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Abstract

The acclaimed merits of analytical solutions based on a fictitious time developed in the 1970’s were partially overvalued due to a com-
mon misuse of classical analytical solutions based on the physical time that were taken as reference. With the main problem of the arti-
ficial satellite theory as a model, we carry out a more objective comparison of both kinds of theories. We find that the proper
initialization of classical solutions notably balances the performance of the two distinct approaches in what respects to accuracy. Besides,
extension of both kinds of satellite theories to higher orders show additional pros and cons of each different perturbation approach, thus
providing complementary information to prospective users on which kind of analytical solution may better support their needs.
� 2022 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The advent of the perturbation theories of Kozai (1959)
and Brouwer (1959) made a breakthrough in the analytical
computation of circumterrestrial orbits. Both theories were
computed in closed form of the eccentricity, thus extending
their range of application from the lower eccentricities to
highly elliptic orbits, and successfully included the effects
of higher degree zonal harmonics of the geopotential as
well as the second order effects of the dominant, zonal har-
monic of the second degree —customarily denoted J 2.
Brouwer and Kozai’s analytical solutions are given in the
form of collections of truncated power series of J 2 with
time as the argument. Several of these series represent the
secular terms of the solution, which are expected to provide
the average orbit evolution, and the remaining series com-
prise the periodic corrections that are needed for comput-
ing the ephemeris. In the original proposals of Kozai and
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Brouwer, the former were accurate up to the second order
of J 2 effects, whereas the later were truncated to O J 2ð Þ.

A crucial point in the use of these kinds of truncated
power series is the initialization of the constants of the the-
ory (Cain, 1962; Walter, 1967; Ustinov, 1967; Eckstein and
Hechler, 1970; Gaias et al., 2020). In particular, the accu-
rate determination of the ‘‘mean” mean motion —that is,
the mean motion in mean (or secular) variables— is
mandatory to obtain the in-track error that would be
expected from the truncation of the secular terms. This
point was clearly highlighted by the developers of perturba-
tion solutions (see remarks in Kozai, 1962). However, it
created some confusion among users, who reported unex-
pected along-track errors in the propagation of initial con-
ditions when Brouwer’s theory was compared with
alternative available solutions (see Bonavito et al., 1969,
and references therein). The trouble resulted from
Brouwer’s computation of the periodic corrections —which
are needed for the initialization of the constants of the the-
ory from given initial conditions— to a lower order than
the one of the secular terms. On the other hand, this inac-
org/licenses/by/4.0/).
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curacy did not happen when the value of the ‘‘mean” mean
motion was known to the required accuracy by other
means, like the usual fit to observations. Therefore, the
problem was understood to be an inconsistency in the use
of Brouwer’s solution.

Increasing the truncation order of the periodic correc-
tions to solve the inconsistency involves heavy additional
analytical computations (Kozai, 1962; Deprit and Rom,
1970), which commonly discouraged users from their
implementation. However, since the increased accuracy
was fundamentally needed for the osculating to mean con-
version of the semimajor axis, simple ways of patching
Brouwer’s solution were soon devised (Lyddane and
Cohen, 1962). In this regard, the alternative proposed by
Breakwell and Vagners (1970) is remarkable, because it
does not require additional computations to those already
carried out by Brouwer. Indeed, the smart use of the energy
equation to calibrate the mean semimajor axis provided a
computationally inexpensive way of reducing in-track
errors to a comparable level of those in the radial and
cross-track directions (see Lara, 2021a, for instance).

Conversely, because the accurate initialization of the
mean semimajor axis is clearly associated with the correct
treatment of the total energy, the pronounced loss of accu-
racy in the in-track direction does not happen to perturba-
tion solutions formulated in the extended phase space, in
which the total energy is one more integration variable
(Scheifele, 1970; Scheifele, 1970; Stiefel and Scheifele,
1971). In this scenario, the analytical solution is advanta-
geously computed in a fictitious-time scale, whereas the
physical time is incorporated into the perturbation scheme
as the conjugate coordinate of the total energy. In particu-
lar, the annoying complications introduced by the equation
of the center when dealing with geopotential perturbations
in closed form (Jefferys, 1971; Deprit, 1981; Metris, 1991;
Ahmed, 1994; Lara, 2019a) are now totally avoided.

The merits of the extended phase space formulation in
the implementation of an analytical orbit generator are
unquestionable (Scheifele, 1981). However, assertions such
that as the accuracy of first order analytical solutions based
on this approach compare with traditional second order
perturbation solutions based on the physical time
(Scheifele and Graf, 1974) are true only when the latter is
incorrectly initialized, and hence must be somewhat down-
graded. To show that, we take the main problem of the
artificial satellite theory as a demonstration model, and
make an independent implementation of both kinds of the-
ories. Needless to say that our implementation of the tradi-
tional one, based on the physical time, incorporates the
calibration of the mean semimajor axis in the initialization
part of the orbit theory. While we still found higher accu-
racy of the secular terms in the case of the fictitious-time
approach, in no way does it reach the accuracy of a
second-order traditional (correctly initialized) perturbation
solution. In addition, we show that, due to the unavoidable
truncation of the time equation, additional errors arise in
the fictitious-time approach that are of comparable magni-
4170
tude to the obtained position errors. Moreover, the need of
inverting the time equation, or resorting to iterative proce-
dures for finding the fictitious time corresponding to a
given physical time (Bond, 1979), which is needed for usual
ephemeris prediction, must also be taken as a shortcoming
of the fictitious-time approach because it notably increases
the computational burden of usual ephemeris evaluation.

To further assess the relative merits of each perturbation
approach, we extended both kinds of satellite theories to
the second order that is customarily used in accurate ana-
lytic ephemeris prediction programs (Coffey and Alfriend,
1984; Coffey et al., 1996). In the case of the extended phase
space formulation, spurious higher-order terms are gener-
ated at each order of the perturbation algorithm, a fact that
makes the series defining the analytical solution notably
longer than those resulting from the traditional, physical-
time approach. Therefore, a post-processing is mandatory
to keep the length of the series comprising the perturbation
solution based on the fictitious time of comparable size to
those of the traditional solution based on the physical time.
2. Solution to the J2-problem in the extended phase space

The topic of perturbation solutions of the artificial satel-
lite problem using the traditional approach is satisfactorily
covered in the literature. In particular, for the main prob-
lem, explicit expressions of higher-order solutions have
been provided in different places (see Healy, 2000; Lara,
2019b; Lara, 2020, for instance). Therefore, we focus on
the less studied formulation of perturbation solutions in
the extended phase space, which, as customary nowadays,
we recompute using the method of Lie transforms (Deprit,
1969) rather than the von Zeipel perturbation algorithm
used in the original developments (Scheifele and Graf,
1974).

We approach the perturbation solution in the true
anomaly Delaunay-similar elements (Scheifele, 1970;
Scheifele, 1970; Florı́a, 1997). These elements are the
action-angle variables of the unperturbed problem —the
Kepler problem in the extended phase space, with the true
anomaly as the independent variable— in which the com-
plete Hamiltonian reduction of perturbed problems is nat-
urally achieved. The fact that the Delaunay-similar
elements are harmed by singularities is not at all of con-
cern. Indeed, once the perturbation solution is computed,
we can always reformulate it at our will in our preferred
choice of singular or non-singular, canonical or non-
canonical variables (Lyddane, 1963; Deprit and Rom,
1970).
2.1. The main problem in Delaunay-similar variables

The main problem admits a Hamiltonian formulation.
Using polar variables, the Hamiltonian is written in the
form (see Deprit and Ferrer, 1987, for instance)
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R2 þH2
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� �
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r
þ J 2

l
r
R2
�
r2

P 2 s sin hð Þ; ð1Þ
where l;R�, and J 2, are physical parameters that charac-
terize the gravity field, and stand for the Earth’s gravita-
tional parameter, equatorial radius, and oblateness
coefficient, respectively; r is the radius, R the radial veloc-
ity, the polar angle h is commonly dubbed as the argument
of the latitude, H is the total angular momentum (per unit
mass), P 2 is the Legendre polynomial of degree 2, and
s � sin I , with I denoting orbital inclination. The third
component of the specific angular momentum
N ¼ H cos I is an integral that stems from the axial symme-
try of the main problem.

Hamiltonian (1) is conveniently formulated in the ex-

tended phase space (Poincaré, 1893; Stiefel and Scheifele,
1971) by adding the pair of variables q ¼ t and Q ¼ �H,
and defining the new Hamiltonian H� � Hþ Q, which,
therefore, is constrained to the manifold H� ¼ 0. If,
besides, we define a new time scale s, such that
dt ¼ W r; h;R;H; q;Qð Þds, it can be checked that the Hamil-

tonian eH � H�W remains constant in the new time scale,

and that the solution of the system governed by eH coin-
cides with the system governed by H� when the initial con-
ditions for s ¼ 0 are the same as the ones for t ¼ 0
(Scheifele, 1970). In particular, the choice

dt ¼ r2

C r; h;H;Nð Þ ds; ð2Þ
allows us to replace Eq. (1) by

eH � 1

2
R2 þH2

r2

� �
� l

r
þ J 2

l
r
R2
�
r2

P 2 s sin hð Þ þ Q
� �

r2

C
; ð3Þ
the solutions of which only make sense in the manifoldeH ¼ 0. Remark that the regularization in Eq. (2) is valid
for any C as far as the new time scale s remains monotonic.
The same comment applies to the function W.

When choosing

C ¼ 1

2
H 1þ 1þ 2J 2

l
r
R2
�

H2
P 2 s sin hð Þ

� �1=2( )
; ð4Þ
which only differs from H on the order of J 2, the Hamilto-
nian (3) can be suitably formulated in the Delaunay-similar
variables /; g; h; k;U;G;H ;Kð Þ, where / is the true anom-
aly, g is the argument of the perigee, h is the right ascension
of the ascending node, k is the time element, U is related to
the Keplerian energy, G ¼ H;H ¼ N , and K ¼ Q. They are
computed from polar variables as follows (see Scheifele
and Graf, 1974; Deprit, 1981; Florı́a, 1997; Ferrer and
Lara, 2010, for details)
4171
U ¼ 2 H� Cð Þ þ l

2Qð Þ1=2
; ð5Þ

p ¼ 1

l
2H� Cð Þ2; ð6Þ

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Qp=l

p
; ð7Þ

cos/ ¼ 1

e
�1þ p

r

� �
; sin/ ¼ R

e

ffiffiffi
p
l

r
; ð8Þ

u ¼ 2 arctan

ffiffiffiffiffiffiffiffiffiffiffi
1� e
1þ e

r
tan

/
2

 !
; ð9Þ

k ¼ q� l

2Kð Þ3=2
u� e sin u� /ð Þ: ð10Þ

In these variables, Hamiltonian (3) takes the form

F � U� lffiffiffiffiffiffi
2K

p � J 2

l
r
R2
�
C

� 1

4
2� 3s2 þ 3s2 cos 2 g þ /ð Þ	 


; ð11Þ

in which, now,

s2 ¼ 1� H 2

G2
; r ¼ p

1þ e cos/
; C ¼ G� 1

2
U� lffiffiffiffiffiffi

2K
p

� �
:

2.2. Perturbation approach

Due to the smallness of the Earth’s J 2 coefficient, the
complete Hamiltonian reduction of the main problem
Hamiltonian (11) can be achieved, up to some truncation
order, by the Lie transforms method. We assume that the
reader is familiar enough with this perturbation method
(see Deprit, 1969; Boccaletti and Pucacco, 2002; Lara,
2021b, for reference) and only provide the results.

In our approach, we adhere to the tradition and carry
out the sequential elimination of short- and long-period
terms (Brouwer, 1959; Scheifele and Graf, 1974). This is
done analytically by changing first from original to prime
variables, and then from prime variables to mean
(double-prime) variables. The complete Hamiltonian
reduction is then achieved by neglecting higher-order terms
from the mean elements Hamiltonian, to obtain

F00 � F 00 �;�;�;�;U00;G00;H 00;K00ð Þ: ð12Þ

The analytical solution is trivial in mean elements. Indeed,
the Hamilton equations of Eq. (12) immediately show that
the momenta are constant in mean elements

U00 ¼ U00
0; G00 ¼ G00

0; H 00 ¼ H ; K00 ¼ K; ð13Þ

where H and K are integrals of the original main problem,
whereas the angles evolve linearly with constant frequen-
cies given by
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n/ ¼ n/ U00
0;G

00
0;H ;K

� � ¼ @F00=@U00; ð14Þ
ng ¼ ng U00

0;G
00
0;H ;K

� � ¼ @F00=@G00; ð15Þ
nh ¼ nh U00

0;G
00
0;H ;K

� � ¼ @F00=@H 00; ð16Þ
nk ¼ nk U00

0;G
00
0;H ;K

� � ¼ @F00=@K00: ð17Þ

To avoid offending divisors in the perturbation series,
the analytical solution is customarily formulated in the
canonical set of non-singular Poicaré-similar elements
(Scheifele, 1981). However, due to the axial symmetry of
the main problem model, we find convenience in formulat-
ing the solution in a non-canonical set of variables that
replaces the troublesome elements by the argument of the
latitude h ¼ /þ g and the semi-equinoctial elements defin-
ing the eccentricity vector in the orbital plane
C ¼ e cos g; S ¼ e sin g. The solution in mean elements is
thus

k00 ¼ k000 þ nks; ð18Þ
h00 ¼ h000 þ n/ þ ng

� �
s; ð19Þ

C00 ¼ C00
0 cos ngs

� �� S00
0 sin ngs

� �
; ð20Þ

S00 ¼ S00
0 cos ngs

� �þ C00
0 sin ngs

� �
; ð21Þ

h00 ¼ h000 þ nhs; ð22Þ

and the original dynamics is recovered by plugging this
solution into the transformation from mean to osculating
elements, which in the current, Hamiltonian case is derived
from a generating function.

We extended the solution of Scheifele and Graf (1974) to
the second order. That is, the secular terms in Eqs. (18)–

(22) are accurate to O J 3
2

� �
effects, whereas the periodic cor-

rections are accurate only to O J 2
2

� �
. Accordingly, the ana-

lytical solution comprises 33 perturbation series in addition
to those defining the secular frequencies. Namely, 5� 3 for
the long-period corrections (first-order, second-order
direct, and second-order inverse), and 6� 3 for the short-
period corrections (first-order, second-order direct, and
second-order inverse). Remarkably, there is no need of
integrating Eq. (2) to recover the physical time, which, on
the contrary, due to the extended phase space formulation
is obtained by making explicit q from Eq. (10).

Note that, due to the truncation of the periodic correc-
tions, the initialization of the perturbation theory from a
given set of initial conditions provides the needed constants

in Eqs. (13)–(17) only up to O J 2
2

� �
effects, whereas the sec-

ular frequencies are expected to be accurate to the order of

J 3
3. While this is an inconsistency in traditional perturba-

tion theories, which need to be patched to avoid large in-
track errors, we will see that this uneven truncation is not
of concern in the extended phase space formulation.
2.3. First-order solution

The generating function of the short-period elimination
is
4172
W1 ¼ � 1
8
C

R2
�
q2 4� 6s2ð Þe sin/þ 3es2 sin 2g þ /ð Þ½

þ3s2 sin 2g þ 2/ð Þ þ es2 sin 2g þ 3/ð Þ�;
ð23Þ

where we defined the auxiliary variable

q ¼ C
ffiffiffiffiffiffiffiffi
p=l

p
:

Remarkably, Eq. (23) is formally the same as the first order
term of the generating function of the elimination of the
parallax transformation when it is written in Delaunay
variables (cf. Lara et al., 2014).

Up to the first order, the transformation of the short-
period elimination is computed as n ¼ n0 þ J 2d1;n, with n
denoting any of the involved variables. The short-period
corrections d1;n are obtained from the computation of the
Poisson bracket n;W1f g, and reformulating the result in
prime variables. The inverse transformation is
n0 ¼ n� J 2d1;n where now d1;n is written in the original,
non-primed variables.

For the long-period elimination we obtain the first order
generating function

V1 ¼ C
R2
�
q2

3

32

1

D
15s2 � 14þ 12 s2 � 1

� �
d

	 

s2e2 sin 2g; ð25Þ

which must be written in the prime variables. In Eq. (25)
we abbreviated

D ¼ 3 5s2 � 4
� �þ 6 s2 � 1

� �
dþ 2 3s2 � 2

� �
t; ð26Þ

and introduced the auxiliary, non-dimensional functions

d ¼ �1þ C=G; t ¼ �1þ q=p; ð27Þ
which are O J 2ð Þ, and hence produce a small displacement
of similar magnitude in the critical inclination value, which

now happens for D ¼ 0. That is, sin I ¼ ffiffiffiffiffiffiffiffi
4=5

p þO J 2ð Þ.
The first-order transformation to mean (double-prime) ele-
ments is computed like before. Thus, n0 ¼ n00 þ J 2d

0
1;n0 ,

where the long-period corrections d01;n0 are obtained com-

puting the Poisson bracket n0;V1f g, and reformulating
the result in the double-prime variables. Analogously,
n00 ¼ n0 � J 2d

0
1;n0 with d01;n0 now written in prime variables.

The secular frequencies of the first order theory are
obtained from the Hamilton equations of the secular
Hamiltonian

F00 ¼ U� lffiffiffiffiffiffi
2K

p þ
X
m�1

Jm
2

m!
Fm; ð28Þ

where

F 1 ¼ C
R2
�
q2

1

4
3s2 � 2
� �

; ð29Þ

and

F 2 ¼ C
R4
�
q4

1
64

4 15s4 � 6s2 � 4ð Þ þ 3 5s4 þ 8s2 � 8ð Þe2 þ 24s2½
� 2e2 þ 3ð Þ s2 � 1ð Þd� 2 e2 þ 1ð Þ 15s4 � 24s2 þ 8ð Þt�;

ð30Þ

are written in mean (double-prime) variables.
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2.4. Second-order solution

The second order generating function takes the form

W2 ¼ C
R4
�
q4

1
3840

60 45s4 þ 72s2 � 80þ 168s2 s2 � 1ð Þd� 4½f
� 33s4 � 48s2 þ 16ð Þt�e sin/þ 360 5s2 � 4ð Þs2 þ 4s2½
� s2 � 1ð Þd�e2 sin 2/� 90 225s2 � 206þ 168 s2 � 1ð Þd½
þ4 3s2 � 2ð Þt�s2e sin 2g þ /ð Þ � 120 39s2 � 38þ 36 s2ðf
�1Þd� 2 3s2 � 2ð Þtþ 2e2 3s2 � 4þ 6 s2 � 1ð Þd� 3s2ð½
�2Þt�gs2 sin 2g þ 2/ð Þ þ 10 75s2 � 42� 24 s2 � 1ð Þd½
þ28 3s2 � 2ð Þt�s2e sin 2g þ 3/ð Þ þ 30 15s2 � 14þ 12 s2ð½
�1Þd�s2e2 sin 2g þ 4/ð Þ þ 45 4tþ 5ð Þs4e sin 4g þ 3/ð Þ
þ45 2 tþ 1ð Þ þ 2tþ 3ð Þe2½ �s4 sin 4g þ 4/ð Þ
þ9 4tþ 5ð Þs4e sin 4g þ 5/ð Þg:

ð31Þ

Now

n ¼ n0 þ J 2d1;n þ 1

2
J 2
2d2;n;

where d2;n is obtained after reformulating in prime vari-
ables the result of n;W1f g;W1f g þ n;W2f g. For the
inverse transformation,

n0 ¼ n� J 2d
0
1;n þ

1

2
J 2
2d

0
2;n; ð33Þ

where d02;n is no longer the opposite of d2;n, but the result, in
the original variables, of n;W1f g;W1f g � n;W2f g.

The secular frequencies of the second-order theory are
computed from the Hamiltonian (28), which is now com-
plemented with the third-order term

F 3 ¼ C
R6
�

q6

3

210
1

D2

X2
k¼0

X4
j¼0

X4�j

i¼0

qk;i;j 1þ dð Þi 1þ tð Þje2k; ð34Þ

where the coefficients qk;i;j are given in Table 1.

The second-order term of the generating function of the
transformation of the long-period elimination is
Table 1
Inclination polynomials qk;i;j in Eq. (34); c ¼ 1� s2ð Þ1=2.
i; j k ¼ 0

0;0 �72 2� 3s2
� �3

s4 �4 2� 3s2
� �3

41
�

0;1 �4 2� 3s2
� �3

67s4 � 24s2 þ 8
� � �2 2� 3s2

� �3
41
�

0;2 �32 2� 3s2
� �3

15s4 � 24s2 þ 8
� � �4 2� 3s2

� �3
51
�

0;3 �16 2� 3s2
� �3

63s4 � 120s2 þ 40
� � �16 2� 3s2

� �3
2
�

0;4 �64 2� 3s2
� �3

17s4 � 24s2 þ 8
� � �160 2� 3s2

� �3�
1;0 �144c2 2� 3s2

� �2
s2 15s2 � 2
� � �64c2 2� 3s2

� �2
1;1 �48c2 2� 3s2

� �2
117s4 � 24s2 þ 8
� � �12c2 2� 3s2

� �2
1;2 �288c2 2� 3s2

� �2
13s4 � 12s2 þ 8
� � �96c2 2� 3s2

� �2
1;3 �768c2 2� 3s2

� �2
3s4 � 6s2 þ 4
� � �64c2 2� 3s2

� �2
2;0 432c2 2� 3s2

� �
s2 63s4 � 76s2 þ 16
� �

144c2 2� 3s2
� �

3
�

2;1 144c2 2� 3s2
� �

375s6 � 411s4 þ 80s2 � 8
� �

144c2 2� 3s2
� �

8
�

2;2 576c2 2� 3s2
� �

36s6 � 27s4 þ 8s2 � 8
� �

288c2 2� 3s2
� �

2
�

3;0 5184c4s2 5s2 � 2
� �

6s2 � 5
� �

1728c4s2 205s4 ��
3;1 3456c4s2 4s2 � 3

� �
13s2 � 4
� �

1728c4s2 261s4 ��
4;0 �15552c6s2 7s2 � 4

� � �38016c6s2 7s2 ��
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V2 ¼ C
R4
�
q4

3
210

1
D3

X2
l¼1

X2�l

k¼0

X4
j¼0

X4�j

i¼0

bl;k;i;j

� 1þ dð Þi 1þ tð Þje2kþ2ls2l sin 2lg;

ð35Þ

where the inclination polynomials bl;k;i;j are listed in
Table 2. The transformation of the long-period elimination
is obtained analogously to Eq. (32) —resp. (33)— and fol-
lowing formulas, replacing corresponding functions and
variables by those of the long-period case.

Remarkably, at this order there is an explosion in the
number of terms of the transformation of the long-period
elimination. This is clearly shown by comparison with
Brouwer’s 2nd order generating function of the long-
period elimination, which takes the much simpler form

V�
2 ¼ G

R4
�
p4

1

210
1
~D2

X2
j¼1

1þ gð Þj�2

~Dj�1

X3j�
i¼0

bj;igje2js2j sin 2jg; ð36Þ

where g ¼ 1� e2ð Þ1=2, ~D ¼ 5s2 � 4; j� ¼ j mod 2ð Þ, and
b1;0 ¼ �2 3975s6 � 6870s4 þ 2928s2 þ 16ð Þ;
b1;1 ¼ 2 1425s6 � 5370s4 þ 6288s2 � 2320ð Þ;
b1;2 ¼ �2 15s2 � 14ð Þ 195s4 � 388s2 þ 184ð Þ;
b1;3 ¼ 2 15s2 � 14ð Þ 45s4 þ 36s2 � 56ð Þ;
b2;0 ¼ 15s2 � 14ð Þ2 15s2 � 13ð Þ:

ð37Þ

Still, if third-order corrections are not of concern, after
computing the second-order corrections stemming from
Eq. (35), they can be notably simplified by making
d ¼ t ¼ 0. Other terms of the different series that compose
the solution in the extended phase space are certainly
amenable to analogous simplifications.

3. Accuracy tests

A number of tests has been conducted to check the accu-
racy of the analytical solution based on the fictitious time
and compare it with the precision provided by the tradi-
k ¼ 1 k ¼ 2

s4 � 24s2 þ 8
�

18 2� 3s2
� �3

s4

3s4 � 432s2 þ 144
�

54 2� 3s2
� �3
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�

9 2� 3s2
� �3

s4
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0
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�
0

69s4 � 16s2 þ 6
� �

36c2 2� 3s2
� �2

s2 15s2 � 1
� �
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� �

72c2 2� 3s2
� �2

s2 18s2 � 1
� �
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� �

216c2 2� 3s2
� �2

s4

141s4 � 224s2 þ 120
� �

0
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� �27c2 2� 3s2
� �

s2 243s4 � 274s2 þ 40
� �
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� �216c2 2� 3s2

� �
s2 51s4 � 56s2 þ 8
� �

23s6 � 235s4 þ 96s2 � 40
�

1296c4 2� 3s2
� �

s4

239s2 þ 56
� �1296c4s2 30s4 � 35s2 þ 8

� �
289s2 þ 72

�
2592c4 2� 3s2

� �
s2 5s2 � 2
� �

4
�

3888c6s2 7s2 � 4
� �



Table 2
Inclination polynomials bl;k;i;j in Eq. (35); c ¼ 1� s2ð Þ1=2.
i; j l ¼ 1; k ¼ 0 l ¼ 1; k ¼ 1 l ¼ 2; k ¼ 0

0;0 8 2� 3s2
� �2

3s4 þ 24s2 � 8
� �

6 2� 3s2
� �2

3s4 � 24s2 þ 8
� � �3 2� 3s2

� �3
0;1 �24 2� 3s2

� �2
13s4 � 60s2 þ 20
� �

24 2� 3s2
� �2
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� � �6 2� 3s2

� �3
0;2 �32 2� 3s2

� �2
60s4 � 123s2 þ 41
� �

12 2� 3s2
� �2

37s4 � 72s2 þ 24
� � �9 2� 3s2

� �3
0;3 �8 2� 3s2
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� �
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� �2
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� �

0
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� �

0 0
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� �
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� �
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� � �90c2 2� 3s2

� �2
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� �
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24c2 2� 3s2
� �

81s4 � 384s2 þ 152
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� �2
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� �2
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� �
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� �

0
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� �
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� �

35s2 � 34
� �
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� �
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� �
2;2 �432c2s2 61s4 � 61s2 þ 16

� �
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� �

3;0 864c4 211s4 � 296s2 þ 100
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� �
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� �
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� � �1152c4 27s4 � 17s2 � 4
� � �5184c6

4;0 �10368c6 13s2 � 10
� �

6912c6 5s2 � 2
� � �3888c6

Fig. 1. RSS position errors of the first order theory in the extended phase
space (black) superimposed to corresponding errors of the traditional
approach (gray).
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tional approach based on the physical time. For the later,
the different analytical solutions in the literature for the
same truncation order are essentially different arrange-
ments of the same solution, which, therefore enjoy analo-
gous accuracy (Lara, 2021a). However, one formulation
may be preferred over others depending on the user needs.
Thus, for instance, splitting the solution into additional
series may ease coding the solution, but may also increase
the computational burden (Lara, 2021c). For our compar-
isons we choose the approach based on the sequential elim-
ination of the parallax (Deprit, 1981; Lara et al., 2014), the
elimination of the perigee (Alfriend and and Coffey, 1984;
Lara et al., 2014), and the Delaunay normalization
(Deprit, 1982), which seems to be a popular option in the
literature (Coffey and Alfriend, 1984; San-Juan, 1994;
Coffey et al., 1996; Lara, 2019b). We remark that, unlike
in common implementations by different authors, we
always improve the initialization of the constants of the
traditional perturbation solution with the calibration of
the mean semimajor axis from the energy equation
(Breakwell and Vagners, 1970).

For the different orbital configurations tested, we always
obtained similar comparative results between the tradi-
tional and fictitious-time methods. Therefore, we only illus-
trate them for the PRISMA orbit (Persson et al., 2005),
which is a low-eccentricity, sun-synchronous orbit at
around 700 km altitude. In particular, in the computation
of the initial conditions we used the orbital parameters
a ¼ 6878:14 km,
e ¼ 0:001; I ¼ 97:42	;X ¼ 168:2	;x ¼ 20	, and M ¼ 30	.
The true, reference orbit was then computed from the
numerical integration of the main problem in Cartesian
coordinates. To guarantee that all the stored digits of the
reference orbit are exact in the floating-point number rep-
resentation, the integration was carried out in extended
precision. More precisely, we took advantage of the public
availability of the implementation by Hairer et al. (2008) of
an explicit Runge–Kutta method of order 8(5,3) due to
Dormand and Prince (1980), which we compiled in Fortran
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quadruple precision. The numerical propagations were car-

ried out with tolerance 10�22, and we checked that with our
16-digit truncation of the solution the energy integral and
the third component of the angular momentum were both
preserved with at least 14 digits (usually 15). In addition,
the integration of the fictitious time variation, given by
Eq. (2), was incorporated to the differential system in order
to check the accuracy provided by each theory exactly at
the same physical time.

Results showing the Root Sum Square (RSS) of the
errors provided by the first-order truncation of each pertur-
bation solution are shown superimposed in Fig. 1 for a
propagation interval of 10 days. The small secular trend
in the errors of the traditional solution, of about 1 meter
per day, is mostly nullified in the case of the solution based
on the extended phase formulation, where the much smal-
ler secular trend remains buried under the periodic oscilla-
tions of the errors.

The nature of the position errors of each analytical solu-
tion is best illustrated when they are projected in the radial,
along-track, and cross-track directions. Indeed, by simple
inspection of Fig. 2, we check that the errors in the radial
and cross-track directions are periodic in nature and of
comparable magnitude in both theories —as it should be
expected for perturbation solutions truncated to the same
order. On the contrary, while the amplitude of the periodic
components of the errors in the along-track direction
remain in the case of traditional theory of the same level



Fig. 2. Intrinsic errors of the first-order traditional (left) and extended phase space theory (right).

Fig. 3. Errors in the physical time determination stemming from the first-
order theory in the extended phase space.
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of accuracy as the other components of the errors, they
reduce by about one order of magnitude, from meters to
decimeters, in the case of the extended phase space formu-
lation. The better performance of the extended phase space
solution regarding along-track errors applies also to their
evident secular component. Visual inspection of the bottom
plots of Fig. 2 shows a linear growth of the along-track
errors of near 1 m/day for the traditional theory vs. about
10 cm/day in the case of the extended phase space formu-
lation. Given the distinct secular rates, and on account of
the already mentioned analogous behavior of the other
components of the errors, displayed in the top and center
plots of Fig. 2, it becomes evident that along-track errors
are mostly responsible of the different behavior of each the-
ory, and the benefits of including the total energy among
the integration variables regarding the stabilization of the
secular errors in the along-track direction are clearly
illustrated.

Undeniably, the greater secular trend of the errors of the
traditional solution seems to make the extended phase
space solution preferable in much longer propagation
times. Still, for actual ephemeris computation, the fictitious
time in which the extended phase space solution must be
evaluated corresponding to the desired physical time will
not be known in advance. On the contrary, its accurate
computation requires a root-finding procedure that is com-
monly approached by Newton–Raphson iterations (Bond,
1979). Moreover, due to the unavoidable truncation of the
perturbation solution, the fictitious time corresponding to a
given physical time cannot be determined exactly. This
issue is not exclusive of analytical perturbation solutions
and also emerges in numerical integration schemes based
on the fictitious time. While the effect is much more subtle
in the latter case, its importance has been clearly recognized
and discussed in the literature (Urrutxua et al., 2016). As
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shown in Fig. 3, the nature of these errors is mostly peri-
odic, with an amplitude of about one half of a millisecond.
For the semimajor axis of the PRISMA orbit, this error in
the timing may yield an additional in-track error in the
meter level. On the other hand, a linear fit to the errors dis-
closes a secular rate of about 10 ls/day, which will clearly
show in propagation intervals of just a few weeks.

These additional inaccuracies derived from the O J 2ð Þ
truncation of the series that provide the physical time as
a function of the fictitious one, which were not taken into
account in Fig. 1, are illustrated in Fig. 4. Now, the errors
of the first-order theory in the extended phase space (in
black) are true ephemeris errors. That is, they have been
computed at given values of the physical time from which
the needed fictitious time is obtained by root-finding from
the series representing the physical time as an implicit func-
tion of the fictitious time. This procedure yields larger
errors because the time error of Fig. 3 translates into an
additional positional error. The root-finding process



Fig. 4. Along-track errors of the extended phase space theory with the
physical time as argument (black) superimposed to the bottom-left plot of
Fig. 2.

Fig. 6. Errors in the physical time determination stemming from the
second-order theory in the extended phase space.

Fig. 7. Along-track errors of the second-order theory in the extended
phase space with the physical time as argument (black) superimposed to
corresponding errors of traditional theory based on the physical time
(gray) previously displayed in the top plot of Fig. 5.
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requires the evaluation of the analytical theory in each iter-
ation, thus notably increasing the computational burden,
and, therefore, degrading the performance of the perturba-
tion theory regarding computing time. In the author’s cod-
ing of the root-finding algorithm, the examples carried out
show that the evaluation time needed in each ephemeris
evaluation commonly increases by one order of magnitude
with respect to the direct evaluation in the fictitious time.

When the second-order theory is used we obtain notable
accuracy gains in both cases, as expected from the charac-
teristics of perturbation solutions. Again, the amplitude of
the periodic errors in the radial and cross-track directions
is similar for both perturbation theories, now in the mm
level, and corresponding errors are not presented. On the
contrary, while the amplitude of the periodic errors in the
along-track direction remains also in the mm level in the
case of the solution in extended phase space, it is not at
all the case of the errors of the traditional theory, whose
amplitude now reaches the cm level. This is shown in
Fig. 5, where we also notice the secular rate of the along-
track errors of the traditional theory of about one third
of cm per day, which is much larger than the rate of about
one tenth of mm per day of the extended phase space solu-
tion. Nonetheless, these figures yield an analogous ratio to
the first-order case.

Again, additional inaccuracies to those presented in
Fig. 5 arise in the case of the extended phase space solution
due to the need of computing the physical time from the fic-
Fig. 5. Along-track errors of the second order theory of the traditional
(top) and extended phase space formulation (bottom plot). Note the
different scales of the ordinates.
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titious one, or vice versa. As shown in Fig. 6, the amplitude
of these errors is now reduced to about 1 microsecond,
which is not enough to hide a clear secular trend of about
0:1ls=day. These additional errors of the extended phase
space formulation, now reaching the cm level for the
PRISMA orbit, result in a notable increase with respect
to the mm level shown in the bottom plot of Fig. 5. Again,
timing errors notably balance the accuracy of both kinds of
theories, as illustrated in Fig. 7. Therefore, like in the first-
order case, this source of errors may be a dominant part
that cannot be ignored in the performance evaluation of
perturbation solutions based on the formulation in the
extended phase space. Also like in the first-order case, dif-
ferences in accuracy will be much more evident in longer
time spans due to the distinct secular rates of the along-
track errors.
4. Conclusions

Inclusion of the total energy among the variables of an
analytic orbit generator has beneficial, radical effects in the
propagation of along-track errors of circumterrestrial
orbits, which are commonly reduced by one order of mag-
nitude with respect to usual along-track errors obtained
with traditional (properly initialized) perturbation solu-
tions. This fact could make the extended phase formulation
preferable for mission analysis and planning, as well as
end-of-life decommissioning or long-term studies of orbital
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perturbations. However, this kind of solution has to
unavoidably deal with the transformation between physical
and fictitious times in ephemeris computation. This is not
only a clear inconvenience from the algorithmic point of
view, but, most notably, this change cannot be carried
out exactly due to the truncation that is inherent to any
perturbation solution. Additional inaccuracies stemming
from this conversion, which show both secular and peri-
odic trends, may be as important as those derived from
the intrinsic components of the position errors. Therefore,
they cannot be ignored in the objective assessment of accu-
racy performance. From the point of view of the construc-
tion of the analytical solution, the fictitious-time approach
has clear advantages regarding the computation of the inte-
grals involved in the process, yet a post-processing is
needed to reduce the length of the series comprising the
solution to a comparable size to those resulting from the
traditional approach. These pros and cons do not present
a clear advantage for one of the options, and make the
choice between traditional and extended phase space orbi-
tal perturbation solutions mostly a matter of the particular
needs of prospective users.

Declaration of Competing Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

Partial support by the Spanish State Research Agency
and the European Regional Development Fund (Project
PID2020-112576 GB-C22, AEI/ERDF, EU) is recognized.

References

Ahmed, M.K.M., 1994. On the normalization of perturbed Keplerian
systems. Astron. J. 107, 1900–1903. https://doi.org/10.1086/117001.

Alfriend, K.T., Coffey, S.L., 1984. Elimination of the perigee in the
satellite problem. Celestial Mech. 32 (2), 163–172. https://doi.org/
10.1007/BF01231123.

Boccaletti, D., Pucacco, G., 2002. Theory of orbits. Volume 2: Perturba-
tive and geometrical methods. In: Astronomy and Astrophysics
Library, (1st ed.). Springer-Verlag, Berlin Heidelberg New York.

Bonavito, N.L., Watson, S., Walden, H., 1969. An Accuracy and Speed
Comparison of the Vinti and Brouwer Orbit Prediction Methods.
Technical Report NASA TN D-5203 Goddard Space Flight Center
Greenbelt, Maryland.

Bond, V.R., 1979. An Analytical Singularity-Free Solution to the J_2
Perturbation Problem. Technical Report NASA-TM-58221; JSC-
13128 NASA Johnson Space Center.

Breakwell, J.V., Vagners, J., 1970. On Error Bounds and Initialization in
Satellite Orbit Theories. Celestial Mech. 2, 253–264. https://doi.org/
10.1007/BF01229499.

Brouwer, D., 1959. Solution of the problem of artificial satellite theory
without drag. Astron. J. 64, 378–397. https://doi.org/10.1086/107958.

Cain, B.J., 1962. Determination of mean elements for Brouwer’s satellite
theory. Astron. J. 67, 391–392. https://doi.org/10.1086/108745.
4177
Coffey, S., Alfriend, K.T., 1984. An analytical orbit prediction program
generator. J. Guidance, Control Dyn. 7 (5), 575–581. https://doi.org/
10.2514/3.19897.

Coffey, S.L., Neal, H.L., Segerman, A.M., Travisano, J.J., 1996. An
Analytic Orbit Propagation Program for Satellite Catalog Mainte-
nance. In: Alfriend, K.T., Ross, I.M., Misra, A.K., Peters, C.F. (Eds.),
AAS/AIAA Astrodynamics Conference 1995. American Astronautical
Society P.O. Box 28130, San Diego, California 92198, USA: Univelt,
Inc. volume 90 of Advances in the Astronautical Sciences, pp. 1869–
1892.

Deprit, A., 1969. Canonical transformations depending on a small
parameter. Celestial Mech. 1 (1), 12–30. https://doi.org/10.1007/
BF01230629.

Deprit, A., 1981. A Note Concerning the Tr-Transformation. Celestial
Mech. 23 (4), 299–305. https://doi.org/10.1007/BF01230743.

Deprit, A., 1981. The elimination of the parallax in satellite theory.
Celestial Mech. 24 (2), 111–153. https://doi.org/10.1007/BF01229192.

Deprit, A., 1982. Delaunay normalisations. Celestial Mech. 26, 9–21.
https://doi.org/10.1007/BF01233178.

Deprit, A., Ferrer, S., 1987. Note on Cid’s Radial Intermediary and the
Method of Averaging. Celestial Mech. 40 (3–4), 335–343.

Deprit, A., Rom, A., 1970. The Main Problem of Artificial Satellite
Theory for Small and Moderate Eccentricities. Celestial Mech. 2 (2),
166–206.

Dormand, J.R., Prince, P.J., 1980. A family of embedded Runge-Kutta
formulae. J. Comput. Appl. Math. 6 (1), 19–26. https://doi.org/
10.1016/0771-050X(80)90013-3.

Eckstein, M.C., Hechler, F., 1970. A reliable derivation of the perturba-
tions due to any zonal and tesseral harmonics of the geopotential for
nearly-circular satellite orbits. Scientific Report ESRO SR-13 Euro-
pean Space Research Organisation Darmstadt, Federal Republic of
Germany.

Ferrer, S., Lara, M., 2010. Families of Canonical Transformations by
Hamilton-Jacobi-Poincaré Equation. Application to Rotational and
Orbital Motion. J. Geometric Mech. 2 (3), 223–241. https://doi.org/
10.3934/jgm.2010.2.223.

Florı́a, L., 1997. Perturbed Gylden Systems and Time-Dependent Delau-
nay-Like Transformations. Celestial Mech. Dyn. Astron. 68 (1), 75–85.
https://doi.org/10.1023/A:1008239731649.

Gaias, G., Colombo, C., Lara, M., 2020. Analytical Framework for
Precise Relative Motion in Low Earth Orbits. J. Guidance Control
Dyn. 43 (5), 915–927. https://doi.org/10.2514/1.G004716.

Hairer, E., Nørset, S.P., Wanner, G., 2008. Solving Ordinary Differential
Equations I. Non-stiff Problems, (2nd ed.). Springer-Verlag, Berlin –
Heidelberg – New York.

Healy, L.M., 2000. The Main Problem in Satellite Theory Revisited.
Celestial Mech. Dyn. Astron. 76 (2), 79–120. https://doi.org/10.1023/
A:1008305628985.

Jefferys, W.H., 1971. Automated, Closed Form Integration of Formulas in
Elliptic Motion. Celestial Mech. 3, 390–394. https://doi.org/10.1007/
BF01231808.

Kozai, Y., 1959. The motion of a close earth satellite. Astron. J. 64, 367–
377. https://doi.org/10.1086/107957.

Kozai, Y., 1962. Second-order solution of artificial satellite theory without
air drag. Astron. J. 67, 446–461. https://doi.org/10.1086/108753.

Lara, M., 2019a. A new radial, natural, higher-order intermediary of the
main problem four decades after the elimination of the parallax.
Celestial Mech. Dyn. Astron. 131 (9), 1–20. https://doi.org/10.1007/
s10569-019-9921-5.

Lara, M., 2019b. Review of analytical solutions for low earth orbit
propagation and study of the precision improvement in the conversion
of osculating to mean elements. Technical Report CM 2019/SER0023
Universidad de La Rioja Logroño, La Rioja.

Lara, M., 2020. Solution to the main problem of the artificial satellite by
reverse normalization. Nonlinear Dyn. 101 (2), 1501–1524. https://doi.
org/10.1007/s11071-020-05857-3.

https://doi.org/10.1086/117001
https://doi.org/10.1007/BF01231123
https://doi.org/10.1007/BF01231123
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0015
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0015
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0015
https://doi.org/10.1007/BF01229499
https://doi.org/10.1007/BF01229499
https://doi.org/10.1086/107958
https://doi.org/10.1086/108745
https://doi.org/10.2514/3.19897
https://doi.org/10.2514/3.19897
https://doi.org/10.1007/BF01230629
https://doi.org/10.1007/BF01230629
https://doi.org/10.1007/BF01230743
https://doi.org/10.1007/BF01229192
https://doi.org/10.1007/BF01233178
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0075
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0075
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0080
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0080
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0080
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.3934/jgm.2010.2.223
https://doi.org/10.3934/jgm.2010.2.223
https://doi.org/10.1023/A:1008239731649
https://doi.org/10.2514/1.G004716
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0110
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0110
http://refhub.elsevier.com/S0273-1177(22)00257-5/h0110
https://doi.org/10.1023/A:1008305628985
https://doi.org/10.1023/A:1008305628985
https://doi.org/10.1007/BF01231808
https://doi.org/10.1007/BF01231808
https://doi.org/10.1086/107957
https://doi.org/10.1086/108753
https://doi.org/10.1007/s10569-019-9921-5
https://doi.org/10.1007/s10569-019-9921-5
https://doi.org/10.1007/s11071-020-05857-3
https://doi.org/10.1007/s11071-020-05857-3


M. Lara Advances in Space Research 69 (2022) 4169–4178
Lara, M., 2021a. Brouwer’s satellite solution redux. Celestial Mech. Dyn.
Astron. 133 (47), 1–22. https://doi.org/10.1007/s10569-021-10043-7.

Lara, M., 2021b. Hamiltonian Perturbation Solutions for Spacecraft
Orbit Prediction. The method of Lie Transforms volume 54 of De
Gruyter Studies in Mathematical Physics. 1st ed., De Gruyter, Berlin/
Boston.

Lara, M., 2021c. Improving efficiency of analytic orbit propagation (IAC-
21,C1,7,2,x65390). In: Proceedings of the 72nd International Astro-
nautical Congress (IAC), Dubai, United Arab Emirates, 25–29
October 2021. International Astronautical Federation IAF.
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