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Abstract—Domain shift is a generalisation problem of machine
learning models that occurs when the data distribution of the
training set is different to the data distribution encountered
by the model when it is deployed. This is common in the
context of biomedical image segmentation due to the variance
of experimental conditions, equipment, and capturing settings.
In this work, we address this challenge by studying neural style
transfer algorithms in the context of the segmentation of tumour
spheroids. We show that, using these algorithms, it is possible to
recover the performance of a model that suffers from the domain
shift problem. Finally, we provide an API to facilitate the use
neural style transfer techniques in the bioimaging context.

Index Terms—Domain adaption, Style Transfer, Semantic Seg-
mentation, Glioblastoma, Spheroids

I. INTRODUCTION

Deep convolutional neural networks have become the
state-of-the-art approach to tackle segmentation problems in
medicine [19], [22]. However, there are several challenges that
hinder the training and deployment of deep learning models in
this context. First of all, a considerable amount of annotated
images is needed to train a deep model, and annotating datasets
for image segmentation is a tedious and time-consuming task
that requires expert knowledge [13]. Moreover, there is an
important generalisation challenge when using trained models
that is known as domain shift (also known as distribution
shift) [2], [4]. This problem arises when the data distribution
of the training dataset employed for training a model is
different to the data that the model encounters when deployed.
This is common in biomedical datasets since images greatly
vary due to experimental conditions, and the equipment (for
instance, microscopes) and settings (for instance, focus and
magnification) employed for capturing those images.

This generalisation problem can be tackled by combining
datasets from multiple sources [7] or using techniques like data
augmentation [21]; nevertheless, it is not possible to foresee
every new and unknown distribution. A different approach
consists in applying transfer learning [18], a technique that,
instead of training a model from scratch, reuses a model
pre-trained in a source dataset to train a new model in a
target dataset. However, this requires the annotation of the
target dataset, a time-consuming task that should be carried
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out for every new dataset. A different approach to handle the
domain shift problem is image-to-image translation [8], a set
of techniques that aim to learn the mapping between an input
image and an output image using a training set of aligned
image pairs; however, this requires paired data from the source
and target domains, a challenge that can be faced by using
unpaired image-to-image translation [26].

Unpaired image-to-image translation methods translate an
image from a domain A to a domain B, and vice versa,
in the absence of paired examples. This approach has been
already employed in several medical segmentation tasks; for
instance, the segmentation of the left ventricle in magnetic
resonance images [24], the segmentation of digitally recon-
structed radiographs [25], and the segmentation of magnetic
resonance imaging (MRI), abdominal CT and MRI, and mam-
mography X-rays [9]. All these works are based on variants
of CycleGAN [26], an unpaired image-to-image translation
method based on Generative Adversarial Networks (GANs)
that requires two datasets: one of them contains images from
the distribution employed for training the segmentation model,
and the other contains images acquired in a different setting.
This approach poses two challenges. First, both datasets must
be available, and this might be an issue due to privacy
concerns [1]; and, secondly, CycleGAN variants must be
trained, a process that demands the usage of GPUs and might
be challenging for several users due to the difficulties of
training GAN models [20]. The approach proposed in this
paper to tackle these drawbacks consists in using style transfer
methods [5]; that is, techniques that render the content of an
image using the style of another. Those techniques do not
require a training process, and it is enough with releasing one
image of the dataset employed for training the model that
suffers the domain shift problem.

In this work, we have 3 studied neural style transfer tech-
niques to deal with the domain shift problem in the context
of segmenting tumour spheroids [15]. In this task, we have
observed, see Section II, that models that achieve a mean
IoU over 97% when evaluating with data following the same
distribution as the training set, fail when they are employed
with data following a different distribution (the IoU is, in some
cases, under 15%). We have faced this domain shift problem
by using style transfer techniques. Namely, the contributions
of our work are:
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Dataset � Images Image size Microscope Magnification Format Type

BL5S 50 1296× 966 Leica 5x TIFF RGB
BN2S 154 1002× 1004 Nikon 2x ND2 Gray 16bits
BN10S 105 1002× 1004 Nikon 10x ND2 Gray 16bits

BO10S 64 3136 × 2152 Olympus 10x JPG RGB

TABLE I
FEATURES OF THE 4 DATASETS EMPLOYED IN THIS WORK. THE FORMER

THREE DATASETS WERE EMPLOYED FOR TRAINING AND THE LAST
DATASET WAS USED FOR TESTING

• We explore several state-of-the-art style transfer transla-
tion methods to tackle the domain shift problem in the
context of tumour spheroid segmentation.

• We demonstrate the effectiveness of using style transfer
to improve the performance of a variety of advanced deep
segmentation networks.

• We provide an API to apply the studied methods not only
in the context of spheroid segmentation but in general
for medical imaging tasks. The API is available at https:
//github.com/ManuGar/ImageStyleTransfer

II. MATERIALS

Spheroids are the most widely used 3D models to study can-
cer since they can be used for studying the effects of different
micro-environmental characteristics on tumour behaviour and
for testing different preclinical and clinical treatments [15].
The images from tumour spheroids greatly vary depending on
the experimental conditions, and also on the equipment (mi-
croscopes) and conditions (focus and magnification) employed
to capture the images [11].

For our experiments, we have employed the 4 datasets
presented in [11]; a description of those datasets is provided in
Table I, and an image of each dataset is shown in Figure 1. As
can be noticed from Table I and Figure 1, there are consid-
erable differences among the images of each dataset. Three
of those datasets (the BL5S, BN2S, and BN10S datasets)
were employed for training 4 segmentation models (using the
algorithms DeepLab v3 [3], HRNet Seg [23], U-net [19] and
U2-Net [17]) and the last dataset (the BO10S dataset) was
employed for testing. We have used this dataset split because
the last dataset comes from a different laboratory; so, its
style will not be the same as the others. The definition of
the 4 segmentation architectures is available in the SemTorch
package1. All the architectures were trained with the libraries
PyTorch [16] and FastAI [6] and using a GPU Nvidia RTX
2080 Ti. In order to set the learning rate for the different
architectures, we employed the procedure presented in [6];
and, we applied early stopping when training all the architec-
tures to avoid overfitting. The metric employed to measure the
accuracy of the different methods is the IoU, also known as
Jaccard index — this metric measures the area of intersection
between the ground truth and the predicted region over the area
of union between the ground truth and the predicted region.

When the models were evaluated using a test set formed by
images following the same distribution than the training set,

1The SemTorch package is available at https://github.com/
WaterKnight1998/SemTorch

BL5S BN2S

BN10S BO10S

Fig. 1. Samples from the 4 datasets employed in this work

DeepLab v3 HRNet-Seg U-Net U2-Net

BL5S-BN2S-BN10S 97.00 97.32 97.25 97.26
BO10S 83.61 92.65 13.64 95.65

TABLE II
PERFORMANCE OF THE 4 MODELS WHEN EVALUATING IN A TEST SET

FORMED FROM IMAGES FOLLOWING THE SAME DISTRIBUTION THAN THE
TRAINING SET (BL5S-BN2S-BN10S), AND WHEN EVALUATED USING A

TEST SET FROM A DIFFERENT DISTRIBUTION (BO10S)

the 4 models achieved a performance over 97%, see Table II.
On the contrary, when those models were employed with
images captured under different conditions (namely, using the
BO10S dataset), the performance of the models decreased by
up to 84%. In the next section, we explore how style transfer
methods can serve to deal with the domain shift problem in
this context.

III. STYLE TRANSFER

This section is devoted to present how style transfer methods
can handle the domain shift problem. In addition, we introduce
the API that we have developed to facilitate the use of those
methods.

We start by explaining the procedure to apply style transfer
methods to deal with the domain shift problem of a model
— such a procedure is summarised in Figure 2. We assume
that a model has been trained using a source dataset of
images, and we are interested in applying such a model to
obtain the prediction associated with an image from a different
distribution than the source dataset; we call this image, the
target image. Instead of feeding the target image directly to
the model, we first take an image from the source dataset
and transfer the style of that image to the target image but
preserving its content producing a transformed image. Finally,
the transformed image is fed to the model to obtain the
associated prediction.
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Fig. 2. Workflow of the style transfer approach. (1) A model is trained using
a source dataset. (2) The target image is transformed using the style from an
image of the source dataset. (3) The transformed image is fed to the model.

The key component of the aforementioned process is the
algorithm that transfers the style from the source dataset but
keeping the content of the target image. In the literature, there
are several style transfer algorithms [14]; but, for our experi-
ments, we have focused on three of them: neural style transfer
(NST) [5], an optimisation technique that uses a Convolutional
Neural Network (CNN) to decompose the content and style
from images; deep image analogy [12], a method that finds
semantically-meaningful correspondences between two input
images by adapting the notion of image analogy with features
extracted from a CNN; and STROTSS [10], a variant of the
NST algorithm that changes the optimisation objective of NST.

It is worth noting that the style transfer approach presented
here can be applied to deal with the domain shift problem
not only for segmentation problems, as in our work, but also
to other computer vision tasks. Hence, these methods can be
helpful for a great variety of problems. However, it might be
difficult to apply these techniques since they are implemented
in different libraries and using different frameworks, and each
of them has its own particularities. In this work, we have
addressed this drawback by developing a high-level Python
API that allows the integration of style transfer algorithms
independently of their underlying library and framework.
The API currently includes the aforementioned methods (the
project webpage provides information about the library that
implements each method) and can be easily extended with
new techniques. In order to apply the previously introduced
procedure using our API, users only have to provide the style
image, the target image, and the name of the algorithm to
apply; the rest of the transformation process is automatically
conducted by the API.

IV. RESULTS AND DISCUSSION

In our running example of segmenting tumour spheroids,
and using our API, we randomly picked an image from the
combination of the datasets BL5S, BN2S, and BN10S, and
used it to transform the images from the BO10S dataset.
Subsequently, we fed those images to the segmentation models

DeepLab v3 HRNet-Seg U-Net U2-Net

Base 83.61 92.65 13.64 95.65

NST 95.64↑ 94.91↑ 89.21↑ 95.89↑
Deep Image Analogy 0.00↓ 45.13 ↓ 0.66↓ 0.84↓

STROTSS 94.86↑ 92.38↓ 78.08↑ 94.14↓
TABLE III

PERFORMANCE FOR THE BO10S DATASET USING THE DIFFERENT
STYLE-TRANSFER METHODS TO DEAL WITH THE DOMAIN SHIFT

PROBLEM. A ↑ INDICATES AN IMPROVEMENT WITH RESPECT TO THE BASE
MODEL, WHEREAS A ↓ INDICATES A DECLINATION IN THE PERFORMANCE.

presented in Section II, and evaluated their performance, see
Table III. From the 3 studied style transfer algorithms, both
the NST and STROTSS algorithms handle the domain shift
problem; whereas, the images transformed with the deep image
analogy algorithm produce even worse results than the original
images from the BO10S dataset. Using the NST algorithm, all
the segmentation models improve their IoU (the U-Net model
improves its performance from 13.64% to 89.21%, and the
other models have an IoU close to 95%). For the STROTSS
algorithm, the results are also positive: two of the segmentation
models improve (DeepLab and U-Net), and the other two
achieve worse results, but still their IoU is over 92%.

We can also visually inspect the images produced by the
different transformation algorithms to discover the difficulties
faced by the segmentation models, see Figure 3. We can notice
that the 2 successful models (NST and STROTSS) produce
images that preserve the content of the image but with a
style that is similar to the style of those used for training the
segmentation models. On the contrary, the deep image analogy
method does not keep the content of the image; and, thus
the segmentation models are not able to properly segment the
images.

From Figure 3, we can also appreciate the sensibility of
the segmentation models to variations in the input image.
The HRNet Seg and U2-net models are more robust than
the DeepLab and U-net models — recall that all the models
achieved an IoU over 97% when evaluating in data from
the distribution of the training set. Hence, the style transfer
methods can be employed not only to deal with the domain
shift problem of computer vision models, but also to evaluate
the robustness of such models.

V. CONCLUSIONS

In this paper, we have studied the benefits of applying style
transfer techniques to deal with the domain shift problem in
the context of tumour segmentation. The results show us that,
using those translation methods, it is possible to recover the
performance of a model that suffers from the domain shift
problem. In contrast with other existing methods that deal with
the domain shift problem, such as image-to-image translation
models, style transfer algorithms have the advantage of not
requiring a training step, and can be deployed by providing a
single image from the source dataset.

In this work, we have only used style transfer techniques,
but it remains as future work to compare these methods
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Image DeepLab v3 HRNet Seg U-Net U2-Net

Base

NST

Deep Image
Analogy

STROTSS

Fig. 3. An example showing the segmentation produced by the DeepLab, HRNet, U-Net and U2-Net models after applying a style transfer algorithm or an
image-to-image translation model to a given image

with unpaired image-to-image translation methods and other
techniques that deal with domain shift. Since, it is known
that not all algorithms work equally well for all problems,
we plan to extend our API to include several image-to-image
methods using GANs. Finally, we will test the performance
of both neural style transfer methods and unpaired image-to-
image models with other kinds of images and computer vision
tasks.
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