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Abstract: This paper reports a structural equation model (SEM) to quantify the relationship between
Lean Manufacturing (LM) tools associated with machinery and sustainability. The LM tools are inde-
pendent variables and include Total Productive Maintenance (TPM), Jidoka, and overall equipment
effectiveness (OEE), whereas dependent sustainability variables comprise environmental, social, and
economic sustainability. The SEM proposes ten hypotheses, tested statistically using information
from 239 responses to a questionnaire applied to the Mexican maquiladora industry and the Partial
Least Squares (PLS) technique for quantifying relationships among variables. Additionally, we
discuss conditional probabilities to explain how low and high levels of TPM, Jidoka, and OEE impact
sustainability. Findings reveal that TPM, Jidoka, and OEE directly impact social, environmental, and
economic sustainability, thus indicating that safe workplaces improve employee commitment, safety,
delivery time, and morale.
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1. Introduction

Economic globalization forces companies to be geographically closer to their cus-
tomers, and a common strategy is to establish subsidiary companies in other countries. In
Mexico, these subsidiary manufacturing companies, also known as maquiladoras, play a
key economic role. These maquiladoras are usually located on the northern borderlines
of Mexican territory, which makes them particularly close to the US, the most prominent
world market. Additionally, the current trade agreement among Mexico, the US, and
Canada allows the Mexican maquiladora industry to take advantage of the low regional
labor costs and tariff rates for importing raw materials from these countries and exporting
final products.

The importance of the Mexican maquiladora industry can be explained in numbers.
From January to November 2020, Mexican maquiladora imports totaled USD 217,053 million,
whereas exports totaled USD 235,493 million. Specifically, Chihuahua state was responsible
for 12% of these nationwide values (USD 26,046 and USD 28,259 million in imports and
exports, respectively) thanks to the remarkable industrial activity of Ciudad Juárez, its
borderline city, which generated 75% of the total imports and exports of the state and 9%
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of the nationwide values (USD 19,535 and USD 21,194 million in imports and exports,
respectively) [1].

Moreover, the Mexican maquiladora industry has an important social impact. In De-
cember 2020, it provided 2,695,964 direct jobs nationwide: 498,598 were offered in Chihuahua
state (18.04% of the nationwide total) and 323,391 in Ciudad Juárez (66.46% of statewide total
and 12% of nationwide) [1,2]. These direct jobs were offered by 5153 companies across the
country, 495 of which were located in Chihuahua state (9.6% of the nationwide total), with
332 of these in Ciudad Juárez (6.44% nationwide and 67.07% statewide) [3].

Maquiladora production systems have high technology and optimizing production
methodologies, such as Lean Manufacturing (LM). LM is defined as a set of tools focused
on minimizing waste generation and activities that do not add value to products [4]. In
this sense, some Lean Manufacturing Tools (LMTs), such as Total Productive Maintenance
(TPM), Jidoka (JID), and Overall Equipment Efficiency (OEE) [5], have been specifically
designed to keep manufacturing machines and equipment in optimal operating condition.

Over the years, LM has been studied from various sustainability standpoints across
countries and industries, but not in the Mexican maquiladora sector. For instance, in their
literature review of LM, six sigma (SS), and sustainability integration, Cherrafi et al. [6]
report that only six papers have sought to link these production strategies with sustain-
ability in countries such as the UK, Spain, New Zealand, and Sweden. Younus et al. [7]
also studied the effects of LM, SS, and sustainability in small and medium companies in
Pakistan using the Spearman coefficient, indicating a significant relationship among these
variables. Additionally, Palange and Dhatrak [8] found that LM is a vital methodology for
increasing India’s economic sustainability and productivity in manufacturing systems.

However, LM comprises a wide set of tools, such as Just in Time (JIT) [9,10] and
kaizen [11], and some research generalizes its concept. In terms of sustainability, the role of
certain LMTs is vastly studied around the world. For instance, Green et al. [12] conducted
research on the effect of JIT and Total Quality Management (TQM) on environmental
sustainability, whereas Sahoo [13] related JIT and TQM to operational and economic
performance. Similarly, Jahangir et al. [14] analyzed the effects of TPM and human resources
on organizational sustainability, generalizing the concept of LM.

Moreover, Samadhiya and Agrawal [15] highlighted TPM as a critical tool for guaran-
teeing material flow and sustainability, while Chen et al. [16] found that TPM is vital for
economic and environmental sustainability; however, they did not analyze social sustain-
ability. Gungor and Evans [17] identified TPM as a vital metric for economic sustainability.
Yazdi et al. [18] linked OEE to operational sustainability and considered it essential for
migration to industry 4.0. Cercós et al. [19] linked OEE to CO2 emissions, and Romero
et al. [20] found that Jidoka and automation strategies in machinery help to avoid human
errors, thus favoring sustainability by minimizing the reprocessing of faulty products.

Despite the importance of the maquiladora industry in Mexico, few studies have
analyzed its environmental impact, and Velázquez et al. [21] were the first to explore
maquiladora sustainability from an economic point of view. Years later, Velazquez et al. [22]
analyzed the ability of electrical and electronic maquiladoras to generate clean production
and prevent pollutant emissions. From a similar perspective, Díaz-Reza et al. [23] examined
the Single Minute Exchange of Die methodology (SMED) and the benefits obtained by
maquiladoras from implementing it, reporting economic and operational sustainability as
the most important.

More recently, Arredondo-Soto et al. [24] analyzed how machinery and equipment
calibration can reduce costs and increase economic sustainability. Recently, García-Alcaraz
et al. [25] reported the relationship between improvement techniques such as kaizen,
Gemba, and some visual LM tools with economic sustainability in maquiladoras established
in Ciudad Juarez (Mexico). In conclusion, there is evidence that LMTs are related to
sustainability, but the experience of Mexican maquiladora is not reported in depth.

TPM, Jidoka, and OEE as LM tools are ignored in several reports from Mexican
maquiladora, but they have been proven to support the production process and make it
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more sustainable. Frequently, they are analyzed from economic and productivity perspec-
tives. However, many studies consider sustainability as a global construct in the industry
and with three dimensions—environmental, economic, and social [26]—and this means
that several analyses and literature reports may be reductionist and incomplete.

Despite the social and economic importance of the maquiladora industry in Mexico, no
formal studies have yet been conducted to report the link between LMTs for machinery and
the sustainable benefits gained. To address this gap, we report a structural equation model
to quantify the relationships between three LMTs—TPM, JID, and OEE—and sustainability
across its three dimensions: environmental sustainability (EnS), social sustainability (SoS),
and economic sustainability (ECs). Our model integrates the three LMTs as the independent
variables, whereas the dependent variables refer to the three sustainability dimensions.
The main goal is to quantify and test the relationships between those LMTs associated
with machinery management and sustainability, testing it statistically with real information
obtained from the Mexican maquiladora industrial sector.

The main contribution of this paper is that it interrelates three LMTs and analyzes
sustainability in its dimensions (social, environmental, and economic). Additionally, we
report conditional probabilities to analyze how low and high TPM, JID, and OEE implemen-
tation enables or hinders sustainability, and this kind of analysis has never been reported
for these variables. Additionally, our results will support managerial decisions for better
resource allocation when using specific LM tools associated with machinery management
and depending on an enterprise’s objectives.

The remainder of this paper is structured as follows. Section 2 introduces a literature
review on LMTs and sustainability, identifies gaps in previous reports, and justifies this
research. Then, Section 3 describes each LMT studied in terms of independent variables
and sustainability dimensions and explains the hypotheses to be tested. Next, Section 4
describes the methodology, Section 5 reports findings, and Section 6 introduces the conclu-
sions from the model and the conditional probability analysis. Finally, Section 7 lists some
research limitations and suggests directions for future work.

2. Latent Variables and Hypotheses
2.1. Total Productive Maintenance (TPM)

TPM is an LMT aimed at keeping machinery and tools continuously operational
to prevent production flow disruptions that may arise from a lack of calibration and
product defects, thus reducing downtimes and minimizing occupational accidents [27].
Kaczmarek [28] and Samadhiya and Agrawal [15] have discussed the TPM integration into
green production benefits and EnS, concluding that companies achieve high sustainability
levels and productivity rates when it is implemented. To measure TPM implementation
in maquiladoras, we considered the following aspects: machine availability, frequency of
inspections by operators and maintenance staff, and workplace cleanliness.

2.2. Jidoka (JID)

JID focuses on checking that production processes are self-monitored and indicates
when product specifications are not met. Thus, JID helps to prevent manufacturing products
without the required quality. However, production stoppages are also a common problem,
and JID uses another LMT to solve it: Root Cause Analysis (RCA) [20]. Moreover, JID
implementation is usually measured by five aspects: (1) whether JID machinery identifies
errors, (2) whether it flags when a product does not meet quality requirements and (3)
stops production, (4) whether automation levels enable a single operator to control two or
more machines, and (5) whether machinery works autonomously, and it is only supervised
by operators.

It is assumed that TPM in machines directly affects their ability to detect errors. As
Arredondo-Soto, Cruz-Castillo, Carrillo-Gutierrez, Solis-Quinteros, and Avila-Lopez [24]
indicate, machinery calibration helps to reduce failures and high operating costs and
prevents faulty products. Similarly, Schindlerová, Šajdlerová, Michalčík, Nevima, and
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Krejčí [27] consider TPM as a pillar for increasing overall efficiency since daily cleaning
operations ensure the reliability of industrial machinery. From this discussion, we propose
our first research hypothesis as follows:

Hypothesis 1 (H1). In the maquiladora industry, Total Productive Maintenance has a positive and
direct effect on Jidoka.

2.3. Environmental Sustainability (EnS)

EnS refers to the responsible management of resources in production processes to not
compromise the needs of future generations [29]. Maquiladora industries contribute to
EnS by investing in solid, liquid, and gas waste management programs. They also analyze
energy wasted in production and manage their use of hazardous materials [30].

JID supports the EnS of production systems, especially to avoid the costs and waste
from reprocessing faulty products [31]. Defective products affect the reputation of world-
class companies [32] since they are responsible for the costs incurred in warranty issues,
customer service, transportation, repairs, and returns to customers [33].

Since maquiladoras generally export their products, the environmental impact of
products returned to the manufacturer in globalized supply chains is very high. This
negative impact can be mitigated by implementing JID to avoid sending defective products
to the final customer, who finally needs to return them from long distances or apply for
warranties (usually in other countries because maquiladora exports all products). Thus,
our second research hypothesis is as follows:

Hypothesis 2 (H2). In the maquiladora industry, Jidoka has a positive direct effect on Environ-
mental Sustainability.

The maquiladora industry recognizes that product quality stems from plans and pro-
grams, and that people, machinery, and process improvement is the way to achieve it.
When one of these elements fails, quality is compromised. For example, poorly calibrated
machines generate products that do not meet technical specifications [12] and must be
reprocessed, adding costs in labor and energy power. Additionally, sometimes, it is nec-
essary to discard product components without recycling parts, which become scrap [34],
being wasted directly and sent to landfill. In this sense, Durán and Durán [35] highlight the
need to prioritize TPM programs to ensure sustainability, and Samadhiya and Agrawal [15]
consider comprehensive TPM programs as a required source for EnS. From this discussion,
the third research hypothesis is as follows:

Hypothesis 3 (H3). In the maquiladora industry, Total Productive Maintenance has a positive
direct effect on Environmental Sustainability.

2.4. Overall Equipment Effectiveness (OEE)

In the LM context, OEE provides a metric that integrates machinery availability and
efficiency with product quality [36]. OEE implementation in the maquiladora industry
can be measured by considering factors such as production output, machine stoppages
due to breakdowns, and the time required to solve them [23]. Additionally, as a metric,
OEE is affected by other LMTs in production lines, such as SMED and JID. If machine
breakdown stoppages are avoided or minimized, machinery availability consequently
increases. Moreover, when off-spec products are detected and removed from the production
line, the product level increases with availability [37]. From this perspective, the fourth
research hypothesis is proposed as follows:

Hypothesis 4 (H4). In the maquiladora industry, Jidoka has a positive direct effect on Overall
Equipment Effectiveness.
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High machine availability usually implies a good level of TPM, and high effectiveness
and performance of quality parts increase OEE. However, if products fail to meet the
required quality, they are likely to be returned by customers. In this sense, reverse logistics
carries its environmental impact [18] and costs, especially from reprocessing and energy
consumption [33]. Thus, the following research hypothesis is proposed below:

Hypothesis 5 (H5). In the maquiladora industry, Overall Equipment Efficiency has a positive
direct effect on Environmental Sustainability.

2.5. Social Sustainability (SoS)

SoS promotes employee well-being while simultaneously supporting the ability of
future generations to maintain a healthy community [38]. Additionally, SoS is linked
to other types of sustainability, such as EnS and EcS [39], especially as a background
for financial performance [40]. In this study, we measure the presence of SoS in the
maquiladora industry by analyzing labor conditions, perceived workplace safety, health
services, employee morale and motivation, performance, and sense of belonging [41].

According to Marhavilas et al. [42] and Evangelinos et al. [43], employee health and
safety are linked to SoS levels in international companies. In 2020, the maquiladora industry
in Ciudad Juárez spent USD 423.4 million in employee benefits and paid a similar amount
in health insurance. TPM contributes to SoS in many forms; first, it helps companies to
ensure that machines and tools operate in optimal conditions, thus reducing the risks of
accidents and increasing safety and motivation [44,45]. Additionally, according to Lingappa
et al. [46], adequate employee training increases employee motivation. From this discussion,
the sixth research hypothesis is as follows:

Hypothesis 6 (H6). In the maquiladora industry, Total Productive Maintenance has a positive
direct effect on Social Sustainability.

This research assumes that environmental and social indicators influence economic
indicators. According to Sarkar et al. [47], employee motivation and sense of belonging
increase when employees feel that their company is concerned about their safety and
well-being (especially under hazardous circumstances) and that it strives to reduce its
environmental footprint (e.g., through appropriate waste management programs) [48].
Additionally, Alsayegh, Rahman, and Homayoun [39] and ul Haq and Boz [49] used the
Spearman coefficient to demonstrate that SoS and EnS are interrelated in the manufacturing
and tea industries, respectively, and Malak-Rawlikowska et al. [50] also conducted a similar
study in food supply chains. Following this discussion, our seventh research hypothesis is
proposed below:

Hypothesis 7 (H7). In the maquiladora industry, Environmental Sustainability has a positive
direct effect on Social Sustainability.

2.6. Economic Sustainability (EcS)

EcS is defined as a set of strategies for optimally using, safeguarding, and maintaining
human and material resources to create a responsible, and preferably indefinite, balance in
the long term [51]. The importance of EcS lies in the fact that it is the basis for company
permanence in the market; hence, organizations traditionally focus on reducing production
costs, new product development, energy consumption, inventory management, and waste
treatment [52].

Several corporate factors support EcS indicators. Sarkar, Azim, Asif, Qian, and
Peau [47] claim that SoS is one of the most important factors, whereas Tomšič et al. [53]
particularly emphasize corporate sustainability. In other words, investing in human re-
sources to ensure the welfare of personnel is tantamount to indirectly investing in the
company itself [54]. In this sense, Dhahri et al. [55] indicate that the behavior of leaders and
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employees must be pushed toward achieving EcS goals, and the best way to accomplish this
is by motivating them with achievement bonuses and rewards for compliance and punc-
tuality. Reward schemes contribute to healthy work environments, where employees feel
comfortable and more productive [56], make good use of resources, propose improvements,
and operate machines responsibly. It reduces waste, reprocessing, and energy costs [57].
However, it is worth noting that to guarantee EcS, employees must be given education and
training [58]. Based on the above, the next research hypothesis is proposed:

Hypothesis 8 (H8). In the maquiladora industry, Social Sustainability has a positive direct effect
on Economic Sustainability.

Another pillar of EcS is corporate compliance with government regulations, which
prevents companies from enduring administrative and financial penalties [29] and thus
incurring unnecessary costs because their solid, liquid, and gaseous pollutant emissions
harm the environment. Such environmental aspects must always be assessed from an
economic point of view, as indicated by Malik et al. [59], given the high costs for their
treatment. In conclusion, companies that do not minimize their pollutants will consequently
increase waste treatment costs and possibly government fees. From this discussion, the
ninth proposed research hypothesis is as follows:

Hypothesis 9 (H9). In the maquiladora industry, Environmental Sustainability has a positive
direct effect on Economic Sustainability.

OEE has three main components—equipment availability, efficiency, and quality—
directly affecting EcS [36]. If machines are unavailable when required, companies lose
production orders or have insufficient output and excessive machinery downtime. In such
cases, return on investment could never be fast. Additionally, if product quality is not
sufficient, there will be a significant amount of reprocessing and waste, with the subsequent
expense in human resources and energy [18]. For Badiger and Gandhinathan [60], low OEE
affects the production capacity of any company and, from this perspective, the tenth and
last research hypothesis is as follows:

Hypothesis 10 (H10). In the maquiladora industry, Overall Equipment Efficiency has a positive
direct effect on Economic Sustainability.

Figure 1 shows the model of the hypotheses previously discussed.
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3. Methodology

The methodology used to achieve our research goal comprises six main stages, as
illustrated in Figure 2 and defined below.
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3.1. Survey Design

To test the hypotheses in Figure 1, we designed a survey based on a literature review of
LMTs and sustainability in the manufacturing/maquiladora industry and it represented the
rational validation of the survey, because items are based on previous research studies [61].
However, we also sought to adapt these items to the geographical and industrial context to
be studied: the maquiladora industry in Mexico.

Once the first draft of the survey was devised based on the literature review, it was
reviewed by 14 matter experts (i.e., six academics and eight engineers working in the
maquiladora industry) to validate the survey. These peers assessed the clarity, congru-
ence, and wording to ensure that the survey was clear, coherent, and understandable to
the respondents. After two rounds of peer review, the final version of the survey was
built, containing three sections. The demographic data section gathered information on
respondent gender, years of work experience, company industrial sub-sector, and company
size. The LMT section sought to examine the actions taken by the surveyed companies
when implementing TPM (seven items), JID (five items), and OEE (five items). Finally, the
sustainability section comprised questions seeking to explore the extent to which compa-
nies take sustainability actions in three aspects: EnS (six items), SoS (six items), and EcS
(eight items).

The second and third sections of the survey were answered using a five-point Likert
scale similar to that proposed by Morales García et al. [62]. The scale reads as follows:
1 = this action is never taken; 2 = this action is rarely taken; 3 = this action is sometimes
taken; 4 = this action is frequently taken; and 5 = this action is always taken.

3.2. Survey Administration

Due to the global confinement caused by the COVID-19 pandemic crisis, we admin-
istered the survey electronically via a specialized platform (i.e., SurveyMonkey) from
15 May to 15 August 2020. We set all the survey questions or items as mandatory to avoid
missing values. We defined the research sample with support from the Manufacturing,
Maquiladora, and Export Services Industry agency (IMMEX, by its Spanish acronym). The
sample comprised managers from manufacturing, production, maintenance, and supply
chain departments from Mexican maquiladoras. We emailed these potential respondents to
invite them to participate in the study. The emailed invitation included a brief explanation
of our research purpose and the link to the electronic survey. If any potential respondent
failed to answer after 15 days of the first invitation, we emailed them another invitation. We
discarded the case if they still did not respond within 15 days of the second invitation. Re-
garding the sample inclusion characteristics, the respondents were required to have at least
two years of experience in their current managerial position, although they were optionally
asked to indicate their immediate previous position and cumulative years of experience.
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3.3. Database Screening

Once the survey administration period ended, we downloaded the electronic database
containing the collected survey data from the SurveyMonkey platform. We debugged on
SPSS v.25 the database in two steps [63]:

1. Identify extreme values or outliers. We standardized each item from survey
Sections 2 and 3. Absolute values higher than 4 were considered outliers and replaced
by the median.

2. Identify uncommitted respondents. We calculated the standard deviation of each case
for Sections 2 and 3 of the survey. Values lower than 0.5 indicated little commitment
from respondents, which were removed from further analysis.

3.4. Descriptive Analysis of the Sample and the Data

We built cross-tables with the screened database to describe the sample more easily. As
for the univariate descriptive analysis (i.e., data from survey Sections 2 and 3), we reported
the median of each item as a measure of central tendency since the data were obtained
from a Likert scale. High median values indicated that, on average, and according to the
respondents, a given LMT or sustainability action was always taken in their companies;
meanwhile, low median values indicated that, on average, and according to the respondents,
a given LMT or sustainability action was never taken in their companies. We calculated
the interquartile range (difference between the third and first quartiles) of each survey
item as a distribution measure. High values were interpreted as a lack of consensus
among the respondents concerning the mean value of a given item. Conversely, low values
denoted a high degree of consensus among the respondents concerning the mean value of
a given item.

3.5. Validation of Latent Variables

Our model comprised six latent variables: three related to LMTs (i.e., TPM, JD, OEE)
and three associated with sustainability (i.e., SoS, EnS, and EcS). We validated these six
variables using the following indices [64]:

• R squared (R2) and Adjusted R2. Determine the parametric predictive validity of each
latent dependent variable. Only values higher than 0.02 are accepted.

• Composite reliability index and Cronbach’s alpha. Measure the internal validity of all
latent variables. Only values higher than 0.7 are accepted.

• Average Variance Extracted (AVE). Determines convergent validity. Values higher
than 0.5 are desired.

• Variance Inflation Factors (VIF). Measure collinearity among latent variables. Only
values lower than 3.3 are accepted.

• Q squared (Q2). Measures the non-parametric predictive validity of dependent
variables. Only values higher than 0 and similar to their corresponding R2 values
are accepted.

In some cases, to obtain the Cronbach’s alpha index’s desired value, we used several
iterations to remove certain items from the latent variables or constructs. This is why not all
the items in the survey appear in the structural equation model, i.e., some were removed
during the construct validation process.

3.6. Structural Equation Model

We applied the Partial Least Squares in Structural Equation Modeling (PLS-SEM)
technique to test the research hypotheses proposed in Figure 1. Kock [65] recommends
this technique when (1) analyzing data with small samples, (2) the items do not have a
normal distribution, and (3) the data are obtained on a Likert scale. Additionally, Hair
et al. [66] state that PLS-SEM does not require rigorous adherence to parametric statistical
assumptions and can be used in exploratory analyses. PLS-SEM has been accepted and
reported in several studies; for example, Garcia-Alcaraz et al. [67] use it to analyze the
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impact of information technologies on economic supply chain performance, and it has also
been used to obtain the benefits offered by JIT [9].

We assessed the structural equation model (SEM) with WarpPLS v.7 software. We
chose it to report a regression coefficient β between the related variables (i.e., dependent,
and independent). Moreover, the model as a construct was tested at a 95% confidence level
and using the following efficiency indexes [68]:

• Average Path Coefficient (APC) measures the average efficiency of the regression
values in the model. Its associated p-value must be lower than 0.05.

• Average R2 (ARS) and Average Adjusted R2 (AARS) measure the model’s predictive
validity, and their associated p-values must be lower than 0.05.

• Average block VIF (AVIF) and average full collinearity VIF (AFVIF) measure collinear-
ity between latent variables and the common method bias (CMB) estimator [69], and
associated values must be lower than 3.3.

• Tenenhaus GoF (GoF) measures the fit between the data and the model. The associated
value must be higher than 0.36.

Usually, if an SEM shows collinearity problems or the model reliability levels are
not met, iterations are performed until the desired index values are achieved. In such
cases, conflictive items are thus eliminated from the latent variables. We also calculated
additional validation indices, including critical T ratios for path coefficients and their
confidence intervals; loadings, their T ratios, and confidence intervals; PLSc reliabilities
(Dijkstra’s rho) and additional rates (indicator correlation matrix fit); additional reliability
coefficients and correlations between latent variables with square roots of AVEs; and HTMT
ratios for discriminant validity. For further information on these additional indices, refer to
the Supplementary Materials.

3.6.1. Hypothesis Validation

Once we successfully tested and validated the latent variables and the model, we
interpreted the direct effects of each model hypothesis. Each of these direct effects is
associated with standardized regression coefficient β to test the null hypothesis (H0 β = 0)
against the alternative hypothesis (H1: β 6= 0) [68]. If β = 0, it indicates that, statistically,
there is no direct relationship between the latent variables involved in each relationship.
Conversely, β 6= 0 (regardless of the sign) indicates a relationship (either positive or
negative) between the latent variables involved in each relationship. The value of β

indicates the intensity of change between these latent variables and is expressed in standard
deviations (SD). Similarly, each effect is associated with an effect size (ES) to measure the
percentage of variance in the latent dependent variable explained by the latent independent
variable. We tested all the direct effects at a 95% confidence level.

3.6.2. Sum of Indirect Effects and Total Effects

Two latent variables may be related indirectly through additional latent variables,
known as mediators. This study reports the sum of indirect effects for each relationship
between latent variables. Once more, we tested the null hypothesis (H0: β = 0) against the
alternative hypothesis (H1: β 6= 0). All the relationships were tested at a 95% confidence
level and were thus associated with a p-value [68]. In these relationships, we also reported
the effect sizes (ES). Finally, we calculated and tested the total effects in each relationship.
These total effects are simply the sum of those direct and indirect effects.

3.6.3. Probabilities of Low and High LM Implementation

WarpPLS v.7 analyzes standardized values for items and parameters, allowing us to
estimate probabilities for specific scenarios. In this study, we calculated the probability for
a variable to occur independently, jointly, or conditionally. As for the scenarios in which
these variables may occur, we discuss high implementation scenarios if P(Z > 1) and low
implementation scenarios if P(Z < 1) [68].
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On the one hand, joint probabilities are represented by “&,” and the following scenar-
ios were estimated: P(Zi > 1)∩ P(Zd > 1), P(Zi > 1)∩ P(Zd <−1), P(Zi < −1) ∩ P(Zd > 1), and
P(Zi < −1) ∩ P(Zd < −1). On the other hand, for conditional probabilities, we esti-
mated scenarios P(Zd > 1)/P(Zi > 1), P(Zd > 1)/P(Zi < −1), P(Zd < −1)/P(Zi > 1), and
P(Zd < −1)/P(Zi < −1), where Zi represents a standardized independent variable and Zd
stands for a standardized dependent variable. Finally, we granted particular attention to
conditional probabilities in which the high implementation scenario of a given variable can
consequently affect other scenarios. This information is particularly useful to managers
and other decision-makers to be aware of the risks that can potentially occur in terms of
sustainability under adverse scenarios.

4. Results
4.1. Descriptive Analysis of the Sample and the Items

We collected 257 surveys from the maquiladora industry, but 18 were identified
as uncommitted responses and eliminated. Following our analysis of the 239 reliable
surveys, we found out that our sample comprised 89 female respondents and 150 male
respondents. For the final file containing the complete dataset, consult Morales García and
García-Alcaraz [70]. Regarding corporate information, 74.47% of the respondents claimed
to work in companies with more than 300 employees and hold managerial/engineering
positions in maintenance (47.69%) and production (52.31%) departments. From these data,
we concluded that the respondents knew sufficiently about the production machinery and
equipment used in their companies. Table 1 summarizes the demographic findings in terms
of employee position and company size.

Table 1. Respondent corporate position vs. company size.

Position
Number of Employees

Total
<50 50 to <300 300 to <1000 1000 to <5000 5000 to<10,000 +10,000

Maintenance manager 13 12 13 32 6 4 80
Production manager 10 17 28 47 10 13 125

Maintenance engineer 5 4 8 9 3 5 34
Total 28 33 49 88 19 22 239

Regarding the surveyed industrial sectors and employee experience in Table 2, findings
indicate that most surveyed persons worked in the automotive industry (i.e., 137 respondents,
57.32%) and had 2–5 years of work experience in their current position (i.e., 169 respondents,
70.71%). Additionally, 212 respondents indicated that they had previous managerial
experience in other departments, including quality control and supply chain management.
From this information, it was concluded that these respondents had enough expertise in
the three LMTs analyzed, i.e., TPM, JD, and OEE.

Table 2. Surveyed industrial sectors vs. employee work experience.

Sector
Years of Experience in the Position

Total
2–5 5–10 +10

Automotive 92 23 22 137
Electronic 21 3 3 27
Electrical 21 1 2 24
Medical 11 2 7 20

Aeronautics 9 4 1 14
Mechanical 9 0 2 11

Logistics 6 0 0 6
Total 169 33 37 239
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Due to space restrictions in this manuscript, our analysis of the survey items is rele-
gated to the Supplementary Materials.

4.2. Validation of Latent Variables

Table 3 summarizes the latent variable validation process. The second row indicates
the number of survey items belonging to each latent variable before and after validation. As
previously mentioned, the validation process was conducted to either remove collinearity
problems between latent variables or increase their reliability. Refer to the survey sample
in the Supplementary Materials for further information on the removed items.

Table 3. Latent variable validation coefficients.

Index
Best

TPM EcS SoS EnS JID OEE
Value If

Items (Before/after) 7 4 8 5 6 4 6 4 5 4 5 3

R2 >0.02 0.635 0.594 0.38 0.226 0.193
Adjusted R2 >0.02 0.63 0.591 0.372 0.222 0.19

Composite reliability >0.7 0.891 0.938 0.948 0.948 0.876 0.904
Cronbach’s alpha >0.7 0.817 0.917 0.927 0.927 0.811 0.841

AVE >0.5 0.732 0.75 0.821 0.821 0.639 0.759
Full collinearity VIF <3.3 2.227 2.86 3.006 2.129 1.406 2.162

Q2 >0.02 0.636 0.593 0.383 0.228 0.195
Skewness −0.713 −0.522 −0.828 −0.554 −0.441 −0.632
Kurtosis −0.008 0.001 0.123 −0.279 −0.459 −0.037

JB normality No No No No No No

According to the values of R2 and Adjusted R2—all higher than 0.02—the model
has sufficient parametric predictive validity. Likewise, we concluded that all the latent
variables had sufficient internal validity since their corresponding composite reliability and
Cronbach’s alpha values were higher than 0.7. Similarly, the AVE values (all higher than 0.5)
indicated enough convergent validity. As for VIF values, all lower than 3.3, we concluded
that the latent variables were free from collinearity problems. Our analysis also revealed
enough non-parametric validity since all the Q2 values were similar to their corresponding
R2 values. Data skewness was determined based on the sign of each value, i.e., all variables
had a negative bias. Kurtosis indicated the level of bracing; EcS and SOS showed positive
values, but all the rest were negative. Finally, the Jarque–Bera (JB) normality test showed
that none of the variables had a normal distribution. In conclusion, the PLS-SEM analysis
was justified.

4.3. Structural Equation Model

Since the latent variables were successfully validated, they were all integrated into
the SEM. The SEM efficiency rates were APC = 0.345 (p < 0.001), ARS = 0.406 (p < 0.001),
AARS = 0.401 (p < 0.001), AVIF = 1.689 (ideally ≤3.3), AFVIF = 2.298 (ideally ≤3.3), and
Tenenhaus GoF (GoF) = 0.553 (large if ≥0.36). These values indicated that the SEM had
sufficient predictive validity, had no collinearity problems, and was a good fit for the
data. Figure 3 shows the tested model, in which a standardized β-value and a p-value are
associated with each hypothesis. Similarly, each latent dependent variable displays an R2

value as a measure of explained variance.
According to the p-value associated with each β-value, all the hypotheses in Figure 1

can be accepted into the model. All ten direct effects between the latent variables were
statistically significant at a 95% confidence level. Table 4 lists the effect sizes estimated in
each relationship and shows how these effect sizes explain the R2 values in the dependent
variables (the sum of the many effect sizes in a dependent variable equals the value of its
R2). As can be observed, EcS can be 63.6% explained by SoS (31.3%), EnS (16.3%), and
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OEE (16.0%). Such results reveal that SoS is the most critical variable enabling EcS, which
indicates that safety improvement, employee health, employee morale, and employee
motivation best explain reductions in production process costs.
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Table 4. Effect sizes for direct effects.

Dependent
Variable

Independent Variable
R2

TPM SoS EnS JID OEE

EcS 0.313 0.163 0.160 0.636
SoS 0.289 0.305 0.594
EnS 0.096 0.088 0.196 0.380
JID 0.226 0.226

OEE 0.193 0.193

Moreover, observe that SoS is explained in 59.4% by TPM in 28.9 and EnS in 30.5,
indicating that safety in production processes and environmental risk are highly appreciated
by workers in the maquiladora industrial sector.

4.4. Sum of Indirect Effects and Total Effects

Table 5 shows a standardized β-value for each sum of indirect effects and the total
effects in each, along with an associated p-value and effect size. The results of this analysis
deserve particular attention, as they show those effects occurring between variables that
are not directly related through a research hypothesis. All the effects reported in Table 5 are
statistically significant at a 95% confidence level, and many independent variables exhibit
explanatory power over the dependent variables. For instance, TPM and JID affect EcS,
and the values of such effects are the highest in the SEM.
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Table 5. Sum of indirect and total effects.

Sum of Indirect Effects

Dependent
Variables

Independent Variables

TPM SoS EnS JID OEE

EcS 0.390 (p < 0.001)
ES = 0.253

0.191 (p < 0.001)
ES = 0.126

0.261 (p < 0.001)
ES = 0.104

0.153 (p < 0.001)
ES = 0.100

SoS 0.163 (p < 0.001)
ES = 0.108

0.160 (p < 0.001)
ES = 0.069

0.159 (p < 0.001)
ES = 0.105

EnS 0.143 (p < 0.001)
ES = 0.084

0.154 (p < 0.001)
ES = 0.069

OEE 0.209 (p < 0.001)
ES = 0.130

Total Effects

EcS 0.390 (p < 0.001)
ES = 0.253

0.420 (p < 0.001)
ES = 0.313

0.437 (p < 0.001)
ES = 0.289

0.261 (p < 0.001)
ES = 0.104

0.397 (p < 0.001)
ES = 0.260

SoS 0.597 (p < 0.001)
ES = 0.397

0.454 (p < 0.001)
ES = 0.305

0.160 (p < 0.001)
ES = 0.069

0.159 (p < 0.001)
ES = 0.105

EnS 0.358 (p < 0.001)
ES = 0.181

0.352 (p < 0.001)
ES = 0.156

0.351 (p < 0.001)
ES = 0.196

JID 0.475 (p < 0.001)
ES = 0.226

OEE 0.209 (p < 0.001)
ES = 0.130

0.400 (p < 0.001)
ES = 0.193

4.5. Probability Scenarios

Table 6 summarizes results from the sensitivity analysis for each of the direct effects,
established as research hypotheses between latent variables. High implementation levels
P(Z > 1) of a given LM tool are marked with a plus sign (+), whereas low implementation
levels P(Z < −1) are marked with a minus sign (−). The probability of isolated occurrence
in each latent variable is reported in the “Probability” row/column. The probability of two
variables co-occurring in a scenario simultaneously is marked by “&”, and the probability
of a dependent variable occurring as a consequence of the occurrence of an independent
variable is marked with “If”. For instance, the probability of TPM+ occurring in isolation is
0.188, and 0.142 for TPM-. However, the probability of EcS+ and TPM+ occurring together
is 0.084. Similarly, the probability of EcS+ occurring due to TPM+ is 0.444. Such results
demonstrate that TPM is conducive to EcS in the maquiladora industry if it is implemented
as a production tool. Moreover, reassuringly for managers, there is a null probability that
EcS- will occur when they have MPR+. However, if TPM- occurs, there is a probability of
0.471 that EcS- will occur, which is a risk for managers.

Table 6. Probability of low and high LM implementation.

Level TPM+ TPM− JID+ JID− OEE+ OEE− EnS+ EnS− SoS+ SoS−
Probability 0.188 0.142 0.172 0.180 0.188 0.146 0.159 0.151 0.205 0.159

EcS+ 0.151 & = 0.084
If = 0.444

& = 0.004
If = 0.029

& = 0.050
If = 0.333

& = 0.000
If = 0.000

& = 0.079
If = 0.422

& = 0.008
If = 0.570

& = 0.084
If = 0.526

& = 0.004
If = 0.028

& = 0.088
If = 0.429

& = 0.000
If = 0.000

EcS− 0.138 & = 0.004 & = 0.067 & = 0.008
If = 0.061

& = 0.059
If = 0.424

& = 0.000
If = 0.000

& = 0.075
If = 0.514

& = 0.004
If = 0.026

& = 0.075
If = 0.500

& = 0.000
If = 0.000

& = 0.084
If = 0.526If = 0.029 If = 0.471

SoS+ 0.205 & = 0.100
If = 0.533

& = 0.008
If = 0.059

& = 0.071
If = 0.347

& = 0.021
If = 0.102

& = 0.100
If = 0.533

& = 0.008
If = 0.057

& = 0.084
If = 0.526

& = 0.008
If = 0.056

SoS− 0.159 & = 0.000
If = 0.000

& = 0.092
If = 0.647

& = 0.008
If = 0.053

& = 0.067
If = 0.421

& = 0.004
If = 0.022

& = 0.088
If = 0.600

& = 0.000
If = 0.000

& = 0.092
If = 0.611

EnS+ 0.159 & = 0.059
If = 0.311

& = 0.013
If = 0.088

& = 0.050
If = 0.316

& = 0.017
If = 0.105

& = 0.059
If = 0.311

& = 0.013
If = 0.086

EnS− 0.151 & = 0.008
If = 0.044

& = 0.067
If = 0.471

& = 0.004
If = 0.028

& = 0.067
If = 0.444

& = 0.000
If = 0.000

& = 0.071
If = 0.486

OEE+ 0.188 & = 0.088
If = 0.467

& = 0.08
If = 0.059

& = 0.071
If = 0.378

& = 0.021
If = 0.111

OEE− 0.146 & = 0.008
If = 0.044

& = 0.088
If = 0.618

& = 0.017
If = 0.114

& = 0.063
If = 0.429

JID+ 0.172 & = 0.067
If = 0.356

& = 0.004
If = 0.029

JID− 0.180 & = 0.013
If = 0.067

& = 0.067
If = 0.471
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5. Discussion of Results and Managerial Implications

Findings are discussed in two sections, according to the managerial and practical implications.

5.1. Structural Equation Model

Following our study and the testing of the ten research hypotheses, we concluded
that good TPM practices in the maquiladora industry foster JID (H1) in 0.475 standard
deviations (SDs). Such results indicate that if machines are in good working condition due
to TPM being used as a production strategy, production errors and quality failures will be
detected before faulty products reach consumers. Moreover, administrative procedures and
order returns will be avoided. Likewise, with JID implementation, OEE (H4) increases up
to 0.440 SDs, thus enabling production systems to be run efficiently and fulfill production
orders without delay. Moreover, a high OEE indicates that equipment is always calibrated
and readily available, as stated by Silva et al. [71].

Our findings also reveal that TPM is a forerunner of EnS (H3) by 0.191 SDs. In other
words, production processes with periodically inspected and calibrated machines make for
lower emissions of liquids, solids, and gases into the environment and less reprocessing
of faulty parts, thus lowering energy costs and waste production. However, negative
environmental impacts can also be reduced with adequate JID (H2) and OEE (H5) by
identifying faulty parts before they reach the market, thus avoiding returned orders and
the environmental impact caused by order return logistics. These findings are similar to
those reported by Sahoo [72] in Indian companies.

We also found that SoS is an essential variable in the integral sustainability for
maquiladoras since it is directly affected by TPM (H6) in 0.435 SDs. In other words,
workers feel safer when operating machines compliant with maintenance programs that
do not pose health or accident risks. This feeling of safety in the workplace increases
employee motivation, which is reinforced by EnS (H7) in 0.454 SDs. If maquiladora systems
reduce pollutants and the use of hazardous materials, employees will be in much safer
workplaces. Such findings are consistent with those reported by Longoni and Cagliano [73],
demonstrating that EnS is a priority in the production process.

Finally, EcS is affected by SoS (H8) in 0.420 SDs, in 0.246 by EnS (H9), and 0.244 by
OEE (H10). Such results indicate that SoS is the variable with the most explanatory power
over EcS beyond operational aspects. This suggests a need for workplace environments
that make operators feel safe and risk-free. In other words, maquiladoras that want an EcS
based on lower production costs, product development, energy consumption, inventories,
and fewer production order rejections should focus on the well-being of their personnel to
ensure that there are no health risks in the workplace.

5.2. Probability Analysis

Findings from the sensitivity analysis revealed that maquiladoras should ensure TPM+
since it favors CSs+ to a degree of 0.444, SoS+ to a degree of 0.533, EnS to a degree of 0.311,
OEE+ to a degree of 0.467, and JID+ to a degree of 0.356. In other words, optimal machinery
maintenance is conducive to both sustainability (especially SoS) and the implementation
of other LMTs in production systems. Findings also indicate that investing in TPM+ is
never or rarely associated with EcS-, SoS-, EnS-, OEE-, or JID-. However, TPM- poses a risk
for managers, since it may lead to EcS- (0.471), SoS (0.647), EnS- (0.471), OEE- (0.618), and
JID- (0.471).

Similarly, JID+ and machine automation systems are conducive to EcS+, SoS+, EnS+,
and OEE+, since the associated conditional probabilities are 0.333, 0.347, 0.316, and 0.378,
respectively, with particular emphasis in OEE and SoS. This means that error detection
through automation systems enhances the sustainability of maquiladoras, preventing the
production of faulty products. Moreover, the fact that JID+ occurs means that the probability
of finding EcS-, EnS-, and OEE- is very low. Thus, managers can be confident that investing
in automation systems will positively impact the production process. However, there is
also a risk of having scenarios with JID- because the conditional probabilities for EcS-, SoS-,
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EnS-, and OEE- are 0.326, 0.372, 0.372, and 0.349, respectively. These values indicate that
JID- does not favor maquiladoras with the timely detection of defects in commercially
released products, thus incurring unnecessary costs for reprocessing and transportation
logistics. Moreover, the corporate reputation may decrease.

OEE is seen as a productivity rate, but its relationship with sustainability has not
been studied thoroughly and this article shows its quantitative importance in statistical
and empirical terms. For instance, OEE+ is conducive to EcS+, SoS+, and EnS+, since
the conditional probabilities are 0.422, 0.533, and 0.311, respectively. Thus, managers
at maquiladoras that invest in OEE+ will always obtain sustainability, especially SoS.
Furthermore, OEE+ is not associated with EcS-, SoS-, or EnS-, since the probability is zero
or almost zero. However, there is a risk of OEE- generating ECS-, SoS-, and EnS-, as the
conditional probabilities are 0.514, 0.600, and 0.486, respectively.

EnS+ is vital in obtaining EcS+ and SoS+ since the conditional probabilities are 0.526
and 0.526, respectively. This indicates that managers investing in EnS will see lower produc-
tion costs, higher employee morale, and workplace safety. Findings also revealed that EnS+
is unrelated to EcS- and SoS-, since the conditional probabilities are zero. However, EnS-
can generate EcS- and SoS- with conditional probabilities of 0.500 and 0.611, respectively,
posing a risk for managers.

Finally, it is observed that SoS+ is a precursor for EcS+ since the conditional probability
is 0.429 and it is not associated with EcS-. Conversely, SoS- is conducive to EcS- with a
probability of 0.526 and is not associated with EcS+, indicating the importance of managers
striving to ensure a workplace where operators feel safe and motivated and where morale
is high.

6. Conclusions

The EcS in maquiladoras is generally the main factor traditionally analyzed, and
to achieve it, managers have several LMTs at their disposal. Specifically, based on the
findings of this study, it is concluded that TPM, JID, and OEE associated with machines
and equipment are of vital importance, and managers should pay special attention to them.

In the same way, TPM, JID, and OEE are sources of SoS and EnS, since they can offer
safety in the workplace and make workers feel free of occupational hazards and risks. In
addition, by avoiding the generation of defective parts, there is an environmental impact,
reducing product reprocessing, saving on labor, and avoiding waste going to landfills.

In conclusion, to achieve an SoS, maquiladoras must efficiently use their resources
through the different LMTs but focus on having an SoS in their workers and improving the
SoS of the environment in which they are established.

7. Limitations and Future Research

LM is a set of tools applied to production systems, and this study reports on just
three of them. Future research will analyze the impact of other LMTs associated with the
continuous flow of materials to guarantee quality in products and continuous improvement.
It is also worth noting that the three sustainability categories analyzed (environmental,
social, and economic) were not 100% explained by the independent variables. Such findings
mean that other variables not analyzed in this study must help to explain them. Hence,
future similar studies could integrate other variables such as regional culture, supply chain
infrastructure, support services, and local government regulations.
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