That

is, for each space, the vector field we obtained by using this approach has the same number of vectors as

the best one obtained by applying the strategies given in Section 2. Nevertheless, the size of the Q-table

results to be an evident problem to be treated. In fact, we have only tested satisfactorily the Q-learning

technique in 13 spaces; for other spaces, the Q-table cannot be built. It is a common drawback of this type

of machine learning and there exist some well-studied alternatives to avoid it, such as the one studied in

the next section.

4 Monte Carlo tree search

Monte Carlo tree search (MCTS) is a heuristic search algorithm for some kinds of decision processes.

It is commonly used in the field of game theory as a method to solve a game tree by analysing the most

promising movements. In fact, MCTS has proved to be very competitive in deterministic games with

large branching factors for many years. One of the most famous applications is the AlphaGo program,

in which a neural network combined with MCTS beat a professional human Go player in 2015.

In our problem, we can see the different possibilities for selecting the vectors as a search tree: each

node is a 1 of the Stong matrix that can be chosen in a concrete step; branches correspond to the sequence



J. Cuevas-Rozo, J. Divasón, L. Lambán & A. Romero 9

of vectors that have been selected. The final goal is to get a branch as large as possible.

Essentially, MCTS is a smart search, since in each step it accumulates value estimates to guide

towards highly rewarding trajectories in the search tree. In other words, MCTS focuses on nodes that are

more promising, avoiding applying brute force algorithms (like minimax), which are unfeasible over big

state spaces. More concretely, each MCTS iteration consists of four steps: selection (choose a promising

node p that can be expanded), expansion (create one or several child nodes of p, one for each possible

action at that point), simulation (choose one of those child nodes and apply random decisions until finish)

and backpropagation (use the result of the simulation to update the information of the tree).

We have implemented a MCTS version based on Gym. To balance exploration vs. explotation, in the

selection phase we employed the UCB formula (Upper Confidence Bound, see [2, 9]): vi+c
√

log(N)/ni,

where vi is the value estimate of the node, N the number of visits of the parent node, ni the number of

visits of the node and c is the exploration hyperparameter, which theoretically is equal to
√

2 but can be

empirically chosen depending on the problem to strengthen exploration or explotation. That is, the UCB-

value of a node decreases in the number of visits (exploration) and increases in node’s value (exploit).

Thus, UCB permits to sort the nodes: nodes with a high UCB-value are more promising or need to be

explored. In order to avoid prioritizing nodes that have never been visited (otherwise, a non-visited node

has ∞ as UCB-value and will always have higher priority over an already visited one), we decide to give

parent’s UCB-value to a non-visited node. The simulation step consists of randomly choosing vectors

until reaching a state in which no more admissible vectors can be added. The reward is the number of

vectors that we reached (the depth of the branch). That information is backpropagated to the tree and

the UCB-values of each node are updated. MCTS permits to handle big spaces, since there is no need

to create a Q-table. It can give a result immediately and indeed, MCTS improves its result with more

time. It is a decision process which applies random actions over the most promising nodes, and the

information obtained from the simulation is used to update the list of the most promising nodes (based

on the UCB-value). At the end, the best decision is the one with higher reward, in our case, the largest

branch.

The algorithm essentially requires as input the Stong matrix of the finite space and the number of

MCTS iterations (also named as playouts) that one wants to perform. Our first experiments show that

MCTS obtains the same or more vectors than applying any of the 25 strategies and the Q-learning al-

gorithm in 80% of all spaces, with no need to explore the whole tree and performing better than a pure

iterated random strategy. Concretely, by using MCTS we obtain the same number of vectors in 42% of

cases and more vectors in 37.5% of spaces.

5 Conclusions and further work

This work presents some improvements that we carried out over a symbolic computation algorithm for

computing Morse matchings on finite topological spaces, concretely on how to select vectors to maximize

the size of a discrete vector field. We first studied 25 different strategies to choose which vector should

be added. We also tried techniques that are usually employed in reinforcement learning contexts, such as

Q-learning and MCTS. The initial experiments show promising results. We plan to extend this work by

employing deep Q-learning, which uses neural networks to approximate the Q-table, and also combine

it with MCTS. In addition, further work is necessary to optimize the implementation of the algorithms

(for instance, to avoid recalculations and to exploit parallelism) and tune appropriately the parameters,

hyperparameters and rewards to get a fast and good result.



10 Q-learning and MCTS techniques for improving an algorithm on finite topological spaces

References

[1] P. Alexandroff (1937): Diskrete Rume. Mat. Sb. (N.S.) 2, pp. 501–518.

[2] Peter Auer, Nicolo Cesa-Bianchi & Paul Fischer (2002): Finite-time analysis of the multiarmed bandit prob-

lem. Machine learning 47(2), pp. 235–256, doi:10.1023/A:1013689704352.

[3] Y. Bengio, A. Lodi & A. Prouvost (2020): Machine Learning for Combinatorial Optimization: a Method-

ological Tour dHorizon. https://arxiv.org/pdf/1811.06128.pdf.

[4] N. Cianci & M. Ottina (2017): A new spectral sequence for homology of posets. Topology and its Applica-

tions 217, pp. 1–19, doi:10.1016/j.topol.2016.12.001.

[5] J. Cuevas-Rozo (2020): Finite topological spaces in Kenzo. https://github.com/jcuevas-rozo/

finite-topological-spaces.

[6] J. Cuevas-Rozo, L. Lambn, A. Romero & H. Sarria (2020): Effective homological computations

on finite topological spaces. Applicable Algebra in Engineering, Communication and Computing,

doi:10.1007/s00200-020-00462-8. In press.

[7] X. Dousson, J. Rubio, F. Sergeraert & Y. Siret (1999): The Kenzo program. Institut Fourier, Grenoble.

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.

[8] A. I. Khan & S. Al-Habsi (2020): Machine Learning in Computer Vision. Procedia Computer Science 167,

pp. 1444–1451, doi:10.1016/j.procs.2020.03.355.

[9] Levente Kocsis & Csaba Szepesvári (2006): Bandit Based Monte-Carlo Planning. In Johannes Fürnkranz,

Tobias Scheffer & Myra Spiliopoulou, editors: Machine Learning: ECML 2006, Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 282–293, doi:10.1007/11871842 29.

[10] A. Maier, C. Syben, T. Lasser & C. Riess (2019): A gentle introduction to deep learning in medical image

processing. Zeitschrift fr Medizinische Physik 29(2), pp. 86–101, doi:10.1016/j.zemedi.2018.12.003.

[11] G. Minian (2012): Some remarks on Morse theory for posets, homological Morse theory and finite manifolds.

Topology and its Applications 159(12), pp. 2860–2869, doi:10.1016/j.topol.2012.05.027.

[12] OpenAI (2016): Gym. https://gym.openai.com/.

[13] D. Peifer, M. Stillman & D. Halpern-Leistner (2020): Learning Selection Strategies in Buchberger’s Algo-

rithm. https://arxiv.org/pdf/2005.01917.pdf.

[14] A. Romero & F. Sergeraert (2010): Discrete Vector Fields and Fundamental Algebraic Topology. https:

//arxiv.org/pdf/1005.5685.pdf.

[15] D. Silver, A. Huang & C. Maddison (2016): Mastering the game of Go with deep neural networks and tree

search. Nature 529, pp. 484–489, doi:10.1038/nature16961.

[16] L. R. Silverstein (2019): Probability and Machine Learning in Combinatorial Commutative Algebra. Ph.D.

thesis, University of California Davis.

[17] R. E. Stong (1966): Finite topological spaces. Trans. Amer. Math. Soc. 123(2), pp. 325–340,

doi:10.1090/S0002-9947-1966-0195042-2.

[18] C. J. C. H. Watkins (1989): Learning from Delayed Rewards. Ph.D. thesis, Cambridge University.

http://dx.doi.org/10.1023/A:1013689704352
https://arxiv.org/pdf/1811.06128.pdf
http://dx.doi.org/10.1016/j.topol.2016.12.001
https://github.com/jcuevas-rozo/finite-topological-spaces
https://github.com/jcuevas-rozo/finite-topological-spaces
http://dx.doi.org/10.1007/s00200-020-00462-8
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://dx.doi.org/10.1016/j.procs.2020.03.355
http://dx.doi.org/10.1007/11871842_29
http://dx.doi.org/10.1016/j.zemedi.2018.12.003
http://dx.doi.org/10.1016/j.topol.2012.05.027
https://gym.openai.com/
https://arxiv.org/pdf/2005.01917.pdf
https://arxiv.org/pdf/1005.5685.pdf
https://arxiv.org/pdf/1005.5685.pdf
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1090/S0002-9947-1966-0195042-2

