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In this paper, the well-known Faulkner construction is revis-
ited and adapted to include the super case, which gives a bijec-
tive correspondence between generalized Jordan (super)pairs 
and faithful Lie (super)algebra (super)modules, under certain 
constraints (bilinear forms with properties analogous to the 
ones of a Killing form are required, and only finite-dimensional 
objects are considered). We always assume that the base field 
has characteristic different from 2.
It is also proven that associated objects in this Faulkner cor-
respondence have isomorphic automorphism group schemes. 
Finally, this correspondence will be used to transfer the con-
struction of the tensor product to the class of generalized 
Jordan (super)pairs with “good” bilinear forms.
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1. Introduction

An important connection between Z-graded Lie algebras and other structures is given 
by the well-known Kantor construction. The Kantor construction applied to a Jordan (su-
per)pair produces a Z-graded Lie (super)algebra which is 3-graded (that is, the support 
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of the grading is contained in {−1, 0, 1}) (see [18]), and applied to Kantor pairs pro-
duces a Z-graded Lie algebra that is 5-graded (the support of the grading is contained in 
{−2, −1, 0, 1, 2}) (see [2]). Note that the Kantor construction for Jordan algebras, Jordan 
triple systems, and Jordan pairs, is usually called the Tits-Kantor-Koecher construction, 
or TKK-construction. A classification of the finite-dimensional simple Jordan pairs and 
superpairs can be found in [20, Chap. 4] and [18], respectively. A different version of the 
Kantor construction, defined by a quotient of a universal graded Lie algebra ([15], [16], 
[4, §3], [5]), gives a bijective correspondence between the class of Z-graded Lie algebras 
with a grade-reversing involution (and generated by the subspaces L1 and L−1) and the 
class of generalized Jordan triple systems; this has also been used in the super case [7], 
[23, Th. 2.1] (some details of this Kantor construction are usually omitted and, unfortu-
nately, the original references [15], [16] are not easy to find and have not been translated 
from Russian). Some constructions of Lie algebras from ternary algebras appear in [1], 
[10]. Kantor pairs are also called generalized Jordan pairs of second order (see [19] and 
references therein). For the basic definitions related to Lie superalgebras see, e.g., [8], 
[17].

The Faulkner construction has been used in Physics, where generalized Jordan triple 
(super)systems with “good” bilinear forms are referred to with different names (M2-
branes 3-algebras [22], metric Lie 3-algebras [21], [12], three-algebras [23]).

The original Faulkner construction [11] uses a generalized Jordan pair “in disguise” 
(one of the triple products is dropped) with a “good” bilinear form, and produces a Lie 
module where the Lie algebra has a “good” bilinear form, and shows how to recover the 
original triple product from the module (although it was not stated as a correspondence 
between both isomorphic classes of objects since the module was not required to be 
faithful). The Faulkner construction is often given in terms of triple systems instead of 
pairs (e.g., see [12], [21]), and has also been used to study anti-Jordan pairs [13]. The 
term generalized Jordan (super)pair has not been found explicitly in the literature.

A polished and detailed proof of the Faulkner construction, that is adapted to the 
super case, for pairs instead of triple systems, and stated as a correspondence, has not 
been found in the literature. Giving a nice reference for these results is one of the aims of 
this work. Note that a construction in terms of superpairs is more general than in terms 
of triple supersystems, because generalized Jordan superpairs can be constructed from 
generalized Jordan triple supersystems (and structurable superalgebras). Since the proof 
in [11] was rather sketchy and most computations were omitted, some related results have 
appeared later (e.g., see [21]), and some of them are part of the proof if the construction 
is formulated as a bijective correspondence.

Note that the author was studying how to extend “good” bilinear forms from Kantor 
pairs to their Kantor-Lie algebras, which led to rediscover the Faulkner construction for 
pairs.

Open problems: From an optimistic point of view, a Kantor construction for gen-
eralized Jordan (super)pairs, which includes the cases mentioned above as particular 
cases, is expected to exist (which perhaps is already done in the literature). If the an-
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swer is positive, then the Kantor and Faulkner constructions together would produce 
a Kantor-Faulkner correspondence between Z-graded Lie superalgebras and faithful Lie 
supermodules, under certain constraints (“good” bilinear forms are required, and the 
Z-graded Lie superalgebra L must be generated by the subspaces L1 and L−1). Giv-
ing a detailed description of this Kantor-Faulkner correspondence, with necessary and 
sufficient conditions, is left as an open problem. Furthermore, the Faulkner and Kantor 
constructions remain to be studied in the color case, that is, where Lie color algebras 
appear instead of Lie (super)algebras.

This paper is structured as follows:
In Section 2 we recall some basic definitions and introduce the notation used in further 

sections. A reformulation of the Faulkner construction for generalized Jordan superpairs 
is given in Section 3, where we also show that the automorphism group schemes are 
preserved in the correspondence. Finally, in Section 4 we transfer the tensor product 
operator from the class of faithful Lie supermodules (with “good” bilinear forms) to the 
class of generalized Jordan superpairs (with “good” bilinear forms).

As an application of the original results in this paper, note that some results related to 
automorphism group schemes can be transferred between generalized Jordan superpairs 
and faithful Lie supermodules, with the restrictions given by the correspondence (e.g., 
classifications of gradings and orbits). (An introduction to automorphism group schemes 
can be found in [24], and results that allow to transfer classifications of gradings using 
automorphism group schemes can be found in [9].) Tensor products are a natural tool 
for the study of generalized Jordan superpairs (e.g., by decomposing a simple object as 
a tensor product of others of lesser dimension, or to construct new examples as tensor 
product of others).

2. Preliminaries

The base field F will be always assumed to be of characteristic different from 2. In 
this section we will recall the basic definitions used in further sections.

2.1. Lie superalgebras

Let G be a group. A G-grading on a vector space V is a vector space decomposition 
Γ : V =

⊕
g∈G Vg. If A is an F -algebra, then a G-grading on A is a vector space 

decomposition

Γ : A =
⊕
g∈G

Ag

such that AgAh ⊆ Agh for all g, h ∈ G. An algebra A with a G-grading is called a 
G-graded algebra. The subspace Ag is called homogeneous component of degree g. The 
nonzero elements x ∈ Ag are said to be homogeneous of degree g, and we write deg(x) = g. 
The set Supp Γ := {g ∈ G | Ag �= 0} is called the support of the grading.



4 D. Aranda-Orna / Linear Algebra and its Applications 646 (2022) 1–28
A nonzero linear map f : V → W between G-graded vector spaces is called homoge-
neous of degree g if f(Vh) ⊆ Wgh for all h ∈ G; thus Hom(V, W ) becomes a G-graded 
vector space. In particular, if V is G-graded, then End(V ) becomes a G-graded algebra.

A superalgebra is a Z2-graded algebra A = A0̄ ⊕ A1̄. The homogeneous subspaces 
A0̄ and A1̄ are called, respectively, the even and odd subspaces. The degree map of the 
Z2-grading is denoted by ε, that is, ε(x) := a if 0 �= x ∈ Aa. An element 0 �= x ∈ A is 
called even (resp. odd) if ε(x) = 0̄ (resp. ε(x) = 1̄). We will usually write (−1)0̄ := 1, 
(−1)1̄ := −1. Also, for homogeneous elements in a Z2-grading we will denote

ηx,y := (−1)ε(x)ε(y), (2.1)

ηx,y,z := (−1)ε(x)ε(y)+ε(y)ε(z)+ε(z)ε(x). (2.2)

A Lie superalgebra is a superalgebra L = L0̄ ⊕L1̄, with product denoted by [·, ·], such 
that

[x, y] = −ηx,y[y, x], (2.3)

[x, [y, z]] = [[x, y], z] + ηx,y[y, [x, z]], (2.4)

for any homogeneous elements x, y, z ∈ L. Lie algebras are exactly the even Lie superal-
gebras (that is, with L1̄ = 0).

Recall that if A is an associative superalgebra, then A becomes a Lie superalgebra 
with the Lie superbracket defined by

[x, y] := xy − ηx,yyx (2.5)

for any homogeneous elements x, y ∈ A. Also, recall that if A is a superalgebra, then 
End(A) becomes an associative superalgebra (where the homogeneous elements are the 
homogeneous maps). Therefore End(A) with the Lie superbracket becomes a Lie super-
algebra, usually denoted by gl(m|n) where dimA0̄ = m and dimA1̄ = n, or gl(A0̄|A1̄).

Let A be a superalgebra. A superderivation of degree a is a homogeneous linear map 
d : A → A of degree a ∈ Z2 such that

d(xy) = d(x)y + ηd,xxd(y) (2.6)

for any x, y homogeneous in A, where we write ε(d) := a. A superderivation is the sum of 
a superderivation of degree 0̄ and a superderivation of degree 1̄. Note that if A1̄ = 0, then 
the superderivations are exactly the derivations of A. It is well-known that the vector 
space of superderivations of A becomes a Lie subsuperalgebra of gl(m|n), where m and 
n are respectively the even and odd dimensions of A.

Given a Lie superalgebra L and a Z2-graded vector space M = M0̄⊕M1̄ with a bilinear 
map L ×M → M , (x, v) �→ x · v, we say that M is an L-supermodule if La ·Mb ⊆ Ma+b

for any a, b ∈ Z2 and
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[x, y] · v = x · (y · v) − ηx,yy · (x · v) (2.7)

for any homogeneous elements x, y ∈ L, v ∈ M . Modules for Lie algebras are exactly the 
Lie superalgebra supermodules where L1̄ = 0 and M1̄ = 0.

Let L be a Lie superalgebra and b : L × L → F a bilinear form. We will say that b is 
homogeneous if b(x, y) = 0 for any homogeneous elements x, y ∈ L with ε(x) + ε(y) �= 0̄. 
If

b([x, y], z) = b(x, [y, z]) (2.8)

for any x, y, z ∈ L, then b is said to be invariant. Also, if

b(x, y) = ηx,yb(y, x) (2.9)

for any homogeneous elements x, y ∈ L, then b is said to be supersymmetric (note that 
the restrictions of b to L0̄ and L1̄ are symmetric and antisymmetric, respectively).

Let L be a finite-dimensional Lie algebra and M a finite-dimensional L-module. Recall 
that the dual L-module is given by the dual space M∗ with the dual action x · f defined 
by

(x · f)(v) := −f(x · v) (2.10)

for any x ∈ L, f ∈ M∗, v ∈ M .
Now assume that L is a finite-dimensional Lie superalgebra and M a finite-dimensional 

L-supermodule. Consider the dual space M∗. Then M∗ inherits a dual Z2-grading such 
that the duality bilinear form is homogeneous (that is, Ma and M∗

a are paired and Ma

is orthogonal to M∗
b if a �= b). We will usually denote by 〈·, ·〉 : M∗ ×M → F the pairing 

bilinear form. Define the left-dual (or dual) L-supermodule of M as the Z2-graded vector 
space M∗ with the dual action x · f given by

〈x · f, v〉 = (x · f)(v) := −ηx,ff(x · v) = −ηx,f 〈f, x · v〉 (2.11)

for any homogeneous elements x ∈ L, f ∈ M∗, v ∈ M . It will be denoted by M← or M∗. 
Similarly, define the right-dual L-supermodule M→ of M as the Z2-graded vector space 
M∗ with the dual action x · f given by

〈x · f, v〉 = (x · f)(v) := −ηx,vf(x · v) = −ηx,v〈f, x · v〉 (2.12)

for any homogeneous elements x ∈ L, f ∈ M∗, v ∈ M . It is easy to see that 
(M←)→ ∼= M ∼= (M→)← (left and right duals are inverses) and (((M←)←)←)← ∼= M

and (((M→)→)→)→ ∼= M (both dualizations have order dividing 4). In particular, when 
L1̄ = 0 and M1̄ = 0, we have that M← ∼= M→.
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Given a homogeneous element ϕ ∈ End(M), we define its left-dual map ϕ← by means 
of

〈ϕ←(f), v〉 = ηϕ,f 〈f, ϕ(v)〉, (2.13)

for any homogeneous f ∈ M∗, v ∈ M . The map ϕ← may also be referred to as the dual
map of ϕ, and denoted by ϕ∗. The dual map ϕ← is well-defined for any ϕ ∈ End(M), 
since any endomorphism decomposes as sum of homogeneous elements. Similarly, we 
define the right-dual of ϕ by means of

〈ϕ→(f), v〉 = ηϕ,v〈f, ϕ(v)〉, (2.14)

for any homogeneous f ∈ M∗, v ∈ M , ϕ ∈ End(M). In the case that M1̄ = 0, we 
have that both ϕ← and ϕ→ coincide with the usual dual map ϕ∗. Also, it is clear 
that (ϕ←)→ = ϕ = (ϕ→)← (left and right dualizations are inverse processes). Besides 
(((ϕ←)←)←)← = ϕ and (((ϕ→)→)→)→ = ϕ (both dualizing processes have order dividing 
4). Note that dualizing preserves parity of homogeneous endomorphisms.

If M and N are L-supermodules, the (left) tensor product supermodule is defined by 
the vector space M ⊗N with the action

x · (v ⊗ w) := (x · v) ⊗ w + ηx,vv ⊗ (x · w) (2.15)

for each homogeneous x ∈ L, v ∈ M , w ∈ N . It will be denoted by M
←−⊗N or M ⊗ N . 

The parity map that determines the Z2-grading is given by ε(v⊗w) := ε(v) + ε(w). The 
tensor product operator is associative, but M ⊗ N � N ⊗M (unless M1̄ = 0 = N1̄ or 
L1̄ = 0). The right tensor product can be defined similarly, and denoted by M

−→⊗N . Note 
that M←−⊗N ∼= N

−→⊗M . Besides, M←−⊗N = M
−→⊗N if either M1̄ = 0 = N1̄ or L1̄ = 0.

It is easy to see that (M ⊗ N)← ∼= M← ⊗ N←. To show this, consider the bilinear 
form given by

〈·, ·〉 : (M← ⊗N←) × (M ⊗N) → F

〈f ⊗ g, v ⊗ w〉 := ηg,v〈f, v〉〈g, w〉,
(2.16)

where f ∈ M←, g ∈ N←, v ∈ M , w ∈ N are homogeneous. The bilinear map in (2.16)
will be called the (left) tensor superproduct of the corresponding pairing bilinear forms 
M∗ ×M → F and N∗ ×N → F . Then we have that

〈f ⊗ g, x · (v ⊗ w)〉 = 〈f ⊗ g, (x · v) ⊗ w + ηx,vv ⊗ (x · w)〉

= ηg,x·v〈f, x · v〉〈g, w〉 + ηx,vηg,v〈f, v〉〈g, x · w〉

= −ηx,gηg,vηx,f 〈x · f, v〉〈g, w〉 − ηx,vηg,vηx,g〈f, v〉〈x · g, w〉

= −(ηx,gηg,vηx,f )ηg,v〈(x · f) ⊗ g, v ⊗ w〉
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− (ηx,vηg,vηx,g)(ηx,vηg,v)〈f ⊗ (x · g), v ⊗ w〉

= −〈ηx,gηx,f (x · f) ⊗ g + ηx,gf ⊗ (x · g), v ⊗ w〉

= −ηx,fηx,g〈x · (f ⊗ g), v ⊗ w〉,

for any homogeneous elements x ∈ L, f ∈ M←, g ∈ N←, v ∈ M , w ∈ N , which proves 
the isomorphism.

Let M an L-supermodule and M ′ an L′-supermodule, with L and L′ Lie superalgebras. 
For a ∈ Z2, define Homa

(
(L, M), (L′, M ′)

)
as the set consisting of pairs (ϕ0, ϕ+), where 

ϕ0 : L → L′ is a superalgebra homomorphism (that is, an even algebra homomorphism), 
ϕ+ : M → M ′ is a linear map of parity a (that is, ϕ+(Mb) ⊆ M ′

a+b for each b ∈ Z2), and 
where we also have

ϕ+(x · v) = ηϕ+,xϕ0(x) · ϕ+(v). (2.17)

Also, denote

Hom
(
(L,M), (L′,M ′)

)
:=

⋃
a∈Z2

Homa
(
(L,M), (L′,M ′)

)
,

and Hom
(
(L, M), (L′, M ′)

)
:= Hom0̄ ((L, M), (L′, M ′)

)
. In the case that L = L′, the 

subset Homa
L(M, M ′) ⊆ Homa

(
(L, M), (L, M ′)

)
given by the elements where ϕ0 = idL

is clearly a vector space. Thus

HomL(M,M ′) := Hom0̄
L(M,M ′) ⊕ Hom1̄

L(M,M ′)

is a Z2-graded vector space. The elements of the vector space HomL(M, M ′) :=
Hom0̄

L(M, M ′) will be called L-supermodule homomorphisms.
It is well-known that if M , N are L-supermodules for a Lie superalgebra L, then the 

vector space of linear maps M → N inherits a Z2-grading, Hom(M, N) = Hom0̄(M, N) ⊕
Hom1̄(M, N), and it becomes an L-supermodule with the action

(x · f)(v) := x · f(v) − ηx,ff(x · v) (2.18)

for x ∈ L, f ∈ Hom(M, N), v ∈ M .
There are several definitions of automorphism groups for Lie supermodules. It is 

clear that the set of bijective elements in End(L, M) := Hom
(
(L, M), (L, M)

)
defines a 

group, that will be denoted by Aut(L, M). Note that Aut(L, M) ≤ Aut(L) × GL(M). 
The even elements define a subgroup Aut(L, M) := Aut0̄(L, M) � Aut(L, M). On the 
other hand, the elements with ϕ0 = idL define a subgroup AutL(M) � Aut(L, M). Set 
AutL(M) := AutL(M) ∩ Aut(L, M). The automorphism group schemes Aut(L, M), 
AutL(M), Aut(L, M) and AutL(M) are defined similarly.
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2.2. Generalized Jordan superpairs

Recall from [3, §3] that a trilinear pair is a pair of vector spaces V = (V−, V+) with 
a pair of trilinear maps {·, ·, ·}σ : Vσ × V−σ × Vσ → Vσ, σ ∈ {+, −}. We will write

Dσ
x,y(z) := {x, y, z}σ (2.19)

for x, z ∈ Vσ, y ∈ V−σ, σ = ±. The superscript σ is sometimes omitted for short.
Let G be an abelian group and V a trilinear pair. Given two decompositions of vector 

spaces Γσ : Vσ =
⊕

g∈G Vσ
g , for σ = ±, we will say that Γ = (Γ+, Γ−) is a G-grading on V

if {Vσ
g , V

−σ
h , Vσ

k} ⊆ Vσ
g+h+k for any g, h, k ∈ G and σ ∈ {+, −}. The vector space V+

g ⊕V−
g

is called the homogeneous component of degree g. If 0 �= x ∈ Vσ
g we say x is homogeneous 

of degree g. Notice that if x, y are homogeneous, then Dσ
x,y is a homogeneous map of 

degree ε(Dσ
x,y) := ε(x) + ε(y).

A generalized Jordan superpair is a trilinear pair V = (V−, V+), where the subspaces 
V− and V+ are Z2-graded and we have that

Dσ
x,yD

σ
z,w − (−1)(ε(x)+ε(y))(ε(z)+ε(w))Dσ

z,wD
σ
x,y

= Dσ
Dσ

x,yz,w
− (−1)ε(x)ε(y)+ε(y)ε(z)+ε(z)ε(x)Dσ

z,D−σ
y,xw

(2.20)

for any homogeneous elements x, z ∈ Vσ, y, w ∈ V−σ, σ = ±. Note that the left side of 
(2.20) is just the Lie superbracket

[Dσ
x,y, D

σ
z,w] = Dσ

x,yD
σ
z,w − ηDσ

x,y,D
σ
z,w

Dσ
z,wD

σ
x,y.

Thus (2.20) is equivalent to

[Dσ
x,y, D

σ
z,w] = Dσ

Dσ
x,yz,w

− ηx,y,zD
σ
z,D−σ

y,xw
. (2.21)

In particular, if Vσ
1̄ = 0 for σ = ±, then V is called a generalized Jordan pair. On the other 

hand, if Vσ
0̄ = 0 for σ = ±, then V is called a generalized Jordan antipair. Sometimes 

(2.21) is referred to as the fundamental identity.
Let V be a generalized Jordan superpair, D = (D−, D+) ∈ End(V−) × End(V+), and 

a ∈ Z2. We will say that D is a superderivation of degree a of V, and write ε(D) := a, if 
we have that DσVσ

b ⊆ Vσ
a+b for any σ = ±, b ∈ Z2, and

Dσ({x, y, z}) = {Dσ(x), y, z} + ηD,x{x,D−σ(y), z} + ηD,Dx,y
{x, y,Dσ(z)} (2.22)

for any homogeneous elements x, z ∈ Vσ, y ∈ V−σ. A superderivation is the sum of an 
even superderivation and an odd superderivation.

Given a generalized Jordan superpair V, consider the operators

ν(x, y) := (D−
x,y,−ηx,yD

+
y,x) ∈ End(V−) × End(V+), (2.23)
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for homogeneous elements x ∈ V−, y ∈ V+. For convenience, we will also denote

ν(y, x) := −ηx,yν(x, y). (2.24)

By (2.20) or (2.21), we have

Dx,y{u, v, w} = {Dx,yu, v, w} − ηx,y,u{u,Dy,xv, w} + ηDx,y,Du,v
{u, v,Dx,yw}

= {Dx,yu, v, w} − ηx,yηDx,y,u{u,Dy,xv, w} + ηDx,y,Du,v
{u, v,Dx,yw},

so that the operators ν(x, y) are superderivations. Also note that

[ν(x, y), ν(z, w)] = ν(Dx,yz, w) − ηx,y,zν(z,Dy,xw)

= ν(ν(x, y) · z, w) + ηz,Dx,y
ν(z, ν(x, y) · w).

(2.25)

Denote Va := V−
a ⊕V+

a for a ∈ Z2. The inner structure (Lie) superalgebra of a generalized 
Jordan superpair is the Lie superalgebra

instr(V) := span{ν(x, y) | x ∈ V−, y ∈ V+} ≤ gl(V0̄|V1̄), (2.26)

and its elements are called inner superderivations of V. (Inner structure algebras appear 
in [11], and are also used in the Kantor construction.) If Vσ

1̄ = 0 for σ = ±, then instr(V)
is a Lie algebra called the inner structure algebra of V, and its elements are called inner 
derivations. From (2.25), it is clear that

[x, ν(f, v)] = ν(x · f, v) + ηx,fν(f, x · v), (2.27)

for any homogeneous elements x ∈ instr(V), f ∈ V−, v ∈ V+.
A generalized Jordan superpair V is called a Jordan superpair if

{x, y, z}σ = ηx,yηx,zηy,z{z, y, x}σ (2.28)

for all x, z ∈ Vσ, y ∈ V−σ, σ = ±. If a Jordan superpair is even (Vσ
1̄ = 0 for σ = ±), it 

is called a Jordan pair. If a Jordan superpair is odd (Vσ
0̄ = 0 for σ = ±), it is called a 

Jordan antipair or anti-Jordan pair (this is equivalent to the definition in [6]).
Given a generalized Jordan pair V, we say that V is a Kantor pair (or generalized 

Jordan pair of second order) if

Kσ
Kσ

x,yz,w
= Kσ

x,yD
−σ
z,w + Dσ

w,zK
σ
x,y (2.29)

for all x, z ∈ Vσ, y, w ∈ V−σ, σ = ±. It is well-known that Jordan pairs are exactly the 
Kantor pairs satisfying Kx,y = 0 for all x, y ∈ Vσ, σ = ±.

Let V = (V+, V−) be a generalized Jordan superpair with a bilinear form 〈·, ·〉 : V− ×
V+ → F . We will say that 〈·, ·〉 is left-superinvariant, or superinvariant, if
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〈Dx,yz, w〉 = ηx,y,z〈z,Dy,xw〉 (2.30)

for any homogeneous elements x, z ∈ V−, y, w ∈ V+. Similarly, 〈·, ·〉 is said to be right-
superinvariant if

〈Dx,yz, w〉 = ηx,y,w〈z,Dy,xw〉. (2.31)

In particular, if V1̄ = 0, then the bilinear form 〈·, ·〉 is left-invariant if and only if it 
is right-invariant, and in this case it will be said to be invariant. If 〈x, y〉 = 0 for any 
x ∈ V−, y ∈ V+ such that ε(x) �= ε(y), then the bilinear form is said to be homogeneous. 
On the other hand, we will say that 〈·, ·〉 is left-supersymmetric, or supersymmetric, if it 
satisfies the identities

〈Dx,yz, w〉 = ηDx,y,Dz,w
〈Dz,wx, y〉,

〈x,Dy,zw〉 = ηDx,y,Dz,w
〈z,Dw,xy〉

(2.32)

for any homogeneous elements x, z ∈ V−, y, w ∈ V+. Note that the two identities in (2.32)
are equivalent if 〈·, ·〉 is either left-superinvariant or right-superinvariant. Similarly, we 
will say that 〈·, ·〉 is right-supersymmetric if it satisfies the identities

〈Dx,yz, w〉 = ηDx,w,Dz,y
〈Dz,wx, y〉,

〈x,Dy,zw〉 = ηDx,w,Dz,y
〈z,Dw,xy〉

(2.33)

for any homogeneous elements x, z ∈ V−, y, w ∈ V+. Note that if V1̄ = 0, then the 
left and right supersymmetric identities coincide, and we will say in this case that the 
bilinear form is symmetric.

Recall that a homomorphism ϕ : V → W of generalized Jordan pairs is a pair 
of linear maps ϕ = (ϕ−, ϕ+), with ϕσ : Vσ → Wσ, such that ϕσ({x, y, z}σ) =
{ϕσ(x), ϕ−σ(y), ϕσ(z)} for any x, z ∈ Vσ, y ∈ V−σ, σ = ±. For generalized Jordan 
superpairs, we also require that the homomorphisms preserve the parity. As usual, the 
automorphism group of V will be denoted as Aut(V), and the automorphism group 
scheme as Aut(V).

3. The Faulkner construction for GJSP

In this section we will revisit the Faulkner correspondence, giving a detailed proof 
that is adapted to generalized Jordan superpairs.

Notation 3.1. We will denote by FLSM the class of objects of the form (L, M, b), 
where L is a finite-dimensional Lie superalgebra, M is a finite-dimensional faithful 
L-supermodule, and b : L × L → F is a nondegenerate homogeneous invariant super-
symmetric bilinear form. We will denote by Aut(L, b) the subgroup of Aut(L) preserving 
the bilinear form, which consists of the elements ϕ0 ∈ Aut(L) such that
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b(ϕ0(x), ϕ0(y)) = b(x, y) (3.1)

for any x, y ∈ L. Also, we will denote by Aut(L, M, b) the group of automorphisms of 
the supermodule preserving the bilinear form, which consists of the pairs ϕ = (ϕ0, ϕ+) ∈
Aut(L, M) such that ϕ0 ∈ Aut(L, b). The subgroup schemes Aut(L, b) ≤ Aut(L) and 
Aut(L, M, b) ≤ Aut(L, M) are defined similarly. The subclass of objects of FLSM
where L1̄ = 0 and M1̄ = 0 will be denoted by FLM.

Also, denote by GJSP the class of objects of the form (V, 〈·, ·〉), where V is a 
finite-dimensional generalized Jordan superpair with a nondegenerate homogeneous su-
perinvariant supersymmetric bilinear form 〈·, ·〉 : V− × V+ → F . We will denote by 
Aut(V, 〈·, ·〉) the group of automorphisms preserving the bilinear form, which consists 
of the pairs ϕ = (ϕ−, ϕ+) ∈ Aut(V) such that

〈ϕ−(f), ϕ+(v)〉 = 〈f, v〉 (3.2)

for any f ∈ V−, v ∈ V+. Again, the subgroup scheme Aut(V, 〈·, ·〉) ≤ Aut(V) is defined 
similarly. The subclass of objects of GJSP where V1̄ = 0 will be denoted by GJP.

Next result generalizes part of [11, Lemma 1.1] to the super case:

Proposition 3.2. Let L be a finite-dimensional Lie superalgebra, M a finite-dimensional 
L-supermodule, and b a nondegenerate homogeneous invariant supersymmetric bilinear 
form on L. Let M∗ := M← denote the (left) dual L-supermodule of M . Consider the 
pairing bilinear form 〈·, ·〉 : M∗ × M → F given by 〈f, v〉 := f(v) for v ∈ M , f ∈ M∗, 
and also denote

〈v, f〉 := ηf,v〈f, v〉 = ηf,vf(v). (3.3)

For each v ∈ M , f ∈ M∗, denote by [f, v], [v, f ] ∈ L the only elements satisfying

b(x, [f, v]) = 〈x · f, v〉 and b(x, [v, f ]) = 〈x · v, f〉 (3.4)

for all x ∈ L. Then VL,M := (M∗, M) becomes a generalized Jordan superpair with triple 
products given by

{f, v, g}− := [f, v] · g, {v, f, w}+ := [v, f ] · w, (3.5)

for f, g ∈ M∗, v, w ∈ M . Besides, 〈·, ·〉 is a nondegenerate homogeneous superinvariant 
supersymmetric bilinear form on VL,M .

Proof. First, we claim that [f, v] and [v, f ] are well-defined. For each f ∈ M∗, v ∈ M , 
consider the map ψf,v : L → F , x �→ 〈x · f, v〉. Since ψf,v ∈ L∗ and b is nondegenerate, 
there exists a unique element y ∈ L such that ψf,v(x) = b(x, y) for all x ∈ L, which 
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proves the claim for the former case, and the latter case is analogous. It is also clear 
that the expressions [f, v] and [v, f ] are bilinear on their parameters. Since b and 〈·, ·〉
are homogeneous and b is nondegenerate, it follows that the brackets defined in (3.4) are 
homogeneous too, that is,

ε([f, v]) = ε(f) + ε(v) = ε([v, f ]). (3.6)

We need to prove that the identities

[D−
f,v, D

−
g,w] = D−

D−
f,vg,w

− ηf,v,gD
−
g,D+

v,fw
, (3.7)

[D+
v,f , D

+
w,g] = D+

D+
v,fw,g

− ηv,f,wD
+
w,D−

f,vg
, (3.8)

hold for any v, w ∈ M , f, g ∈ M∗.
From (3.4) and (2.11), it follows that

b(x, [f, v]) = 〈x · f, v〉 = −ηx,f 〈f, x · v〉 = −ηx,fηx·v,f 〈x · v, f〉 = b(x,−ηf,v[v, f ])

for all homogeneous x ∈ L, f ∈ M∗, v ∈ M , and since b is nondegenerate, we get that

[f, v] = −ηf,v[v, f ] (3.9)

for all homogeneous f ∈ M∗, v ∈ M .
For each homogeneous elements x ∈ L, f, g ∈ M∗, v, w ∈ M , we have that

b(x,
[
[f, v], [g, w]

]
) =(2.8)

= b(
[
x, [f, v]

]
, [g, w]) =(3.4)

= 〈
[
x, [f, v]

]
· g, w〉 =(2.7)

= 〈x · ([f, v] · g), w〉 − ηx,[f,v]〈[f, v] · (x · g), w〉 =(3.4),(2.11)

= b(x,
[
[f, v] · g, w

]
) + ηx,fηx,vη[f,v],x·g〈x · g, [f, v] · w〉 =(3.4),(3.9)

= b(x,
[
[f, v] · g, w

]
− (ηf,gηv,g)ηf,v

[
g, [v, f ] · w

]
)

= b(x, [{f, v, g}, w] − ηf,v,g[g, {v, f, w}]),

and since b is nondegenerate it follows that

[
[f, v], [g, w]

]
= [Df,vg, w] − ηf,v,g[g,Dv,fw]. (3.10)

Similarly, and using (3.3), we get that

[
[v, f ], [w, g]

]
= [Dv,fw, g] − ηv,f,w[w,Df,vg], (3.11)
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although this also follows from

[
[v, f ], [w, g]

]
=(3.9)

= ηf,vηg,w
[
[f, v], [g, w]

]
=(3.10)

= ηf,vηg,w
(
[Df,vg, w] − ηf,v,g[g,Dv,fw]

)
=(3.9)

= (ηf,vηg,w)(−ηf,wηv,wηg,w)[w,Df,vg]

− (ηf,vηg,w)ηf,v,g(−ηg,vηg,fηg,w)[Dv,fw, g]

= [Dv,fw, g] − ηv,f,w[w,Df,vg].

Note that the actions on M∗ given by the elements of each side of Eq. (3.10) coincide 
with the actions given by the operators on each side of Eq. (3.7), from where it follows 
that Eq. (3.7) does hold. Similarly, Eq. (3.8) does hold too. Thus we have proven that 
VL,M is indeed a generalized Jordan superpair.

On the other hand, from (2.11) and (3.9), it follows that for homogeneous f, g ∈ M∗, 
v, w ∈ M we have

〈Df,vg, w〉 = 〈[f, v] · g, w〉 = −η[f,v],g〈g, [f, v] · w〉
= ηf,gηv,gηf,v〈g, [v, f ] · w〉 = ηf,v,g〈g,Dv,fw〉,

that is, the bilinear form 〈·, ·〉 is superinvariant. Since b is supersymmetric, we get

〈Df,vg, w〉 = 〈[f, v] · g, w〉 = b([f, v], [g, w]) = η[f,v],[g,w]b([g, w], [f, v])

= ηDf,v,Dg,w
〈[g, w] · f, v〉 = ηDf,v,Dg,w

〈Dg,wf, v〉,

and therefore 〈·, ·〉 is also supersymmetric. �
The following result is a generalization of [21, Lemma 23] to the super case:

Proposition 3.3. Under the assumptions of Proposition 3.2,

instr(L,M) := span{[f, v] | f ∈ M∗, v ∈ M}

is an ideal of L, and the restriction of the representation Φ: L → gl(M∗ ⊕ M) defines 
an epimorphism of superalgebras given by

Υ: instr(L,M) −→ instr(VL,M ) ≤ gl(M∗ ⊕M),

[f, v] �−→ ν(f, v) := (Df,v,−ηf,vDv,f ).
(3.12)

Furthermore, ker Φ = instr(L, M)⊥. In particular, if the L-supermodule M is faithful, 
then L = instr(L, M) ∼= instr(VL,M ).
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Proof. It follows from (3.10) and (3.6) that instr(L, M) is a Lie subsuperalgebra of L. 
Moreover, for each homogeneous x, y ∈ L, f ∈ M∗, v ∈ M , we have that

b(y,
[
x, [f, v]

]
) = b([y, x], [f, v]) = 〈[y, x] · f, v〉

= 〈y · (x · f), v〉 − ηx,y〈x · (y · f), v〉

= b(y, [x · f, v]) + ηx,yηx,y·f 〈y · f, x · v〉

= b(y, [x · f, v] + ηx,f [f, x · v]),

with b nondegenerate, which implies that

[
x, [f, v]

]
= [x · f, v] + ηx,f [f, x · v], (3.13)

and therefore instr(L, M) is an ideal of L. It is clear that the action of [f, v] on M∗ ⊕M

is given by ν(f, v), and since instr(VL,M ) is spanned by the operators ν(f, v), it follows 
that Υ is an epimorphism. (Also, note that the notation in (2.24) is consistent with 
(3.9).)

Set K = instr(L, M)⊥ := {k ∈ L | b(k, instr(L, M)) = 0}. Note that since b is 
homogeneous and instr(L, M) is a subsuperalgebra of L, it follows that we can decompose 
K = K0̄ ⊕K1̄ with Ka ⊆ La. For each homogeneous k ∈ K, f ∈ M∗, v ∈ M , we have

〈f, k · v〉 = −ηk,f 〈k · f, v〉 = −ηk,f b(k, [f, v]) = 0

with 〈·, ·〉 nondegenerate, hence k·v = 0 and k·f = 0, which shows that K ⊆ ker Φ. On the 
other hand, for each z ∈ ker Φ, f ∈ M∗, v ∈ M , we have that b(z, [f, v]) = 〈z · f, v〉 = 0, 
so ker Φ ⊆ instr(L, M)⊥ = K. We have proven that K = ker Φ.

Finally, assume that the representation Φ is faithful. Then Υ is an isomorphism. Since 
K = instr(L, M)⊥ = ker Φ = 0, the restriction of b to instr(L, M) must be nondegenerate 
and L = instr(L, M). �
Definition 3.4. Under the assumptions in Propositions 3.2 and 3.3, we will say that VL,M

is the generalized Jordan superpair associated to the L-supermodule M , and the ideal 
instr(L, M) �L will be called the inner structure superalgebra of the L-supermodule M .

The following result corresponds to the super case of part of [11, Lemma 1.1]. Note 
that the fact that b is well-defined is not trivial, and according to Faulkner’s proof (where 
the details are omitted), this follows from the (super)symmetry of 〈·, ·〉. The proof of this 
detail is omitted in the proof of [21, Proposition 25], where b was assumed to be well-
defined without mention to the (super)symmetry of 〈·, ·〉.

Proposition 3.5. Let (V, 〈·, ·〉) be an object in GJSP and set L = instr(V). Then M := V+

and M∗ := V− are faithful dual L-supermodules and
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Θ: M∗ ⊗M −→ L

f ⊗ v �−→ ν(f, v) := (Df,v,−ηf,vDv,f )
(3.14)

is an epimorphism of L-supermodules. Consequently, (M∗ ⊗M)/ kerΘ ∼= L.
Furthermore, 〈·, ·〉 induces a nondegenerate homogeneous invariant supersymmetric 

bilinear form b : L × L → F given by

b(ν(f, v), ν(g, w)) := 〈ν(f, v) · g, w〉 = 〈Df,vg, w〉. (3.15)

Proof. Since 〈·, ·〉 is superinvariant and nondegenerate, it is clear that M and M∗ are dual 
L-supermodules (where M∗ = M←), and both are faithful because L ⊆ End(M∗ ⊕M)
consists of endomorphisms. By the universal property of the tensor product, the bilinear 
map

M∗ ×M −→ L, (f, v) �−→ ν(f, v)

corresponds to a unique linear map M∗ ⊗M → L, namely the map Θ. It is clear that Θ
is surjective, and for any homogeneous elements f, g ∈ M∗, v, w ∈ M , we have that

Θ
(
ν(f, v) · (g ⊗ w)

)
= Θ

(
(ν(f, v) · g) ⊗ w + ηg,Df,v

g ⊗ (ν(f, v) · w)
)

= ν(ν(f, v) · g, w) + ηg,Df,v
ν(g, ν(f, v) · w)

= [ν(f, v), ν(g, w)] = ν(f, v) · ν(g, w) = ν(f, v) · Θ(g ⊗ w),

thus Θ is an epimorphism of L-supermodules.
We will show that b is well-defined. Set M = M∗ ⊗M and consider the linear map

Λ: M⊗M −→ F ,

(f ⊗ v) ⊗ (g ⊗ w) �−→ 〈ν(f, v) · g, w〉 = 〈Df,vg, w〉.
(3.16)

Note that

ker(Θ ⊗ Θ) = ker(Θ) ⊗M + M⊗ ker(Θ)

and

im(Θ ⊗ Θ) = im(Θ) ⊗ im(Θ) = L⊗ L.

We claim that Λ restricts to the quotient

(M⊗M)/ ker(Θ ⊗ Θ) ∼= L⊗ L.

To show the claim we need to prove that ker(Θ ⊗Θ) ⊆ ker Λ. It is clear that ker(Θ) ⊗M ⊆
ker Λ. Since 〈·, ·〉 is supersymmetric, we have that
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Λ
(
(f ⊗ v) ⊗ (g ⊗ w)

)
= 〈Df,vg, w〉 = ηDf,v,Dg,w

〈Dg,wf, v〉,

which shows that M ⊗ ker(Θ) ⊆ ker Λ. Consequently, ker(Θ ⊗Θ) ⊆ ker Λ and Λ induces 
a linear map Λ̃ : L ⊗L → F . It is clear that Λ̃ corresponds to a bilinear map L ×L → F , 
namely b. We have proven that b is well-defined. Note that since 〈·, ·〉 is supersymmetric, 
we have that

b(ν(f, v), ν(g, w)) = 〈Df,vg, w〉 = ηDf,v,Dg,w
〈Dg,wf, v〉

= ηDf,v,Dg,w
b(ν(g, w), ν(f, v)),

so that b is supersymmetric. It is clear that b is nondegenerate because 〈·, ·〉 is nonde-
generate. Finally, for each homogeneous x ∈ L, f, g ∈ M∗, v, w ∈ M , we have that

b([ν(f, v), x], ν(g, w)) = −ηx,Df,v
b([x, ν(f, v)], ν(g, w))

= −ηx,Df,v
b(ν(x · f, v) + ηx,fν(f, x · v), ν(g, w)) =(3.15)

= −ηx,Df,v
〈ν(x · f, v) · g, w〉 − ηx,v〈ν(f, x · v) · g, w〉 =(2.32)

= −ηx,Df,v
ηDx·f,v,Dg,w

〈ν(g, w) · (x · f), v〉
− ηx,vηDf,x·v,Dg,w

〈ν(g, w) · f, x · v〉
= −(ηx,Df,v

ηDx·f,v,Dg,w
)(ηx·f,Dg,w

ηx,f )〈f, x · (ν(g, w) · v)〉
+ (ηx,vηDf,x·v,Dg,w

)ηf,Dg,w
〈f, ν(g, w) · (x · v)〉

= −(ηx,vηg,vηw,v)〈f, x · (ν(g, w) · v) − ηx,Dg,w
ν(g, w) · (x · v))〉

= −(ηx,vηg,vηw,v)〈f, [x, ν(g, w)] · v〉 =(2.11)

= (ηx,vηg,vηw,v)(ηf,xηf,gηf,w)〈[x, ν(g, w)] · f, v〉 =(3.15)

= (ηx,vηg,vηw,v)(ηf,xηf,gηf,w)b([x, ν(g, w)], ν(f, v)) =(2.9)

= b(ν(f, v), [x, ν(g, w)]),

which shows that b is also invariant. �
The following result generalizes [11, Lemma 1.1]:

Theorem 3.6 (Faulkner correspondence). There is a bijective correspondence between 
(isomorphy classes of) objects in FLSM and objects in GJSP, which in turn re-
stricts to a correspondence between objects in FLM and objects in GJP. Further-
more, given (L, M, b) ∈ FLSM and its associated object (V, 〈·, ·〉) ∈ GJSP, we have 
Aut(L, M, b) � Aut(V, 〈·, ·〉).

Proof. The correspondence of objects in both classes is consequence of Propositions 3.2, 
3.3 and 3.5 (it is easy to see that both constructions are inverses of each other). Let 
(L, M, b) and (V, 〈·, ·〉) be associated objects in this correspondence.



D. Aranda-Orna / Linear Algebra and its Applications 646 (2022) 1–28 17
Fix (ϕ−, ϕ+) ∈ Aut(V, 〈·, ·〉). Note that ϕ− = ((ϕ+)←)−1. Consider the map 
φ0 : End(V−) × End(V+) → End(V−) × End(V+) given by φ0(x) := ϕ ◦ x ◦ ϕ−1. Let 
f ∈ M∗ = V− and v ∈ M = V+. Then

φ0(ν(f, v)) =
(
ϕ− ◦Df,v ◦ (ϕ−)−1,−ηf,vϕ

+ ◦Dv,f ◦ (ϕ+)−1)
=

(
Dϕ−(f),ϕ+(v),−ηf,vDϕ+(v),ϕ−(f)

)
= ν(ϕ−(f), ϕ+(v)),

so that φ0 restricts to an element ϕ0 ∈ GL(L). Besides, it is easy to see that ϕ0 ∈ Aut(L). 
Also,

b
(
ϕ0(ν(f, v)), ϕ0(ν(g, w))

)
= b

(
ν(ϕ−(f), ϕ+(v)), ν(ϕ−(g), ϕ+(w))

)
=(3.15)

= 〈ν(ϕ−(f), ϕ+(v)) · ϕ−(g), ϕ+(w)〉 =(3.5)

= 〈{ϕ−(f), ϕ+(v), ϕ−(g)}, ϕ+(w)〉 = 〈ϕ−({f, v, g}), ϕ+(w)〉
= 〈{f, v, g}, w〉 =(3.5) 〈ν(f, v) · g, w〉 =(3.15)

= b
(
ν(f, v), ν(g, w)

)
,

so we get that ϕ0 ∈ Aut(L, b). Moreover, for x ∈ L we have that

〈f, ϕ+(x · v)〉 = 〈(ϕ−)−1(f), x · v〉 =(3.3)

= ηf,x·v〈x · v, (ϕ−)−1(f)〉 =(3.15)

= ηf,x·vb
(
x, ν(v, (ϕ−)−1(f))

)
= ηf,x·vb

(
ϕ0(x), ϕ0(ν(v, (ϕ−)−1(f)))

)
= ηf,x·vb

(
ϕ0(x), ν(ϕ+(v), f)

)
=(3.15)

= ηf,x·v〈ϕ0(x) · ϕ+(v), f〉 =(3.3)

= 〈f, ϕ0(x) · ϕ+(v)〉

with 〈·, ·〉 nondegenerate, which implies that ϕ+(x · v) = ϕ0(x) ·ϕ+(v). Thus (ϕ0, ϕ+) ∈
Aut(L, M, b) and Aut(V, 〈·, ·〉) ≤ Aut(L, M, b).

Now, take (ϕ0, ϕ+) ∈ Aut(L, M, b). Set ϕ− := ((ϕ+)←)−1, so that we have 
〈ϕ−(f), ϕ+(v)〉 = 〈f, v〉 for any f ∈ M∗, v ∈ M . Then,

b
(
x, ϕ0(ν(f, v))

)
= b

(
ϕ−1

0 (x), ν(f, v)
)

=(3.4)

= 〈ϕ−1
0 (x) · f, v〉 =(2.11)

= −ηx,f 〈f, ϕ−1
0 (x) · v〉 = −ηx,f 〈ϕ−(f), ϕ+(ϕ−1

0 (x) · v)〉
= −ηx,f 〈ϕ−(f), x · ϕ+(v)〉 =(2.11)

= 〈x · ϕ−(f), ϕ+(v)〉 =(3.4)

= b
(
x, ν(ϕ−(f), ϕ+(v))

)
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with b nondegenerate, thus we get again that ϕ0(ν(f, v)) = ν(ϕ−(f), ϕ+(v)). Also,

〈ϕ−(x · f), v〉 = 〈x · f, (ϕ+)−1(v)〉 =(2.11)

= −ηx,f 〈f, x · (ϕ+)−1(v)〉 = −ηx,f 〈ϕ−(f), ϕ+(x · (ϕ+)−1(v)
)
〉

= −ηx,f 〈ϕ−(f), ϕ0(x) · v〉 =(2.11)

= 〈ϕ0(x) · ϕ−(f), v〉

with 〈·, ·〉 nondegenerate, which implies that (ϕ0, ϕ−) ∈ Aut(L, M∗, b). Finally, note that

{ϕ−(f), ϕ+(v), ϕ−(g)} = ν(ϕ−(f), ϕ+(v)) · ϕ−(g) = ϕ0(ν(f, v)) · ϕ−(g)

= ϕ−(ν(f, v) · g) = ϕ−({f, v, g}),

and similarly {ϕ+(v), ϕ−(f), ϕ+(w)} = ϕ+({v, f, w}), thus (ϕ−, ϕ+) ∈ Aut(V, 〈·, ·〉) and 
Aut(L, M, b) ≤ Aut(V, 〈·, ·〉).

The result follows since the same arguments can be used with automorphism group 
schemes, and because both constructions of automorphisms are inverses of each other. 
(Note that for the automorphism group schemes, the bilinear forms b and 〈·, ·〉 are 
extended as R-bilinear forms, for each corresponding associative commutative unital 
F -algebra R. In this case, it is easy to see that the duals relative to 〈·, ·〉 used in the 
proof are still well-defined.) �
Remark 3.7. Note that if (V, 〈·, ·〉) ∈ GJSP and (L, M, b) ∈ FLSM are associated 
objects in the correspondence from Theorem 3.6, then for any λ ∈ F× we have also that 
(V, λ〈·, ·〉) ∈ GJSP and (L, M, λb) ∈ FLSM are associated objects.

Remark 3.8. If we had Aut(V) � Aut(L, M) for associated objects in the Faulkner 
correspondence, then the Transfer Theorems in [9] show that the classifications up to 
equivalence (or up to isomorphism) of gradings by abelian groups would be the same for 
both objects. However, in general we just have Aut(V, t) � Aut(L, M, b) for associated 
objects, which implies a bijective correspondence for gradings (by abelian groups) that 
are well-behaved with the bilinear forms in a certain sense. Note that if an object (V, t) ∈
GJP is given by a simple Jordan pair with its generic trace, it is well known that 
Aut(V, t) = Aut(V) (see [20, (16.7)]).

Remark 3.9. The problem that motivated this work is how to extend “good” bilinear 
forms from a finite-dimensional simple Kantor pair V to its associated Kantor-Lie algebra 
L = K(V) =

⊕2
i=−2 Li obtained by the Kantor construction. This can be useful to 

recover Killing forms (up to multiplication by a scalar), or to find another bilinear form 
with nice properties when the Killing form is degenerate (which might happen if the 
characteristic of the field is positive). The answer to this problem is given by the Faulkner 
construction, as follows. First, we use the bilinear form 〈·, ·〉 on V to get the associated 
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bilinear form b on L0, from the Faulkner correspondence. Then, using that L2 and L−2
are dual L0-modules, we can use b to get a third bilinear form L−2 × L2 → F , from 
the Faulkner correspondence. Together, these three bilinear forms determine a unique 
bilinear form that is homogeneous for the Z-grading of the Kantor construction, which 
also has properties analogous to the ones of a Killing form.

4. Tensor products of GJSP

In this section we will transfer some results of tensor products from supermodules to 
generalized Jordan superpairs.

Definition 4.1. For i = 1, 2, let (Vi, 〈·, ·〉i) be objects in GJSP and (Li, Mi, bi) their 
associated objects in FLSM. Consider the Lie superalgebra L = L1 ⊕ L2 with the 
bilinear form b = b1 ⊥ b2. Also, consider the trivial action of Li on Mj for i �= j. Then 
M = M1⊗M2 is a (not necessarily faithful) L-supermodule. By Proposition 3.2, (L, M, b)
can be used to construct an object in GJSP, which will be denoted by V1⊗V2 (or V1

←−⊗V2) 
and referred to as the (left) tensor product of the generalized Jordan superpairs V1 and 
V2. The right tensor product, denoted V1

−→⊗V2, can be defined similarly. Notice that 
(V1 ⊗V2)σ = Vσ

1 ⊗Vσ
2 for σ = ±, and the parity map is given by ε(v⊗w) := ε(v) + ε(w)

for homogeneous elements v ∈ Vσ
1 , w ∈ Vσ

2 .
Also, note that instr(V1 ⊗V2) is a quotient of L = L1 ⊕L2, and in general instr(V1 ⊗

V2) �= L. (For instance, if V1 = V2 are 1-dimensional simple Jordan pairs and V = V1⊗V2, 
then V is also 1-dimensional, so that dim instr(V) ≤ 1 = dim instr(Vi), hence instr(V) �=
instr(V1) ⊕ instr(V2).) Since the tensor product operator is associative for supermodules, 
it is also associative for objects in GJSP. It is also clear that V1

←−⊗V2 ∼= V2
−→⊗V1. Note 

that V1
←−⊗V2 = V1

−→⊗V2 in GJP.
We define the direct sum of objects (Li, Mi, bi) in FLSM, for i = 1, . . . , n, as 

(
⊕

i Li, 
⊕

i Mi, ⊥i bi). Notice that direct sums in FLSM correspond to direct sums 
in GJSP. Also, note that the tensor product of supermodules is not distributive for 
the sum (since the Lie superalgebra acting is not preserved). Consequently, the tensor 
product is not distributive for direct sums in GJSP.

Notation 4.2. Let V and W be generalized Jordan superpairs, and R an associative com-
mutative unital F -algebra. We will denote the extension of scalars by VR := V ⊗R. For 
each λ ∈ R× we have an automorphism cλ = (c−λ , c

+
λ ) ∈ AutR(VR) given by

cσλ(x) := λσ1x, for each x ∈ Vσ
R. (4.1)

We will denote Gm := GL1. Consider the subgroup scheme

Aut(V) ⊗Gm
Aut(W) ≤ GL(V− ⊗W−) × GL(V+ ⊗W+)

defined by
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(Aut(V) ⊗Gm
Aut(W))(R) := {f ⊗ g | f ∈ AutR(VR), g ∈ AutR(WR)}, (4.2)

where f ⊗ g := (f− ⊗ g−, f+ ⊗ g+). Here, we identify (V ⊗W)R with VR ⊗R WR, and 
f ⊗ g means f ⊗R g (i.e., tensors are R-bilinear).

Note that the morphism Aut(V) ×Aut(W) → Aut(V) ⊗Gm
Aut(W) sending (f, g) ∈

AutR(VR) × AutR(WR) to f ⊗ g ∈ AutR(VR) ⊗R× AutR(WR) has kernel

T1(R) := {(cλ, c−1
λ ) ∈ AutR(VR) × AutR(WR) | λ ∈ R×},

so we have that

Aut(V) ⊗Gm Aut(W) � (Aut(V) × Aut(W))/T1 . (4.3)

Also, note that T1 � Gm is a 1-torus. More in general, given generalized Jordan super-
pairs V1, . . . , Vn, we can define in a similar way the tensor product

n⊗
i=1

Gm
Aut(Vi),

which is a quotient of 
∏n

i=1 Aut(Vi) by an (n − 1)-torus given by

Tn−1(R) := {(cλ1 , . . . , cλn
) ∈

n∏
i=1

AutR((Vi)R) | λi ∈ R,
n∏

i=1
λi = 1}.

Note that the tensor products Aut(V) ⊗Gm
Aut(W) are a particular case of central 

product of group schemes relative to Gm (a definition for central product of groups can 
be found in [14, Chap. 2, p.29]).

Proposition 4.3. Let Vi be nonzero objects in GJSP for i = 1, 2 and V = V1 ⊗V2. Then:

1) The bilinear form 〈·, ·〉 on V is given by the tensor superproduct of the bilinear forms 
of V1 and V2, that is,

〈f1 ⊗ f2, v1 ⊗ v2〉 = ηf2,v1〈f1, v1〉〈f2, v2〉.

2) The generators of instr(V) are of the form

ν(f1 ⊗ f2, v1 ⊗ v2) = ηf2,v1

(
〈f2, v2〉ν(f1, v1) + 〈f1, v1〉ν(f2, v2)

)
.

3) The triple products on V, for homogeneous elements xi, zi ∈ Vσ
i yi ∈ V−σ

i , are given 
by

{x1 ⊗ x2, y1 ⊗ y2, z1 ⊗ z2} =

= ηx2,y1

(
{x1, y1, z1} ⊗ 〈x2, y2〉z2 + ηz1,x2ηz1,y2〈x1, y1〉z1 ⊗ {x2, y2, z2}

)
.
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4) Aut(V1, 〈·, ·〉) ⊗Gm
Aut(V2, 〈·, ·〉) ≤ Aut(V, 〈·, ·〉).

Proof. 1) This follows because duality of supermodules satisfy the property (M⊗N)∗ ∼=
M∗ ⊗ N∗, where the bilinear pairing form (M∗ ⊗ N∗) × (M ⊗ N) → F is the tensor 
superproduct of the bilinear pairing forms M∗ ×M → F and N∗ ×N → F .

2) Take homogeneous elements x ∈ instr(V), fi ∈ V−
i , vi ∈ V+

i . We claim that

ηx,f1ηx,v1〈f1, v1〉 = 〈f1, v1〉. (4.4)

Indeed, if ε(f1) = ε(v1) we have that ηx,f1ηx,v1 = 1, otherwise we have that 〈f1, v1〉 = 0
because 〈·, ·〉 is homogeneous, and in both cases the claim follows. Then

b
(
x, ν(f1 ⊗ f2, v1 ⊗ v2)

)
=(3.4)

= 〈x · (f1 ⊗ f2), v1 ⊗ v2〉 =(2.15)

= 〈(x · f1) ⊗ f2 + ηx,f1f1 ⊗ (x · f2), v1 ⊗ v2〉

= ηf2,v1〈x · f1, v1〉〈f2, v2〉 + ηx,f1ηx·f2,v1〈f1, v1〉〈x · f2, v2〉 =(3.4)

= ηf2,v1b
(
x, ν(f1, v1)

)
〈f2, v2〉 + ηf2,v1ηx,f1ηx,v1〈f1, v1〉b

(
x, ν(f2, v2)

)
=(4.4)

= b
(
x, ηf2,v1〈f2, v2〉ν(f1, v1) + ηf2,v1〈f1, v1〉ν(f2, v2)

)
,

and since b is nondegenerate, the property follows.
3) The triple product for homogeneous elements is given by

{x1 ⊗ x2, y1 ⊗ y2, z1 ⊗ z2} =(3.5)

= ν(x1 ⊗ x2, y1 ⊗ y2) · (z1 ⊗ z2)

= ηx2,y1

(
〈x2, y2〉ν(x1, y1) + 〈x1, y1〉ν(x2, y2)

)
· (z1 ⊗ z2)

= ηx2,y1

(
〈x2, y2〉(ν(x1, y1) · z1) ⊗ z2

+ ηz1,x2ηz1,y2〈x1, y1〉z1 ⊗ (ν(x2, y2) · z2)
)

=(3.5)

= ηx2,y1

(
{x1, y1, z1} ⊗ 〈x2, y2〉z2 + ηz1,x2ηz1,y2〈x1, y1〉z1 ⊗ {x2, y2, z2}

)
.

4) Let ϕi ∈ AutR((Vi)R, 〈·, ·〉) for i = 1, 2 and ϕ = ϕ1 ⊗ ϕ2 (where ⊗ = ⊗R). We will 
first show that 〈·, ·〉 is ϕ-invariant. Indeed, for any homogeneous fi ∈ V−

i , vi ∈ V+
i , we 

have that

〈ϕ−(f1 ⊗ f2), ϕ+(v1 ⊗ v2)〉 = 〈ϕ−
1 (f1) ⊗ ϕ−

2 (f2), ϕ+
1 (v1) ⊗ ϕ+

2 (v2)〉

= ηf2,v1〈ϕ−
1 (f1), ϕ+

1 (v1)〉〈ϕ−
2 (f2), ϕ+

2 (v2)〉 = ηf2,v1〈f1, v1〉〈f2, v2〉

= 〈f1 ⊗ f2, v1 ⊗ v2〉,
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which proves that 〈·, ·〉 is ϕ-invariant. On the other hand,

{ϕ−(f1 ⊗ f2), ϕ+(v1 ⊗ v2), ϕ−(g1 ⊗ g2)}
= {ϕ−

1 (f1) ⊗ ϕ−
2 (f2), ϕ+

1 (v1) ⊗ ϕ+
2 (v2), ϕ−

1 (g1) ⊗ ϕ−
2 (g2)}

= ηf2,v1{ϕ−
1 (f1), ϕ+

1 (v1), ϕ−
1 (g1)} ⊗ 〈ϕ−

2 (f2), ϕ+
2 (v2)〉ϕ−

2 (g2)

+ ηf2,v1ηg1,f2ηg1,v2〈ϕ−
1 (f1), ϕ+

1 (v1)〉ϕ−
1 (g1) ⊗ {ϕ−

2 (f2), ϕ+
2 (v2), ϕ−

2 (g2)}
= ηf2,v1ϕ

−
1 ({f1, v1, g1}) ⊗ ϕ−

2 (〈f2, v2〉g2)

+ ηf2,v1ηg1,f2ηg1,v2ϕ
−
1 (〈f1, v1〉g1) ⊗ ϕ−

2 ({f2, v2, g2})

= (ϕ−
1 ⊗ ϕ−

2 )
(
ηf2,v1{f1, v1, g1} ⊗ 〈f2, v2〉g2

+ ηf2,v1ηg1,f2ηg1,v2〈f1, v1〉g1 ⊗ {f2, v2, g2}
)

= ϕ−({f1 ⊗ f2, v1 ⊗ v2, g1 ⊗ g2}),

and similarly we get

{ϕ+(v1 ⊗ v2), ϕ−(f1 ⊗ f2), ϕ+(w1 ⊗ w2)} = ϕ+({v1 ⊗ v2, f1 ⊗ f2, w1 ⊗ w2}).

We have proven that ϕ ∈ AutR(VR, 〈·, ·〉). �
Remark 4.4. We can define a tensor product for automorphism group schemes in FLSM, 
analogous to (4.2), given by

(
Aut(L1,M1) ⊗Gm

Aut(L2,M2)
)
(R) := {(ϕ1 × ϕ2, ϕ

+
1 ⊗ ϕ+

2 ) |
(ϕi, ϕ

+
i ) ∈ AutR

(
(Li)R, (Mi)R

)
}.

(4.5)

By Th. 3.6, property Proposition 4.3-4) is equivalent to

Aut(L1,M1, b1) ⊗Gm
Aut(L2,M2, b2) ≤ Aut(L,M, b), (4.6)

in FLSM, where M = M1 ⊗M2, b = b1 ⊥ b2, and L is a quotient of L1 ⊕ L2.

Proposition 4.5. Assume that the base field is algebraically closed. Let V be an object in 
GJSP and L = instr(V). Assume that Vσ is an irreducible L-supermodule for σ = ±, 
and also that L = L1 ⊕ L2 where L1 and L2 are b-orthogonal graded ideals of L. Then 
there are objects Vi in GJSP such that V ∼= V1 ⊗ V2, instr(Vi) ∼= Li, and Vσ

i is an 
irreducible Li-supermodule for i = 1, 2 and σ = ±.

Proof. By Faulkner’s correspondence, it suffices to prove that if V is a finite-dimensional 
irreducible (super)module for some finite-dimensional Lie (super)algebra L = L1 ⊕ L2, 
where L1 and L2 are graded ideals of L, then V ∼= M1 ⊗ M2 where Mi is an Li-
(super)module and where the action of Li on Mj is trivial for i �= j. Actually, this result 
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is well-known at least for the non-super case, but in absence of a good reference, a proof 
will be given. (The author is grateful to A. Elduque for providing a sketch of the proof 
for the non-super case.)

Denote S = L1, T = L2. It is clear that [S, T ] = 0. Let W be an irreducible S-
subsupermodule of V . Since V is irreducible and finite-dimensional, it decomposes as a 
direct sum of n S-supermodules isomorphic to W , for some n ∈ N. Since F is algebraically 
closed, it follows by Schur’s Lemma that HomS(W, V ) is n-dimensional, so that dimL =
dim(HomS(W, V ) ⊗ W ). We claim that HomS(W, V ) is a T -supermodule with action 
given by (t ·f)(w) := t ·f(w) for each t ∈ T , f ∈ HomS(W, V ), w ∈ W . For homogeneous 
s ∈ S, t ∈ T , f ∈ HomS(W, V ), w ∈ W , we have that

(t · f)(s · w) = t · f(s · w) = ηf,st ·
(
s · f(w)

)
= ηf,s

(
[t, s] · f(w) + ηt,ss ·

(
t · f(w)

))

= ηf,s

(
0 + ηt,ss ·

(
(t · f)(w)

))

= ηt·f,ss ·
(
(t · f)(w)

)
,

so that t ·f ∈ HomS(W, V ) with ε(t ·f) = ε(t) +ε(f). On the other hand, for homogeneous 
elements x, y ∈ T , f ∈ HomS(W, V ), w ∈ W , we have

([x, y] · f)(w) = [x, y] · f(w) = x · (y · f(w)) − ηx,yy · (x · f(w))

=
(
x · (y · f)

)
(w) − ηx,y

(
y · (x · f)

)
(w)

=
(
x · (y · f) − ηx,yy · (x · f)

)
(w).

We have proven that HomS(W, V ) is a T -supermodule. We can consider the trivial actions 
T ·W = 0 and S ·HomS(W, V ) = 0, so that W and HomS(W, V ) become L-supermodules.

Furthermore, the map φ : HomS(W, V ) ⊗W → V , f⊗w �→ f(w), is a homomorphism 
of L-supermodules. By dimensions and since V is irreducible, it follows that φ is a 
bijection. We have proven that V and HomS(W, V ) ⊗W are isomorphic L-supermodules. 
Note that for each T -subsupermodule N of HomS(W, V ), we have that N ⊗W is an L-
subsupermodule of HomS(W, V ) ⊗W ; hence, since V is an irreducible L-supermodule, 
it follows that the T -supermodule HomS(W, V ) is irreducible too. �
Notation 4.6. Let (V, 〈·, ·〉) be a 1-dimensional object in GJSP (i.e., dimV+ = dimV− =
1), and (L, M, b) the associated object in FLSM. Since 〈·, ·〉 is nondegenerate and ho-
mogeneous for the Z2-grading, it follows that V is either a pair or an antipair. Thus we 
can consider its parity, denoted by ε(V) or ε(M), and set η(V) = η(M) := (−1)ε(V). We 
will also denote ηa := (−1)a for a ∈ Z2.

Take f ∈ V−, v ∈ V+ such that 〈v, f〉 = 1, or equivalently, η(V)〈f, v〉 = 1 because 
ηf,v = η(V). Take the element x = ν(v, f) = −η(V)ν(f, v) ∈ L. Since any other choice 
for the pair (f, v) has the form (α−1f, αv) for some α ∈ F×, it follows that the element 
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x does not depend on the choice. Also, ε(x) = ε(f) + ε(v) = 0̄ if x �= 0. Let λ ∈ F be the 
eigenvalue of the action of x on V+ = M (thus x acts on V− = M∗ with multiplier −λ). 
Equivalently, {v, f, v} = λv and {f, v, f} = η(V)λf . Let G = F ×Z2. It is clear that the 
object V (resp. M) is uniquely determined (up to isomorphism) by λ and ε(V), and also 
by the parameter α = (λ, ε(V)) ∈ G, so we can denote V (resp. M) by Vα (resp. Mα). 
Also, note that λ = 0 iff x = 0 iff L = 0.

Given α = (λ, a), β = (μ, b) ∈ G, we claim that

Vα ⊗ Vβ
∼= Vα+β . (4.7)

Let (f, v) and (f ′, v′) be pairs of elements, as above, in Vα and Vβ , respectively. Then 
(ηv,f ′f ⊗ f ′, v ⊗ v′) is a pair of elements of V = Vα ⊗ Vβ with 〈v ⊗ v′, ηv′,ff ⊗ f ′〉 =
〈v, f〉〈v′, f ′〉 = 1. It is clear that ε(V) = ε(Vα) +ε(Vβ) = a +b and η(V) = ηa+b = ηaηb =
η(Vα)η(Vβ). Then we have that

{v ⊗ v′, ηv′,ff ⊗ f ′, v ⊗ v′} =

= {v, f, v} ⊗ 〈v′, f ′〉v′ + ηv,v′ηv,f ′〈v, f〉v ⊗ {v′, f ′, v′}
= (λv) ⊗ v′ + v ⊗ (μv′) = (λ + μ)v ⊗ v′.

Hence, V ∼= Vγ with γ = (λ + μ, a + b) = α + β, which proves the claim. On the other 
hand, it is easy to see that for any object V ∈ GJSP we have that

V0 ⊗ V ∼= V ∼= V⊗ V0. (4.8)

Let V and W be objects in GJSP, and α ∈ G. Denote V[α] := V ⊗ Vα. We will 
say that V is a tensor-shift by α of W (and that V and W are tensor-shift related) if 
V ∼= W[α]. It is clear that V ∼= V[0] and (V[α])[β] ∼= V[α+β], and it follows that tensor-shift 
relation is an equivalence relation. Note that tensor-shifting with an element α = (λ, ̄1)
produces a bijection between the isomorphic classes of pairs and antipairs (although this 
correspondence may not restrict to particular subclasses of GJSP, e.g., Jordan pairs do 
not correspond to anti-Jordan pairs).

Given α = (λ, a) ∈ G, we can identify V[α] with the vector spaces of V, with degree 
map ε[α](x) := ε(x) + a, with the new bilinear form

〈f, v〉[α] := ηaηa,f 〈f, v〉 = ηaηa,v〈f, v〉, (4.9)

and shifted triple products given by

{x, y, z}+
[α] := ηa,y({x, y, z}+ + λ〈x, y〉z),

{x, y, z}−[α] := ηaηa,y({x, y, z}− + λ〈x, y〉z),
(4.10)

where we denote ηa,y = (−1)aε(y). Using (4.4) it follows easily that
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V⊗ Vα
∼= Vα ⊗ V. (4.11)

Furthermore, it is easy to see, using (4.10), that

Aut(V[α], 〈·, ·〉[α]) � Aut(V, 〈·, ·〉), (4.12)

that is, tensor-shifts preserve automorphism group schemes.
In particular, if α = (λ, ̄0) ≡ λ, we can identify V[λ] with the vector spaces of V, with 

the same bilinear form, and shifted triple products given by

{x, y, z}[λ] := {x, y, z} + λ〈x, y〉z. (4.13)

Example 4.7. Denote Mm,n := Mm,n(F). Recall that simple Jordan pairs of type Ip,q
(p ≤ q) are given by V(I)

p,q := (Mp,q, Mp,q) with triple products {x, y, z} := xyTz + zyTx, 
and generic trace t : M−

p,q ×M+
p,q → F , t(x, y) := t(xyT). It is easy to see that (V(I)

p,q, t) is 
an object in GJP (the invariance and symmetry of the generic trace follow easily from 
the property t(xy) = t(yx) for the trace of matrices x ∈ Mn,m, y ∈ Mm,n).

The bilinear form and triple products in V = V
(I)
1,p⊗V

(I)
1,q on the basis {ei⊗ej} (tensor 

product of canonical bases) are given by

〈ei ⊗ ej , ek ⊗ el〉 = δikδjl,

and

{ei ⊗ ej , ek ⊗ el, em ⊗ en} =

= {ei, ek, em} ⊗ t(ej , el)en + t(ei, ek)em ⊗ {ej , el, en}

= (δikem + δkmei) ⊗ δjlen + δikem ⊗ (δjlen + δlnej)

= 2δikδjlem ⊗ en + δkmδjlei ⊗ en + δikδlnem ⊗ ej .

Hence, the tensor-shift V[−2] has the same bilinear form, and triple products given by

{ei ⊗ ej , ek ⊗ el, em ⊗ en}[−2] = δkmδjlei ⊗ en + δikδlnem ⊗ ej .

On the other hand, note that the generic trace and triple products on V(I)
p,q are given 

by

t(Eij , Ekl) = t(EijElk) = δikδjl,

and

{Eij , Ekl, Emn} = EijElkEmn + EmnElkEij = δjlδkmEin + δnlδkiEmj .
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Consequently, the map ei ⊗ ej �→ Eij defines an isomorphism of (generalized) Jordan 
pairs

V(I)
p,q

∼= (V(I)
1,p ⊗ V

(I)
1,q)[−2] = V

(I)
1,p ⊗ V

(I)
1,q ⊗ V−2. (4.14)

Example 4.8. Now recall that the simple Jordan pair of type IVn is given by V(IV )
n :=

(Fn, Fn), with generic trace form t(x, y) := q(x, y), and triple products {x, y, z} :=
q(x, y)z + q(z, y)x − q(x, z)y, where q : Fn × Fn → F is a nondegenerate symmetric 
bilinear form. Without loss of generality, we can assume that q is the standard scalar 
product. Note that the generic trace and the triple products are given on the canonical 
basis {ei} by t(ei, ej) = δij and {ei, ej , ek} = δijek + δkjei − δikej . Then we have that 
V

(IV )
n is an object in GJP (the invariance and symmetry of the generic trace can be 

checked easily).
The bilinear form and triple products on V = V

(I)
1,n ⊗ V

(IV )
n are given by

〈ei ⊗ ej , ek ⊗ el〉 = δikδjl,

and

{ei ⊗ ej , ek ⊗ el, em ⊗ en} =

= {ei, ek, em} ⊗ t(ej , el)en + t(ei, ek)em ⊗ {ej , el, en}

= (δikem + δkmei) ⊗ δjlen + δikem ⊗ (δjlen + δlnej − δjnel)

= 2δikδjlem ⊗ en + δkmδjlei ⊗ en + δikδlnem ⊗ ej − δikδjnem ⊗ el.

Therefore, the tensor-shift V[−2] has the same bilinear form, and triple products given 
by

{ei ⊗ ej , ek ⊗ el, em ⊗ en}[−2] = δkmδjlei ⊗ en + δikδlnem ⊗ ej − δikδjnem ⊗ el.

On the other hand, let VMn
be the Kantor pair associated to the structurable algebra 

Mn := Mn(F), where the involution is the transposition. The triple products on VMn
are 

given by {x, y, z} = xyTz + zyTx − zxTy. Consider the bilinear form t : M−
n ×M+

n → F

given by t(x, y) := t(xyT). Then (VMn
, t) is an object in GJP (the invariance and 

symmetry of the bilinear trace form follow easily from the properties t(xy) = t(yx) and 
t(xT) = t(x) for x, y ∈ Mn).

Note that the bilinear form and triple products of VMn
are also given by

t(Eij , Ekl) = t(EijElk) = δikδjl,

and
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{Eij , Ekl, Emn} = EijElkEmn + EmnElkEij − EmnEjiEkl

= δjlδkmEin + δnlδkiEmj − δnjδikEml.

It follows that the map ei ⊗ ej �→ Eij defines an isomorphism of generalized Jordan 
pairs

VMn
∼= (V(I)

1,n ⊗ V(IV )
n )[−2] = V

(I)
1,n ⊗ V(IV )

n ⊗ V−2. (4.15)
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