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Abstract
This paper is devoted to providing a unifying approach to the study of the uniqueness
of unconditional bases, up to equivalence and permutation, of infinite direct sums
of quasi-Banach spaces. Our new approach to this type of problem permits to show
that a wide class of vector-valued sequence spaces have a unique unconditional basis
up to a permutation. In particular, solving a problem from Albiac and Leránoz (J
Math Anal Appl 374(2):394–401, 2011. https://doi.org/10.1016/j.jmaa.2010.09.048)
we show that if X is quasi-Banach space with a strongly absolute unconditional basis
then the infinite direct sum �1(X) has a unique unconditional basis up to a permutation,
evenwithout knowingwhether X has a unique unconditional basis or not. Applications
to the uniqueness of unconditional structure of infinite direct sums of non-locally
convex Orlicz and Lorentz sequence spaces, among other classical spaces, are also
obtained as a by-product of our work.
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1 Introduction and background

Given a Banach space (or, more generally, a quasi-Banach space) X with a normalized
unconditional basis (xn)∞n=1, let us write X ∈ U if every normalized unconditional
basis of X is equivalent to a permutation (xπ(n))

∞
n=1 of the basis (xn)

∞
n=1. If we impose

a stronger uniqueness property, where it is required that π be the identity, we write
X ∈ US . Notice that X ∈ US if and only if X has a symmetric basis and X belongs
to U . In the context of Banach spaces it is well known that X ∈ US if and only if X
is isomorphic to one of the spaces from the setS = {c0, �1, �2} ([29, 31]). However,
for quasi-Banach spaces which are not Banach spaces the situation is quite different
since there is a wide class of non-locally convex Orlicz sequence spaces, including
the spaces �p for 0 < p < 1, which belong to US ( [22]).

Bourgain et al. studied in [14] the class Z of those Banach spaces which can be
obtained by taking the infinite direct sum of a space from S in the sense of a space
also in S , and gave a complete description of the class Z ∩ U by proving that the
spaces c0(�1), �1(c0), c0(�2) and �1(�2) belong to U , while �2(�1) and �2(c0) do
not. Many of the questions the authors formulated in their 1985 Memoir remain open
as of today. They conjectured that if a Banach space X belongs to U then so does
the iterated copy of X in the sense of one of the spaces from S . This conjecture
was disproved in the general case in 1999 by Casazza and Kalton, who showed that
Tsirelson’s space T ∈ U whereas c0(T ) /∈ U ( [17]). Casazza and Kalton’s work
gave thus continuity to a research topic that was central in Banach space theory in the
1960’s and 1970’s, but that was interrupted after the Memoir. Perhaps the researchers
felt discouraged to put effort into a subject that required the discovery of novel tools
in order to make headway, with little hope for attaining a satisfactory classification of
the Banach spaces belonging to U .

At the same time, the positive results on uniqueness of unconditional basis obtained
in the context of non-locally convex quasi-Banach spaces motivated further study with
a number of authors contributing to the development of a coherent theory.An important
advance was the paper [25] by Kalton et al. followed by the work of Leránoz [28],
who proved that c0(�p) ∈ U for all 0 < p < 1, and Wojtaszczyk [37], who proved
that the Hardy space Hp(T) also belongs to the classU for 0 < p < 1. Subsequently,
it was proved that �p(�2), �p(�1), and �1(�p) also belong to U for all 0 < p < 1
([7, 8]), and the question arose of what can be said about infinite direct sums of other
quasi-Banach spaces. Our aim in this paper is to fill this gap in the literature. To that
end, we develop a new set of techniques which combined with reinterpretations of
the already existing methods permit to obtain a myriad of new additions to the list of
spaces with a unique unconditional basis.

The article is structured in five more sections. Section 2 gathers the terminology
and the notation that are more heavily used. Section 3 is preparatory but becomes
instrumental in what follows. We survey the techniques developed by the specialists
in their study of the uniqueness of unconditional structure which will be of interest for
us, and give them a quantitative twist. In particular we further the study of strongly
absolute bases. Section 4 addresses the uniqueness of unconditional basis of infinite
direct sums of quasi-Banach spaces in the sense of an atomic quasi-Banach lattice
whose unit vector system is strongly absolute, while in Sects. 5 and 6 we concentrate
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on c0-sums and �1-sums of quasi-Banach spaces with a strongly absolute basis. A brief
digression could help the reader to understand better our approach in these theoretical
sections. An infinite direct sum X = (

⊕∞
j=1 X j )L of quasi-Banach spaces (X j )

∞
j=1 in

the sense of some quasi-Banach lattice Lmay be regarded as an infinite matrix whose
j th row is occupied by the vectors in X j . Since the spaces X j come with a basis X j ,
the vectors in X j are sequences of scalars (relative to the basis X j ). Understanding
the geometry of X often requires working simultaneously with several (or even all)
rows of X and in doing so, we need to count on estimates for the bases X j and the
spaces X j that do not depend on the specific row(s) we are looking at. This compels
us to introduce the quantitative versions of the notions we will use and to keep track
of the constants involved in our arguments. Finally, Sect. 7 is devoted to applying our
theoretical schemes to practical cases. Among the vast amount of novel examples that
we can tailor, we exhibit a selection of important new examples of spaces that belong
to U and which involve Lebesgue sequence spaces, Lorentz sequence spaces, Orlicz
sequence spaces, Bourgin–Nakano spaces, Hardy spaces, and Tsirelson’s space.

2 Terminology

We use standard terminology and notation in Banach space theory as can be found,
e.g., in [6]. Most of our results, however, will be established in the general setting of
quasi-Banach spaces; the unfamiliar reader will find general information about quasi-
Banach spaces in [26]. In keeping with current usage we will write c00(J ) for the set
of all (a j ) j∈J ∈ F

J such that |{ j ∈ J : a j �= 0}| < ∞, where F can be the real or
complex scalar field. The convex hull of a subset Z of a vector space will be denoted
by co(Z). A quasi-norm on a vector space X over F is a map ‖ · ‖ : X → [0,∞)

satisfying ‖ f ‖ > 0 when f �= 0, ‖t f ‖ = |t | ‖ f ‖ for all t ∈ F and all f ∈ X , and

‖ f + g‖ ≤ κ(‖ f ‖ + ‖g‖), f , g ∈ X , (2.1)

for some constant κ ≥ 1. The optimal constant such that (2.1) holds will be called the
modulus of concavity of X . If ‖ · ‖ verifies

‖ f + g‖p ≤ ‖ f ‖p + ‖g‖p, f , g ∈ X ,

for some 0 < p ≤ 1, the quasi-norm ‖ · ‖ is said to be a p-norm. Note that a p-norm
is a quasi-norm with modulus of concavity at most 21/p−1. If X is complete with the
metric topology induced by the quasi-norm, (X , ‖ · ‖) is said to be a quasi-Banach
space. A p-Banach space will be a quasi-Banach space equipped with a p-norm. The
closed unit ball of a quasi-Banach space X will be denoted by BX and the closed linear
span of a subset Z of X will be denoted by [Z ].

We will frequently index unconditional bases and basic sequences by an unordered
countable index set N which needs not be the set N of natural numbers. A countable
family X = (xn)n∈N in X is an unconditional basic sequence if for every f ∈
[xn : n ∈ N ] there is a unique family (an)n∈N in F such that the series

∑
n∈N an xn
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converges unconditionally to f . If X = (xn)n∈N is an unconditional basic sequence,
there is a constant K ≥ 1 such that

∥
∥
∥
∥
∥

∑

n∈N
an xn

∥
∥
∥
∥
∥

≤ K

∥
∥
∥
∥
∥

∑

n∈N
bn xn

∥
∥
∥
∥
∥

for all finitely non-zero sequence of scalars (an)n∈N with |an| ≤ |bn| for all n ∈ N
(see [3,Theorem 1.10]). If this condition is satisfied some K ≥ 1 we say that X
is K -unconditional and if, additionally, [xn : n ∈ N ] = X then X is said to be
an unconditional basis of X . An unconditional basis X = (xn)n∈N in X becomes
1-unconditional under the renorming

‖ f ‖u = sup

{∥
∥
∥
∥
∥

∑

n∈N
an xn

∥
∥
∥
∥
∥

: |an| ≤ |x∗
n( f )|

}

, f ∈ X .

Thus, we will in general take the viewpoint that an unconditional basis in a quasi-
Banach space X confers the structure of an atomic quasi-Banach lattice on X .

If X = (xn)n∈N is an unconditional basis of X with biorthogonal functionals
(x∗

n)n∈N , the map F : X → F
N given by

f =
∑

n∈N
an xn �→ (x∗

n( f ))n∈N = (an)n∈N

will be called the coefficient transform with respect to X . The support of f ∈ X with
respect to X is the set

supp( f ) = {n ∈ N : x∗
n( f ) �= 0},

and the support of a functional f ∗ ∈ X∗ with respect to X is the set

supp( f ∗) = {n ∈ N : f ∗(xn) �= 0}.

Given A ⊆ N , we denote by SA : X → X the coordinate projection associated to the
basis X onto the subspace [xn : n ∈ A],

SA( f ) =
∑

n∈A

x∗
n( f ) xn, f ∈ X .

If J is a countable set, we write EJ := (e j ) j∈J for the canonical unit vector
system of FJ , i.e., e j = (δ j,k)k∈J for each j ∈ J , where δ j,k = 1 if j = k and
δ j,k = 0 otherwise. A sequence space on J will be a quasi-Banach lattice L ⊆ F

J
for which the 1-unconditional basic sequence EJ is normalized. If c00 is dense in L,
so that EJ is a normalized 1-unconditional basis of L, we say that L is a minimal
sequence space. The most important examples of minimal sequence spaces L on a set
J are the classical Lebesgue sequence spaces �p(J ) for 0 < p < ∞, and c0(J ).
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As is customary, �p will stand for the space �p(N) and �s
p will denote the space

�p({n ∈ N : n ≤ s}) for s ∈ N.
We will refer to a sequence spaceL onN as being subsymmetric if for each increas-

ing function φ : N → N, the operator Sφ : L → L defined by

(an)∞n=1 �→ (bn)∞n=1, where bk =
{

an if k = φ(n),

0 otherwise,

is an isometric embedding. If Sφ is an isometry for every one-to-one map φ, L will be
said to be symmetric.

Given a sequence spaceL onJ , and a family (X j , ‖·‖X j ) j∈J of (possibly repeated)
quasi-Banach spaces with moduli of concavity uniformly bounded, the space

⎛

⎝
⊕

j∈J
X j

⎞

⎠

L
=

⎧
⎨

⎩
f = ( f j ) j∈J ∈

∏

j∈J
X j :

∥
∥(‖ f j‖X j ) j∈J

∥
∥L < ∞

⎫
⎬

⎭

is a quasi-Banach space with the quasi-norm

‖ f ‖ = ∥
∥(‖ f j‖X j ) j∈J

∥
∥ .

Let (Y j ) j∈J be another collection of (possibly repeated) quasi-Banach spaces. If
for each j ∈ J , the map Tj : X j → Y j is a bounded linear operator and M :=
sup j∈J ‖Tj‖ < ∞, then the linear operator

T :
⎛

⎝
⊕

j∈J
X j

⎞

⎠

L
→

⎛

⎝
⊕

j∈J
Y j

⎞

⎠

L
, ( f j ) j∈J �→ (Tj ( f j )) j∈J

is bounded with ‖T ‖ ≤ M .
The dual space L∗ of a minimal sequence space on J can be isometrically iden-

tified with a sequence space on J . Thus, the dual space of
(⊕

j∈J X j

)

L can be

isometrically identified with
(⊕

j∈J X∗
j

)

L∗ .

For each k ∈ J let Lk : Xk → (
⊕

j∈J X j )L be the canonical embedding. If there
is a constant K such that, for each j ∈ J , X j = (x j,n)n∈N j is a K -unconditional
basic sequence, then the sequence

⎛

⎝
⊕

j∈J
X j

⎞

⎠

L
= (

L j (x j,n)
)

n∈N j , j∈J

is a K -unconditional basic sequence of (
⊕

j∈J X j )L. If X j is normalized for all
j ∈ J , so is (

⊕
j∈J X j )L. If X j is a basis of X j for all j ∈ J and L is minimal, then
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(⊕
j∈J X j

)

L is a basis of X = (
⊕

j∈J X j )L whose dual basis is
(⊕

j∈J X ∗
j

)

L∗

via the aforementioned identification between X∗ and
(⊕

j∈J X∗
j

)

L∗ .

If J is finite and L = �∞(J ) we set
⊕

j∈J X j = (
⊕

j∈J X j )L and
⊕

j∈J X =
(
⊕

j∈J X j )L. If X j = X for all j ∈ J , we set L(X) = (
⊕

j∈J X j )L. Similarly, if
X j = X for all j ∈ J , we set L(X ) = (

⊕
j∈J X j )L. Finally, given s ∈ N, we put

Xs = �s∞(X) and X s = �s∞(X ).
Suppose that X = (xn)n∈N and Y = ( yn)n∈N are families of vectors in quasi-

Banach spaces X and Y , respectively. Let C ∈ (0,∞). We say that X C-dominates
Y if there is a linear map T from [X ] into Y with T (xn) = yn for all n ∈ N and
‖T ‖ ≤ C . If T is an isomorphic embedding with max{‖T ‖, ‖T −1‖} ≤ C ∈ [1,∞),
X andY are said to be C-equivalent. We say thatX is permutatively C-equivalent to a
familyY = ( ym)m∈M in Y , and wewriteX ∼C Y , if there is a bijection π : N → M
such that X and ( yπ(n))n∈N are C-equivalent. A subbasis of an unconditional basis
(xn)n∈N is a family (xn)n∈M for some subset M of N .

The symbol Y ⊂∼C X will mean that the unconditional basic sequence Y is C-
equivalent to a permutation of a subbasis of the unconditional basisX . In all the above
cases, if the precise constants are irrelevant, we simply drop them from the notation.

A sequence (xn)n∈N in a quasi-Banach space X said to be semi-normalized if

0 < a := inf
n∈N

‖xn‖ ≤ b := sup
n∈N

‖xn‖ < ∞.

If a = b = 1 we say that (xn)n∈N is normalized.
Given an unconditional basic sequence X = (xn)n∈N and non-zero scalars

(an)n∈N , the rescaled basic sequence (an xn)n∈N is equivalent to X if and only if
(an)n∈N is semi-normalized. Thus, the properties related to the uniqueness of uncon-
ditional bases in quasi-Banach spaces must be stated in terms of normalized (or,
equivalently, semi-normalized) basic sequences. We say that a quasi-Banach space X
has a unique unconditional basis up to equivalence and permutation (UTAP uncon-
ditional basis for short) if it has a normalized unconditional basis X and any other
normalized unconditional basis is permutatively equivalent to X . Other more specific
terminology will be introduced in context when needed.

3 Preliminary results

Our approach to the uniqueness of unconditional basis problem in infinite direct sums
of quasi-Banach spaces will rely on an amalgamation of a set of techniques, most
of which are specific to the non-locally convex case. In this preparatory section we
present the properties and the different methods that will be used in the proofs of our
main results in Sects. 4, 5, and 6.

The earliest applications of combinatorial methods to the uniqueness of uncondi-
tional basis problem can be found in the work of Mitjagin in the early 1970’s [32,
33], but it was Wójtowicz who gave in 1988 a precise formulation of the so-called
Schröder–Bernstein principle for unconditional bases (see [38,Corollary 1]).
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Theorem 3.1 (Schröder–Bernstein principle for unconditional bases) Let X and Y
be unconditional bases of quasi-Banach spaces X and Y , respectively. Suppose that
X ⊂∼ Y and Y ⊂∼ X . Then X ∼ Y .

Wojtaszczyk rediscovered independently ten years later, in 1997, the idea of using
a combinatorial argument in his study of the uniqueness of unconditional basis of
Hp(T) for 0 < p < 1 and reproved Theorem 3.1 (see [37, Proposition 2.11]). He
added to the previous arguments the following refinement of the Marriage Lemma.
Notice that the case N = 1 in Theorem 3.2 is the Marriage Lemma as stated by Hall
(see [20,Theorem 1]).

Theorem 3.2 Let N be a set and (Ni )i∈I be a family of finite subsets of N . Suppose
N ∈ N is such that

|F | ≤ N

∣
∣
∣
∣
∣

⋃

i∈F

Ni

∣
∣
∣
∣
∣

for all F ⊆ I finite. Then there exist a partition (I j )
N
j=1 of I , and one-to-one maps

φ j : I j → N with φ j (i) ∈ Ni for all i ∈ I j and all j = 1, . . . , N.

We next enunciate a simple lemma, whose straightforward proof we omit.

Lemma 3.3 LetL be a sequence space on a countable setJ , and for j ∈ J let X j and
Y j be quasi-Banach spaces with moduli of concavity uniformly bounded by κ . Suppose
that for each j ∈ J , X j is a normalized K -unconditional basic sequence of X j and
thatY j is an unconditional basic sequence of Y j which is C-equivalent toX j , where K
and C are constants independent of j .Then the semi-normalized unconditional basic
sequence (⊕ j∈JY j )L of (⊕ j∈J Y j )L is C-equivalent to the normalized unconditional
basic sequence (

⊕
j∈J X j )L of (

⊕
j∈J X j )L.

Our first result provides sufficient conditions for an infinite direct sum of uncondi-
tional bases to be equivalent to its square.

Lemma 3.4 Let L be a sequence space on a countable set J . For each j ∈ J let X j

be a normalized K -unconditional basis of a quasi-Banach space X j with modulus
of concavity bounded above by κ , where κ and K are constants independent of j .
Suppose that one the the following conditions holds:

(a) There is a constant C such that X 2
j ∼C X j for all j ∈ J .

(b) L2 is lattice isomorphic to L, and X j = Y for all j ∈ J and some unconditional
basis Y .

(c) L is subsymmetric, and there is constant C such that, for each j ∈ J , X j ⊂∼C Xk

for infinitely many values of k ∈ J = N.

Then the basis X = (
⊕

j∈J X j )L is equivalent to a permutation of its square.

Proof The unconditional basis X 2 is equivalent to a permutation of (
⊕

j∈J X 2
j )L.

Thus, if (a) holds, applying Lemma 3.3 yields X 2 ∼ X .
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The basisX 2 is also equivalent to a permutation of (
⊕

j∈J X j )L2 . Therefore, in the

cases (b) and (c), sinceL2 is lattice isomorphic toL,X 2 is equivalent to a permutation
of X ′ := (

⊕
j∈N Xφ( j))L for some map φ : N → N . If (b) holds, Xφ( j) = X j

for all j ∈ N so that X ′ = X . Finally, assume that (c) holds. Then, we recursively
construct an increasing map ψ : N → N such that Xφ( j) ⊂∼C Xψ( j). By Lemma 3.3,
X ′ ⊂∼ X ′′ := (⊕∞

n=1 Xψ(n)

)
L. By subsymmetry, X ′′ is isometrically equivalent to a

subbasis of X . Hence, by Theorem 3.1, X 2 ∼ X . ��

3.1 The Cassaza–Kalton paradigm extended

In a couple of papers of classical elegance (see [16, 17]), Casazza and Kalton cru-
cially used the lattice structure induced by an unconditional basis on a Banach space
to provide a much shorter proof than the original one of the uniqueness of uncon-
ditional basis (UTAP) of c0(�1). Of course, these techniques were not yet available
when Bourgain et al. wrote their AMS Memoir [14], otherwise the proofs of their
aforementioned results would have been considerably simpler.

Cassaza and Kalton’s methods were transferred to the setting of quasi-Banach
lattices and put into practice in [7] to obtain the uniqueness of unconditional basis
(UTAP) in the spaces �1(�p) and �p(�1) for 0 < p < 1, and in [10] to give a much
shorter proof than the original one of the uniqueness of unconditional basis of �p(c0)
for 0 < p < 1 (cf. [8]). The extension to quasi-Banach lattices required the notions
of L-convexity and anti-Euclidean spaces, which we recall next for the convenience
of the reader.

A quasi-Banach lattice X is said to be L-convex if there is 0 < ε < 1 so that

ε‖ f ‖ ≤ max
1≤i≤k

‖ fi‖

whenever f and ( fi )
k
i=1 in X satisfy (1− ε)k f ≥ ∑k

i=1 fi and 0 ≤ fi ≤ f for every
i = 1, . . . , k. We say that a family (X j ) j∈J of quasi-Banach lattices is L-convex if
there is ε > 0 such each lattice X j is L-convexwith constant ε for every j ∈ J . Kalton
[23] showed that a quasi-Banach lattice X is L-convex if and only if it is p-convex for
some p > 0, that is, for some constant C and all f1, . . . , fk in X we have

∥
∥
∥
∥
∥
∥

(
k∑

i=1

| fi |p

)1/p
∥
∥
∥
∥
∥
∥

≤ C

(
k∑

i=1

‖ fi‖p

)1/p

. (3.1)

The element (
∑k

i=1 | fi |p)1/p of X is defined via the procedure outlined in [30, pp. 40-
41]. The optimal constant in (3.1) will be denoted by Mp(X).

Quantitatively, if X is L-convex with constant ε, there exists r > 0 and con-
stants (C p)0<p<r depending only on ε and the modulus of concavity of X , such that
Mp(X) ≤ C p for all 0 < p < r . Conversely, if X is a p-convex quasi-Banach lattice
with Mp(X) ≤ C , there exist κ and ε depending only on p and C such that X is
at once an L-convex lattice with constant ε and a quasi-Banach space with modulus
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of concavity at most κ . This quantitative approach is perhaps the easiest way to see
that if L is an L-convex sequence space on a set J and (X j ) j∈J is a family of L-
convex quasi-Banach lattices, then X := (

⊕
j∈J X j )L is an L-convex lattice. In fact,

if p > 0 and C ≥ 1 are such that Mp(L) ≤ C and Mp(X j ) ≤ C for all j ∈ J , then
Mp(X) ≤ C2.

A quasi-Banach space X is then called natural if it is isomorphic to a subspace
of an L-convex quasi-Banach lattice. Most quasi-Banach spaces arising in analysis
are natural. However, it should be pointed out that there are non-natural spaces with
an unconditional basis [24]. It is known [23] that any lattice structure on a natural
quasi-Banach space is L-convex. Thus, once we make sure that a quasi-Banach space
X has a lattice structure, the notions of L-convexity and naturality become equivalent.

Our results will apply to those natural spaces where the lattice structure is induced
by an unconditional basis. In such spaces any unconditional basis induces an L-convex
lattice structure; then many of the standard techniques of Banach lattice theory can be
employed in this setting. For most applications it is easy to verify that a certain space
X is natural either by showing that it is p-convex for some p > 0 with the lattice
structure induced by some unconditional basis, or by identifying X as a subspace of
an L-convex lattice.

Definition 3.5 A family (X j ) j∈J of unconditional bases of quasi-Banach spaces
(X j ) j∈J is said to be L-convex if there are constants K ≥ 1 and 0 < ε < 1 such
that X j is K -unconditional and it induces an L-convex lattice structure on X j with
constant ε for all j ∈ J .

Notice that if (X j ) j∈J is an L-convex family of unconditional bases of quasi-Banach
spaces (X j ) j∈J , then the modulus of concavity of the space X j is uniformly bounded.
Moreover, ifL is an L-convex sequence space overJ , then (

⊕
j∈J X j )L is an uncon-

ditional basis of the quasi-Banach space (
⊕

j∈J X j )L which induces a structure of
L-convex lattice.

A Banach space X is said to be anti-Euclidean if it does not contain uniformly
complemented copies of finite-dimensional Hilbert spaces. As for L-convexity, to
deal with families of quasi-Banach spaces we need a more quantitative definition.

Definition 3.6 A family (X j ) j∈J of Banach spaces is said to be anti-Euclidean if for
every R ∈ (0,∞) there is k ∈ N such that ‖S‖ ‖T ‖ ≥ R whenever j ∈ J and
S : �k

2 → X j , T : X j → �k
2 are linear operators with T ◦ S = Id�k

2
.

By the principle of local reflexivity, a family (X j ) j∈J of Banach spaces is anti-
Euclidean if and only if (X∗

j ) j∈J is. The most natural and important examples of
anti-Euclidean spaces are c0 and �1. Let us bring up a result by Casazza and Kalton.

Theorem 3.7 [17, Proposition 2.4] Suppose that the countable family (X j ) j∈J of
Banach spaces is anti-Euclidean. Then the Banach space (

⊕
j∈J X j )�1 is anti-

Euclidean.

Note that, although Definition 3.6 makes sense for quasi-Banach spaces, as a matter
of fact we only state it (and will use it) for the “closest” Banach spaces to the quasi-
Banach spaces we study, i.e., their Banach envelopes. Formally speaking, the Banach
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envelope of a quasi-Banach space X consists of a Banach space X̂ together with
a linear contraction EX : X → X̂ , called the envelope map of X , satisfying the fol-
lowing universal property: for every Banach space Y and every linear contraction
T : X → Y there is a unique linear contraction T̂ : X̂ → Y such that T̂ ◦ EX = T .
The Banach envelope of a quasi-Banach space can be effectively constructed from
the Minkowski functional of co(BX ). This construction shows that EX (co(BX )) is a
dense subset of BX̂ . We say that a Banach space Y is the Banach envelope of X via
the map J : X → Y if the associated map Ĵ : X̂ → Y is an isomorphism.

The Banach envelope of a minimal sequence space is isometrically isomorphic to
a minimal sequence space via the inclusion map (see [3, Proposition 10.9]). We will
need the following result.

Proposition 3.8 Let L be a minimal sequence space on J . Suppose that X j is a quasi-
Banach space with modulus of concavity bounded by a uniform constant κ for all
j ∈ J . Then the Banach envelope of X = (

⊕
j∈J X j )L is isometrically isomorphic

to Y = (
⊕

j∈J X̂ j )L̂ via the map

f = ( f j ) j∈J �→ J ( f ) = (EX j ( f j )) j∈J .

Proof Since J defines a linear contraction from X into Y , it suffices to prove that
J (co(BX )) is a dense subset of BY . Let f = ( f j ) j∈J ∈ BY and ε > 0. For each j ∈ J
set g j = f j/‖ f j‖ if f j �= 0 and g j = 0 otherwise. Since g j ∈ BX̂ j

, for each j ∈ J
there is h j ∈ co(BX j ) such that ‖g j − EX j (h j )‖ ≤ ε/2. Put 	 = (γ j ) j∈J , where
γ j = ‖ f j‖ for j ∈ J . Since	 ∈ BL̂, there is� ∈ co(BL) such that ‖	−�‖L̂ ≤ ε/2.
Moreover, passing to a suitable projection, we can choose � to be finitely supported.
Then, if we denote� = (λ j ) j∈J , we have that h := (λ j h j ) j∈J ∈ co(BX ). Therefore,
if g = (λ j g j ) j∈J ,

‖ f − E(h)‖ ≤ ‖ f − g‖ + ‖g − E(h)‖
= ‖	 − �‖L̂ + ∥

∥(λ j‖g j − E j (h j )‖) j∈J
∥
∥L̂

≤ ε

2
+ ε

2
‖�‖L̂

≤ ε.

��
In most cases, the proof of the uniqueness of unconditional basis in a given Banach

(or quasi-Banach) space also sheds light onto the unconditional structure of its com-
plemented subspaces with an unconditional basis. A sequence Y = ( ym)m∈M in a
quasi-Banach space X is said to be complemented if its closed linear span Y = [Y] is
a complemented subspace of X , i.e., there is a bounded linear map P : X → Y with
P|Y = IdY . An unconditional basic sequence Y = ( ym)m∈M is complemented in X
if and only if there exists a sequence Y∗ = ( y∗

m)m∈M in X∗ such that y∗
m( yn) = δm,n

for all (m, n) ∈ M2 and there is a bounded linear map P : X → X given by

P( f ) = P[Y,Y∗]( f ) =
∑

m∈M
y∗

m( f ) ym, f ∈ X , (3.2)
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in which case

	[Y,Y∗] := sup

{∥
∥
∥
∥
∥

∑

m∈M

y∗
m( f ) ym

∥
∥
∥
∥
∥

: M ⊆ M, f ∈ BX

}

< ∞.

We will refer to Y∗ as a sequence of projecting functionals for Y .
To understand the simplifications derived from taking into account the lattice struc-

ture induced by an unconditional basis X on the entire space X , we must look at the
supports of Y and Y∗ with respect to X .

Definition 3.9 Let X be a quasi-Banach space with an unconditional basis X . We say
that an unconditional basic sequenceY = ( ym)m∈M iswell complemented in X if it is
complemented in X and there is a sequence Y∗ = ( y∗

m)m∈M of projecting functionals
for Y such that:

(i) supp( y∗
m) ⊆ supp( ym) for all m ∈ M, and

(ii) (supp( ym))m∈M is a pairwise disjoint family consisting of finite sets.

In this case, we say that Y∗ is a sequence of good projecting functionals for Y . If
	[Y,Y∗] ≤ C we will say that Y is well C-complemented and that Y∗ are good
C-projecting functionals.

Remark 3.10 Note that a subbasis of awellC-complementedbasic sequence ( ym)m∈M
is a a well C-complemented basic sequence. In particular, if ( y∗

m)m∈M are good C-
projecting functionals, ‖ ym‖ ‖ y∗

m‖ ≤ C for all m ∈ M.

The following definition identifies and gives relevance to an unstated feature shared
by some unconditional bases. Examples of such bases can be found, e.g., in [9, 16,
22], where the property naturally arises in connection with the problem of uniqueness
of unconditional basis.

Definition 3.11 A normalized unconditional basis X = (xn)n∈N of a quasi-Banach
space will be said to be universal for well complemented block basic sequences if
for every normalized well complemented basic sequence Y = ( ym)m∈M of X there
is a map π : M → N such that π(m) ∈ supp( ym) for every m ∈ M, and Y is
equivalent to the rearranged subbasis (xπ(m))m∈M of X . In the case when there is a
function η : [1,∞) → [1,∞) such that Y is η(C)-equivalent to (xπ(m))m∈M of X
whenever Y is well C-complemented, we say that X is uniformly universal for well
complemented block basic sequences (with function η).

Thus, the following theoremsummarizeswhat can be rightfully called the “Casazza-
Kalton paradigm” to tackle the uniqueness of unconditional basis problem extended
to quasi-Banach lattices. To be able to prove it in this optimal form (even for locally
convex spaces) has required the very recent solution in the positive of the “canceling
squares” problem (see [1]).

Theorem 3.12 (see [1,Theorem3.9])Let X be a quasi-Banach space with a normalized
unconditional basis X . Suppose that:
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(i) The lattice structure induced by X in X is L-convex;
(ii) The Banach envelope of X is anti-Euclidean;

(iii) X is universal for well complemented block basic sequences; and
(iv) X ∼ X 2.

Then X has a (UTAP) unconditional basis.

3.2 The peaking property

Another technique that has become crucial to determine the uniqueness of uncon-
ditional basis in quasi-Banach spaces is the “large coefficient technique.” It was
introduced by Kalton in [22] to prove the uniqueness of unconditional basis in nonlo-
cally convexOrlicz sequence spaces �F . Kalton called a complemented basic sequence
( yn) in �F inessential if

inf
n
sup

k
| y∗

n(xk)| |x∗
k( yn)| > 0,

and proved that if ( yn) is inessential then it is equivalent to the canonical basis (xk)

of �F .
Kalton’s ideas were extended to the general framework of quasi-Banach lattices in

[25]. Here we reformulate this property and regard it as a feature of the unconditional
basis (xn) of the space instead of the complemented basic sequence ( yn).

Definition 3.13 An unconditional basisX = (xn)n∈N of a quasi-Banach space X will
be said to have the peaking property if for every well complemented basic sequence
Y = ( ym)m∈M with respect to X there is a sequence ( y∗

m)m∈M of good projecting
functionals such that

c := inf
m∈M

sup
n∈N

| y∗
m(xn)| |x∗

n( ym)| > 0. (3.3)

In the case when there is a function γ : [1,∞) → [1,∞) such that γ (C) ≥ 1/c
wheneverY is well C-complemented, we say thatX has the uniform peaking property
(with function γ ).

The proof of Proposition 3.15 below relies on the following reduction lemmawhich
will be used as well in Sect. 4.

Lemma 3.14 (cf. [2, Lemma 3.1]) Let Y = ( ym)m∈M be a well complemented basic
sequence with respect to an unconditional basis X = (xn)n∈N of a quasi-Banach
space X, and let ( y∗

m)m∈M be a sequence of good projecting functionals forY . Suppose
U = (um)m∈M and (u∗

m)m∈M are sequences in X and X∗ respectively such that:

(i) |x∗
n(um)| ≤ D1|x∗

n( ym)| for all (n, m) ∈ N × M,
(ii) |u∗

m(xn)| ≤ D2| y∗
m(xn)| for all (n, m) ∈ N × M, and

(iii) |u∗
m(um)| ≥ 1/D3 for all m ∈ M,
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for some positive constants D1, D2 and D3. Then U is a well complemented basic
sequence equivalent to Y . Quantitatively, if Y is well C-complemented, and X is
K -unconditional, then:

(i) The sequence U is well B-complemented with good B-projecting functionals
(λm u∗

m)m∈M, where B = C D1D2D3K 2 and λm = 1/u∗
m(um); and

(ii) The basic sequence Y (C D1K )-dominates U; and
(iii) the basic sequence U (C D2D3K )-dominates Y .

Proof The proof follows the steps of the proof of [2,Lemma 3.1], keeping track of the
constants involved. ��
Proposition 3.15 (cf. [1, Proposition 3.3]) Let X be a quasi-Banach space with a
normalized unconditional basis X . If X has the peaking property, then X is universal
for well complemented block basic sequences. Moreover, if X is K -unconditional and
has the uniform peaking property with function γ , then X is uniformly universal for
well-complemented block basic sequences with function C �→ K Cγ (C).

Proof Go through the proof of [1, Proposition 3.3] with Lemma 3.14 in mind, paying
attention to the constants involved. ��

The following lemma relies on Lemma 3.14. Given a family X = (xn)n∈N in a
quasi-Banach space X and A ⊆ N finite, we will use the notation

1A[X ] =
∑

n∈A

xn .

Lemma 3.16 (cf. [7, Lemma 4.1]) Suppose X is a normalized K -unconditional basis
of a quasi-Banach space X with dual basis X ∗. Assume that X D-dominates the unit
vector system of �1. If B = 4C2DK 2, then for every normalized C-complemented
basic sequenceU in X there is a well B-complemented basic sequenceY = ( ym)m∈M
in X such that:

(i) supp( ym) ⊆ supp(um) for all m ∈ M;
(ii) Y is E-equivalent to U , where E = 2C K max{C, D}; and

(iii) (1supp( ym )[X ∗])m∈M is a family of good B-projecting functionals for Y .

Proof Just go over the lines of the proof of [1, Lemma 3.6] paying attention to the
constants involved. ��

3.3 Strongly absolute bases

Strong absoluteness was identified by Kalton, Leránoz, andWojtaszczyk in [25] as the
crucial differentiating feature of unconditional bases in quasi-Banach spaces in their
investigation of the uniqueness of unconditional bases. One could say that strongly
absolute bases are “purely nonlocally convex” bases, in the sense that if a quasi-
Banach space X has a strongly absolute basis, then its unit ball is far from being a
convex set and so X is far from being a Banach space. Although the term strongly
absolute for a basis was coined in [25], here we work with a slightly different but
equivalent definition.
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Definition 3.17 An unconditional basis X = (xn)n∈N of a quasi-Banach space X is
strongly absolute if for every constant R > 0 there is a constant C > 0 such that

∑

n∈N
|x∗

n( f )| ‖xn‖ ≤ max

{

C sup
n∈N

|x∗
n( f )| ‖xn‖, ‖ f ‖

R

}

, f ∈ X . (3.4)

If α : (0,∞) → (0,∞) is such that (3.4) holds withC = α(R) for every 0 < R < ∞,
we say that X is strongly absolute with function α.

Note that if we rescale a strongly absolute basis we obtain a strongly absolute basis
with the same function. Note also that a normalized unconditional basisX = (xn)n∈N
is strongly absolute with function α if and only if

‖ f ‖ < R
∑

n∈N
|x∗

n( f )| �⇒
∑

n∈N
|x∗

n( f )| ≤ α(R)max
n∈N

|x∗
n( f )|.

If X = (xn)n∈N is a strongly absolute basis with function α of a quasi-Banach space
X , the normalized basis (xn/‖xn‖)n∈N D-dominates the unit vector basis of �1(N ),
where

D = D(α) = inf
R>0

max

{

α(R),
1

R

}

.

Roughly speaking a normalized (or semi-normalized) unconditional basis is strongly
absolute if and only if it dominates the unit vector basis of �1, and whenever the �1-
norm and the quasi-norm of a vector are comparable then so are the �∞-norm and the
�1-norm of its coordinates.

Adding combinatorial arguments to the methods from [25] enabledWojtaszczyk to
prove the following criterion for spaces with a strongly absolute basis. Needless to say,
he could not count on the Casazza-Kalton paradigm since it had not been discovered
yet.

Theorem 3.18 (See [37, Theorem 2.12]) Let X be a natural quasi-Banach space with
a strongly absolute unconditional basis (xn)n∈N . Assume also that X is isomorphic
to some of its cartesian powers Xs, s ≥ 2. Then all normalized unconditional bases
of X are permutatively equivalent.

For further reference, we record an elementary lemma.

Lemma 3.19 LetX andY be normalized unconditional bases of quasi-Banach spaces
X and Y respectively. Suppose that X is strongly absolute with function α and that Y
D-dominates X . Then Y is strongly absolute with function Dα.

The following proposition guarantees the strongly absoluteness of infinite direct
sums of strongly absolute bases. Some applications in Sect. 7 will rely on it as we
shall see.
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Proposition 3.20 Let L be a sequence space on a set J . Suppose the canonical basis
of L is absolute basis. For each j ∈ J let X j be a K -unconditional basis of a quasi-
Banach space with modulus of concavity at most κ , where κ and K are constants
independent of j . Suppose that there is α such thatX j is strongly absolute with function
α for all j ∈ J . Then X := (

⊕
j∈N X j )L is a strongly absolute unconditional basis

of X := (
⊕

j∈N X j )L. Moreover, if β is a strongly absolute function for the unit
vector system of L, then the map

R �→ γ (R) := β(RD(α))α(Rβ(RD(α))), 0 < R < ∞,

is a strongly absolute function for X .

Proof Without lost of generality we assume that X j is normalized for all j ∈ J so
that X is normalized too. For each j ∈ J let F j be the coefficient transform with
respect to X j . Let β be a strongly absolute function for L. Pick f = ( f j ) j∈J ∈ X
and R ∈ (0,∞) such that

‖ f ‖ = ∥
∥(‖ f j‖) j∈J

∥
∥L ≤ R

∥
∥(‖F j ( f j )‖1) j∈J

∥
∥
1 .

Since, by unconditionality,

∥
∥(‖F j ( f j )‖1) j∈J

∥
∥L ≤ D(α)

∥
∥(‖ f j‖) j∈J

∥
∥L ,

we obtain

‖F( f )‖1 = ∥
∥(‖F( f j )‖1) j∈J

∥
∥
1 ≤ β(RD(α)) sup

j∈J
‖F j ( f j )‖1.

Let k ∈ J be such that ‖Fk( fk)‖1 = sup j∈J ‖F j ( f j )‖1. By unconditionality,

‖ fk‖ ≤ ‖ f ‖L ≤ Rβ(RD(α)) sup
j∈J

‖F j ( f j )‖1 = Rβ(RD(α))‖Fk( fk)‖1,

so that,

sup
j∈J

‖F j ( f j )‖1 = ‖Fk( fk)‖1 ≤ α(Rβ(RD(α)))‖Fk( fk)‖∞.

Since ‖F( f )‖∞ = sup j ‖F j ( f j )‖∞, we obtain

‖F( f )‖1 ≤ γ (R)‖F( f )‖∞.

��
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4 InfiniteL-sums of quasi-Banach spaces, whereL is a sequence
space with a strongly absolute basis

Our first theorem in this section uses the previous ingredients and the language intro-
duced in Sect. 3 to provide, in particular, an extension of [7,Theorem 4.5], which
established the uniqueness of unconditional basis (UTAP) in the spaces �p(�1) for
0 < p < 1.

Theorem 4.1 Let L be a sequence space on a set J . Suppose the canonical basis of
L is absolute basis. For each j ∈ J , let X j be a normalized K -unconditional basis
of quasi-Banach space X j with modulus of concavity at most κ , where K and κ are
independent of j . Suppose that there is a function η : [1,∞) → [1,∞) such that
X j is uniformly universal for well complemented block basic sequences with function
η for all j ∈ J . Then the unconditional basis (

⊕
j∈J X j )L of the infinite direct

sum X := (
⊕

j∈J X j )L is uniformly universal for well complemented block basic
sequences.

Proof We isometrically identify X∗ with V := (⊕ j∈J X∗
j )L∗ via the natural dual

pairing 〈·, ·〉 : V × X → F. For each j ∈ J , let L j : X j → X and L ′
j : X∗

j → V

be the natural ‘inclusion’ maps, and let Tj : X → X j be the natural projection. Set
X j = (x j,n)n∈N j . Let C ∈ [1,∞) and let Y = ( ym)m∈M be a normalized well C-
complemented basic sequence with good C-projecting functionals Y∗ = ( y∗

m)m∈M.
Let (vm)m∈M the corresponding sequence inV via the above described dual mapping.
Set ym = ( y j,m) j∈J and vm = ( y∗

j,m) j∈J for each m ∈ M. Set also

fm = ( y∗
j,m( y j,m))∈J , m ∈ M.

For m ∈ M, we have

1 = y∗
m( ym) = | y∗

m( ym)| = ∣
∣〈vm, ym〉∣∣ =

∣
∣
∣
∣
∣
∣

∑

j∈J
y∗

j,m( y j,m)

∣
∣
∣
∣
∣
∣
≤ ‖ fm‖1

and

‖ fm‖L ≤
∥
∥
∥(‖ y∗

j,m‖ ‖ y j,m‖) j∈J
∥
∥
∥L

≤ sup
j∈J

‖ y∗
j,m‖ ∥

∥(‖ y j,m‖) j∈J
∥
∥L

= ‖vm‖ ‖ ym‖
≤ ‖ y∗

m‖ ‖ ym‖
≤ C .

Hence, if the unit vector system of L is strongly absolute with function α, we have

‖ fm‖∞ ≥ 1

α(C)
, m ∈ M.
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Therefore, there is a map φ : M → J such that

∣
∣
∣
〈
L ′

φ(m)( y
∗
φ(m),m), Lφ(m)( yφ(m),m)

〉∣
∣
∣ = | y∗

φ(m),m( yφ(m),m)| ≥ 1

α(C)

for all m ∈ M. By Lemma 3.14, the sequence (Lφ(m)( yφ(m),m))m∈M is E-equivalent
to Y , where E = α(C)C K . We have, in particular,

1

E
‖ yφ(m),m‖ ≤ 1, m ∈ M.

Set B = E2C K 2 and E ′ = EC K . Applying again Lemma 3.14 gives that

U = (um)m∈M := (Lφ(m)( yφ(m),m)/‖ yφ(m),m‖)m∈M

is a normalized well B-complemented basic sequence E ′-equivalent to Y . For each
j ∈ J put

M j = {m ∈ M : φ(m) = j}.

Composing the projections from X onto X associated to the well complemented basic
sequence (um)m∈M j with the maps L j and Tj we obtain that

Y j = ( y j,m/‖ y j,m‖)m∈M j

is well B-complemented in X j . By assumption, for each j ∈ J there is a
map ν j : M j → N j such that ν j (m) ∈ supp( y j,m) for all m ∈ M j and Y j

is η(B)-equivalent to (x j,ν j (m))m∈M j . By Lemma 3.3, U is η(B)-equivalent to
(Lφ(m)(xφ(m),νφ(m)(m)))m∈M. ��

We are now ready to obtain the main theoretical result of the section.

Theorem 4.2 LetL be an L-convex sequence space on a countable setJ . Let (X j ) j∈J
be an L-convex family of normalized unconditional bases of quasi-Banach spaces
(X j ) j∈J . Suppose that:

(i) X j is uniformly universal for well-complemented block basic sequences with
function η for all j ∈ J ;

(ii) the family of Banach envelopes
(
X̂ j

)
j∈J is anti-Euclidean;

(iii) The unit vector system of L is strongly absolute; and
(iv) one the the following conditions holds:

(a) there is a constant C such that X 2
j ∼C X j for all j ∈ J .

(b) L2 is lattice isomorphic to L, and X j = Y for all j ∈ J and some uncondi-
tional basis Y .

(c) L is subsymmetric, and there is a constant C such that, for each j ∈ J ,
X j ⊂∼C Xk for infinitely many values of k ∈ J .
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Then X = (
⊕

j∈J X j )L has a (UTAP) unconditional basis.

Proof Since the unit vector system of L is strongly absolute, its Banach envelope is
lattice isomorphic to �1. By Proposition 3.8, the Banach envelope of X is isomorphic

to
(⊕

j∈J X̂ j

)

�1
, which is anti-Euclidean by Theorem 3.7. By Theorem 4.1, X =

(
⊕

j∈J X j )L is (uniformly) universal for well complemented block basic sequences.

By Lemma 3.4, X 2 ∼ X . Applying Theorem 3.12 puts an end to the proof. ��
Remark 4.3 A variation of the argument used to prove Theorem 4.1 gives that, if we
replace the hypothesis “X j is uniformly universal for well-complemented block basic
sequenceswith functionη for all j ∈ J ”with “there is a function γ : [1,∞) → [1,∞)

such that X j has the uniform peaking property with function γ ”, we obtain that the
unconditional basis (

⊕
j∈J X j )L of (

⊕
j∈J X j )L has the uniform peaking property.

In particular, any strongly absolute unconditional basis X = (xn)n∈N of any quasi-
Banach space X has the uniform peaking property. Let us see a more direct proof of
this result. For any f ∈ X and f ∗ ∈ X∗ we have

| f ∗( f )| =
∣
∣
∣
∣
∣

∑

n∈N
f ∗(xn) x∗

n( f )

∣
∣
∣
∣
∣
≤

∑

n∈N
| f ∗(xn)| |x∗

n( f )|,

and, if X is K -unconditional and normalized,
∥
∥
∥
∥
∥

∑

n∈N
f ∗(xn) x∗

n( f ) xn

∥
∥
∥
∥
∥

≤ K sup
n∈N

| f ∗(xn)| ‖ f ‖ ≤ K‖ f ∗‖‖ f ‖.

Because of this, if C ∈ (0,∞) is such that ‖ f ∗‖ ‖ f ‖ ≤ C | f ∗( f )|, we obtain

| f ∗( f )| ≤ α(C K ) sup
n∈N

| f ∗(xn)| |x∗
n( f )|,

where α is the strongly absolute function of X . Hence, if ( ym)m∈M is a well-
complemented basic sequence with good C-projecting functionals ( y∗

m)m∈M,

1

α(C K )
≤ inf

m∈M
sup
n∈N

| y∗
m(xn)| |x∗

n( ym)|.

We conclude that X has the uniform peaking property with function C �→ α(C K ).

5 Infinite c0-sums of spaces with strongly absolute bases

The uniqueness of unconditional basis of c0(X)where X is a quasi-Banach space with
a strongly absolute basis was proved in [12]. Here we show that the canonical basis of
c0(X) has the additional property of being uniformly universal for well complemented
basic sequences. This fact will be crucial to deduce in Sect. 7 the uniqueness of
unconditional basis of direct sums of infinitely many copies of the space c0(X).
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Theorem 5.1 For each j ∈ J , let X j be a normalized K -unconditional basis of a
quasi-Banach space X j with modulus of concavity at most κ , where κ and K are
constants independent of j . Suppose that X j is a normalized strongly absolute with
the same function α for all j ∈ J . Then the unconditional basis X = (

⊕
j∈J X j )c0

of (
⊕

j∈J X j )c0 is uniformly universal for well complemented basic sequences.

Proof For each D ∈ [1,∞), let κD ∈ [1,∞) be such that

∥
∥
∥
∥
∥

∑

n∈A

fn

∥
∥
∥
∥
∥

≤ κD for all j ∈ J , fn ∈ BX j , and |A| ≤ D.

Let Y = ( ym)m∈M be a normalized well C-complemented basic sequence with good
C-projecting functionals ( y∗

m)m∈M. Set R = 2C K and, with the same terminology
as in Lemma 6.2, for m ∈ M put

Am =
{

( j, n) ∈ N : |x∗
j,n( y j,m)| ≤ K

Rα(R)

}

,

and

Bm = N \Am .

Since Bm ⊆ supp( ym) for all m ∈ M, (Bm)m∈M is a family of pairwise disjoint finite
subsets of N . If for each j ∈ J , we let Am, j denote the j th-section of Am we have

∣
∣
∣
∣
∣
∣

∑

( j,n)∈Am

x∗
j,n( ym) y∗

m(x j,n)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

j∈J

∑

n∈Am, j

x∗
j,n( y j,m) y∗

j,m(x j,n)

∣
∣
∣
∣
∣
∣

≤
∑

j∈J
‖ y∗

j,m‖
∑

n∈Am, j

|x∗
j,n( y j,m)|

≤ ‖ y∗
m‖ sup

j∈J

∑

n∈Am, j

|x∗
j,n( y j,m)|

≤ ‖ y∗
m‖ sup

j∈J
max

{
K

R
,
‖SAm, j ( y j,m)‖

R

}

≤ K

R
‖ y∗

m‖ ≤ 1

2
.

Hence,

| y∗
m(SBm ( ym))| =

∣
∣
∣
∣
∣
∣

∑

( j,n)∈Bm

y∗
m(x j,n)x∗

j,n( ym)

∣
∣
∣
∣
∣
∣
≥ 1

2
, m ∈ M. (5.1)
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A first consequence of (5.1) is that Bm �= ∅ for all m ∈ M and so

|M | ≤
∣
∣
∣
∣
∣

⋃

m∈M

Bm

∣
∣
∣
∣
∣
, M ⊆ M. (5.2)

In light of Lemma 3.14, inequality (5.1) also gives that (SBm ( ym))m∈M 2C K -
dominates Y . Moreover, since |x∗

j,n( ym)| ≤ K for all m ∈ M and ( j, n) ∈ N ,

∑

( j,n)∈Bm

| y∗
m(x j,n)| ≥ 1

2K
, m ∈ M. (5.3)

Let Bm, j denote the j th section of Bm . Since
∑

n∈N j
|x∗

j,n( ym)| ≤ D(α),

|Bm, j | ≤ D := Rα(R)D(α)

K
, j ∈ J , m ∈ M. (5.4)

Choose an integer N larger than S := α(4Rα(R)C K 2κD), and consider the partition
(M0,Mc) ofM given by

Mc =
{

m ∈ M : | y∗
j,m(x j,n)| ≤ 1

4K DN
for all ( j, n) ∈ Bm

}

and M0 = M\Mc. Pick a map π0 : M0 → N such that π0(m) ∈ Bm , and
| y∗

m(xπ0(m))| > 1/(4K DN ) for all m ∈ M0. Notice that, given n ∈ N and m ∈ M0,

x∗
n(xπ0(m)) = x∗

π0(m)(xn) = 0 if n �= π0(m),

and, if n = π0(m),

|x∗
n(xπ0(m))| = 1 ≤ Rα(R)

K
|x∗

n( ym)|, and

|x∗
π0(m)(xn)| = 1 ≤ 4K DN | y∗

m(xn)|.

Therefore, by Lemma 3.14, ( ym)m∈M0 is E0-equivalent to (xπ0(m))m∈M0 , where

E0 = C K max

{
Rα(R)

K
, 4K N

}

.

Set B j = ∪m∈Mc Bm, j and assume by contradiction that there is j ∈ J such that
|B j | ≥ N . Then, there is M ⊆ Mc with L := |M | ≤ N such that the cardinality of
A = ∪m∈M Bm, j is at least N . By unconditionality,

‖1A[X j ]‖ ≤ Rα(R)‖1M [Ỹ]‖, (5.5)
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where Ỹ = ( ỹm)m∈M is the basis defined by x∗
n( ỹm) = |x∗

n( ym)| for all n ∈ N and
m ∈ M. Notice that, by (5.4),

α j,m :=
∑

n∈Bm, j

| y∗
m(x j,n)| ≤ 1

4K N
, j ∈ J , m ∈ M, (5.6)

and, by (5.3),

∑

j∈J
α j,m ≥ 1

2K
, m ∈ M . (5.7)

Let (mi )
L
i=1 be an enumeration of M . Combining inequalities (5.6) and (5.7) allows

to recursively construct subsets (Ji )
L
i=1 of J such that

1

4N K
≤

∑

j∈Ji

α j,mi ≤ 1

2N K
,

and

Ji

⋂
(

i−1⋃

i ′=1

Ji ′

)

= ∅,

for i = 1, . . . , L .
Set Jm = Ji if m = mi , so that (Jm)m∈M are disjoint subsets of J . Pick signs

(ε j,n)( j,n)∈N such that ε j,n y∗
m(x j,n) = | y∗

m(x j,n)| for all ( j, n) ∈ N and m ∈ M.
The vector

f =
∑

m∈M

∑

j∈Jm

∑

n∈Bm, j

ε j,nx j,n = ( f j ) j∈J

satisfies

y∗
m( f ) =

∑

j∈Jm

α j,m ≥ 1

4K N
, m ∈ M,

and, by (5.4), | supp( f j )| ≤ D for all j ∈ J . Therefore,

‖1M [Ỹ]‖ ≤ 4K 2N

∥
∥
∥
∥
∥

∑

m∈M

y∗
m( f ) ym

∥
∥
∥
∥
∥

≤ 4C K 2N‖ f ‖ ≤ 4C K 2NκD. (5.8)

Combining (5.5) with (5.8) and using that α is a strongly absolute function for X j

yields N ≤ S. This absurdity proves that |B j | ≤ N − 1 for all j ∈ J . Therefore,
the elementary relation
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Bm ⊆
⋃

j∈Jm

{ j} × B j , m ∈ M,

where Jm = { j ∈ J : Bm, j �= ∅}, gives
∣
∣
∣
∣
∣

⋃

m∈M

Bm

∣
∣
∣
∣
∣
≤ (N − 1)

∣
∣
∣
∣
∣

⋃

m∈M

Jm

∣
∣
∣
∣
∣

M ⊆ Mc. (5.9)

Notice that Jm is finite for all m ∈ M. Hence, combining (5.2) with (5.9) permits
to apply Theorem 3.2 to obtain a partition (Mi )

N−1
i=1 of Mc and one-to-one maps

ηi : Mi → J such that ηi (m) ∈ Jm for all i = 1, . . . , N − 1 and all m ∈ Mi . Pick,
for each i = 1, . . . , N −1, a map πi : Mi → N whose first coordinate is ηi such that
πi (m) ∈ Bm for all m ∈ Mi . We infer that (xπi (m))m∈Mi is isometrically equivalent
to the unit vector system of c0.

It is clear that ( ym)m∈Mc C-dominates the the unit vector system of c0(M). And
the other way around,

∥
∥
∥
∥
∥
∥

∑

m∈Mc

am SBm ( ym)

∥
∥
∥
∥
∥
∥

= sup
j∈J

∥
∥
∥
∥
∥
∥

∑

m∈Mc

am SBm, j ( y j,m)

∥
∥
∥
∥
∥
∥

≤ κN−1 sup
m∈Mc

|am | |x∗
j,n( y j,m)|

≤ KκN−1 sup
m∈Mc

|am |

for all (am)m∈Mc ∈ c00(Mc). Summing up, ( ym)m∈Mi is E1-equivalent to
(xπi (m))m∈Mi for all i = 1, . . . , N − 1, where

E1 = 2C K 2κN−1.

This way, the function π : M → N obtained by glueing the functions (πi )
N−1
i=0 shows

that Y is uniformly equivalent to a subbasis of X as desired. ��

6 Infinite �1-sums of spaces with strongly absolute bases

In this section, we generalize the main result from [11] and solve an explicit problem
raised ten years ago in [11, Remark 3.6]. In hindsight, and in light of Theorem 3.18,
it also sets right [11, Corollary 3.4], whose validity seemed to rely on a wrong set of
hypotheses.

Theorem 6.1 For each j ∈ J , let X j be a normalized K -unconditional basis of a
quasi-Banach space X j with modulus of concavity at most κ . Suppose that there
is α such that X j is strongly absolute with function α for all j ∈ J . Then the
unconditional basis X = (

⊕
j∈J X j )�1 of (

⊕
j∈J X j )�1 is uniformly universal for

well-complemented block basic sequences.
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The proof of Theorem 6.1 will be shortened considerably after taking care of the
following lemma.

Lemma 6.2 For each j ∈ J , let X j = (x j,n)n∈N j be a normalized K -unconditional
basis of a quasi-Banach space X j with modulus of concavity at most κ and let
L j : X j → X := (⊕ j∈J X j )�1 be the canonical embedding. For ( j, n) ∈ N :=
∪ j∈J { j} ×N j denote x j,n = L j (x j,n), so that X := (⊕ j∈JX j )�1 = (x j,n)( j,n)∈N .
For each j ∈ J , let X ∗

j = (x∗
j,n)n∈N j denote the dual basis of X j , and let

X ∗ = (x∗
j,n)( j,n)∈N be the dual basis of X . Suppose Y = ( ym)m∈M is a normalized

well C-complemented basic sequence with respect to the normalized unconditional
basis X of X for which ( y∗

m)m∈M = (1supp( ym )[X ∗])m∈M is a family of good C-
projecting functionals. Put ym = ( y j,m) j∈J and set

Jm = { j ∈ J : y j,m �= 0}.

Then:

(a) If X j D-dominates the unit vector system of �1 for all j ∈ J , ( ym)m∈M D-
dominates the unit vector system of �1(M).

(b) If |M | ≤ | ∪m∈M Jm | for every M ⊆ M finite, there is a one-to-one map
π : M → N such that the rearranged subbasis (xπ(m))m∈M of X is isometri-
cally equivalent to the unit vector system of �1 and C-dominates Y .

(c) If

(i) X j is strongly absolute with function α for every j ∈ J , and
(ii) there is M ⊆ M finite and nonempty such that | ∪m∈M Jm | < |M |,
for every R ∈ (0,∞) we have

� := sup
{
|x∗

j,n( y j,m)| : m ∈ M, j ∈ J , n ∈ N j

}
≥ R − C

R α(R)
.

Proof (a) The basis X D-dominates the unit vector system of �1(N ). That is,

∑

( j,n)∈N
|x∗

j,n( f )| ≤ D‖ f ‖, f ∈ X .

For (am)m∈M ∈ c00(M), write f = ∑
m∈M am ym . Then,

∑

m∈M
|am | =

∑

m∈M

∣
∣ y∗

m ( f )
∣
∣

=
∑

m∈M

∑

( j,n)∈supp( ym )

∣
∣
∣x∗

j,n( f )

∣
∣
∣

=
∑

( j,n)∈N

∣
∣
∣x∗

j,n( f )

∣
∣
∣

≤ D‖ f ‖.
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(b) By Theorem 3.2, there is a one-to-one map φ : M → J such that yφ(m),m �= 0
for all m ∈ M. Thus, there is ν : M → ∪ j∈JN j such that ν(m) ∈ Nφ(m) for all m ∈
M and such that x∗

φ(m),ν(m)( ym) �= 0. Define π : M → N by π(m) = (φ(m), ν(m))

for all m ∈ M. Let Tj be the canonical projection of X onto X j . Since, given m ∈ M,
Tj (xπ(m)) �= 0 for at most one j ∈ J , for every (am)m∈M ∈ c00(M) we have

∥
∥
∥
∥
∥

∑

m∈M
am xπ(m)

∥
∥
∥
∥
∥

=
∑

j∈J

∥
∥
∥
∥
∥

∑

m∈M
am Tj (xπ(m))

∥
∥
∥
∥
∥

=
∑

j∈J

∑

m∈M
|am | ‖Tj (xπ(m))‖

=
∑

m∈M
|am |

∑

j∈J
‖Tj (xπ(m))‖

=
∑

m∈M
|am | ‖xπ(m)‖

=
∑

m∈M
|am |.

Let P = P[Y,Y∗] be the projection defined in (3.2). If ( j, n) ∈ sup( ym) for some
m ∈ M,

P(x j,n) =
∑

m′∈M
y∗

m′(x j,n) ym′ =
∑

m′∈M
δm,m′ ym′ = ym .

Hence, if f = ∑
m∈M am ym ,

‖ f ‖ =
∥
∥
∥
∥
∥

P

(
∑

m∈M
am xπ(m)

)∥
∥
∥
∥
∥

≤ C

∥
∥
∥
∥
∥

∑

m∈M
am xπ(m)

∥
∥
∥
∥
∥

.

(c) Note that X j D(α)-dominates the unit vector system of �1(N j ) for all j ∈ J .
PickM0 minimal with | ∪m∈M0 Jm | < |M0| < ∞. Since Jm �= ∅ for all m ∈ M we
have |M0| ≥ 2. Pick m0 ∈ M0 arbitrary and set M = M0\{m0}. By Lemma 6.2 (b),
the unit vector system of �1(M) C-dominates the finite basis ( ym)m∈M . If we set
J = ∪m∈M Jm ,

|M | =
∣
∣
∣
∣
∣
∣

∑

m∈M

∑

( j,n)∈N
x∗

j,n( ym)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

j∈J

∑

n∈N j

x∗
j,n

(
∑

m∈M

y j,m

)∣
∣
∣
∣
∣
∣

≤
∑

j∈J

∑

n∈N j

∣
∣
∣
∣
∣
x∗

j,n

(
∑

m∈M

y j,m

)∣
∣
∣
∣
∣
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≤
∑

j∈J

max

{

α(R) sup
n∈N j

∣
∣
∣
∣
∣
x∗

j,n

(
∑

m∈M

y j,m

)∣
∣
∣
∣
∣
,
1

R

∥
∥
∥
∥
∥

∑

m∈M

y j,m

∥
∥
∥
∥
∥

}

≤
∑

j∈J

max

{

α(R)�,
1

R

∥
∥
∥
∥
∥

∑

m∈M

y j,m

∥
∥
∥
∥
∥

}

≤ |J |α(R)� + 1

R

∑

j∈J

∥
∥
∥
∥
∥

∑

m∈M

y j,m

∥
∥
∥
∥
∥

= |J |α(R)� + 1

R

∥
∥
∥
∥
∥

∑

m∈M

ym

∥
∥
∥
∥
∥

≤ |J |α(R)� + C

R
|M |

Since

|J | ≤ | ∪m∈M0 Jm | ≤ |M0| − 1 = |M |,

we are done. ��
Proof of Theorem 6.1. Let C ∈ [1,∞). Pick R > B := 4C2D(α)K 2, E >

Rα(R)/(R − C) and E ′ = 2C K max{C, D(α)}. Let U be a well C-complemented
basic sequence inX . By Lemma 3.16, there is a well B-complemented basic sequence
Y = ( ym)m∈M in X with good B-projecting functionals

(1supp( ym )[X ∗])m∈M

which is E ′-equivalent to U . With the terminology of Lemma 6.2, put

M0 =
{

m ∈ M : |x∗
j,n( y j,m)| ≤ 1

E
for all ( j, n) ∈ N

}

and

M1 = M\M0.

By Lemma 6.2 there is π0 : M0 → N such that π0(m) ∈ supp( ym) for all m ∈ M0
and ( ym)m∈M0 D(α)-dominates and it is B-dominated by (xπ0(m))m∈M0 . In turn,
there is π1 : M1 → N such that

|x∗
π1(m)( ym)| >

1

E
, m ∈ M1.

Hence, by Lemma 3.14, ( ym)m∈M1 BK -dominates and it is BK E-dominated by
(xπ1(m))m∈M1 . We infer that if

D1 = κC max{BK , D(α)} = 4κC3D(α)K 2,

D2 = κK max{BK E, B} = 4κC2D(α)K 4E,
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and π : M → N is obtained by glueing the functions π0 and π1, U D1-dominates
and it is D2-dominated by (xπ(m))m∈M. ��

Because of its applicability to examples, we shall put an end to this section by
making explicit a uniqueness theorem that is obtained by combining the results on
�1-sums and c0-sums with the Casaza-Kalton paradigm.

Theorem 6.3 Let (X j ) j∈J be an L-convex family of normalized unconditional bases
of quasi-Banach spaces (X j ) j∈J . Suppose that:

(a) X j is strongly absolute with the same function α for all j ∈ J ; and
(b) Either:

(i) There is a constant C such that X 2
j ∼C X j for all j ∈ J , or

(ii) There is a constant C such that, for each j ∈ J , X j ⊂∼C Xk for infinitely
many values of k ∈ N .

Then, the spaces X = (
⊕

j∈J X j )�1 and Y = (
⊕

j∈J X j )c0 have a (UTAP) uncon-
ditional basis.

Proof Since X j D(α)-dominates the unit vector system of �1(N j ) for all j ∈ J ,
the normalized basis X = (

⊕
j∈J X j )�1 of X D(α)-dominates the unit vector sys-

tem of �1(N ). Hence the Banach envelope of X is isomorphic to the anti-Euclidean
space �1(N ). Similarly, the Banach envelope of Y is isomorphic to the anti-Euclidean
space c0(�1) (see [17]). By Theorem 6.1, Theorem 5.1, and Remark 4.3, X and
Y = (

⊕
j∈J X j )c0 are (uniformly) universal for well complemented block basic

sequences. By Lemma 3.4, X 2 ∼ X and Y2 ∼ Y , and so applying Theorem 3.12
concludes the proof. ��

7 Applications and examples

Theorems 4.2 and 6.3, combined with Proposition 3.20, yield a myriad of new exam-
ples of quasi-Banach spaces with a (UTAP) unconditional bases. In this section we
highlight applications only to a sampler of infinite direct sums involving classical
spaces, but the reader is encouraged to create their favourite infinite direct sums and
use our previous results to check that they enjoy the property of uniqueness (UTAP)
of unconditional basis. The possibilities for new examples are endless.

7.1 Lorentz sequence spaces

Let w = (wn)∞n=1 be a sequence of non-negative scalars with w1 > 0 and (sn)∞n=1 be
the primitive weight of w, defined by

sn =
n∑

k=1

wk, n ∈ N.
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Given 0 < p < ∞ and 0 < q ≤ ∞, the Lorentz sequence space dp,q(w) consists of
all f ∈ c0 whose non-increasing rearrangement (an)∞n=1 satisfies

‖ f ‖p,q,w :=
( ∞∑

n=1

(ans1/p
n )q wn

sn

)1/q

< ∞,

with the usual modification if q = ∞. If (sn)∞n=1 is doubling, i.e., supm sm/s�m/2� <

∞, then ‖ · ‖p,q,w is a quasi-norm. In this case, dp,q(w) is a symmetric sequence
space. Moreover, if q < ∞, dp,q(w) is minimal.

In our notation, the Lorentz space dp,p(w) coincideswith the Lorentz space denoted
d(w, p) by Altshuler in [13] (see also [1, 9, 15]). We emphasize that Altshuler only
considered non-increasing weightsw ∈ c0\�1, but this restriction is unnecessary here.

The space dp,∞(w) coincides with the weak Lorentz space denoted d∞(w, p) in
[15]. We will denote by d 0

p,∞(w) the separable part of dp,∞(w), i.e., the closed linear
span of c00 in dp,∞(w).

If 0 < q < r ≤ ∞, we have

dp,q(w) ⊆ dp,r (w), (7.1)

and for all A ⊂ N with |A| = m,

‖1A‖p,q,w ≈ s1/p
m . (7.2)

Thus, it could be said that for fixed p andw, the spacesdp,q(w) are close to eachother in
the sense that all of them share (essentially) the fundamental function of the canonical
basis. This is important to be taken into account when considering embeddings (see
below).

We point out that if 0 < p, q < ∞ and the primitive weight of w′ is (sq/p
n )∞n=1,

then

dp,q(w) = dq,q(w′), (7.3)

up to an equivalent norm. Similarly, if w′ = (w′
n)

∞
n=1 denotes the weight whose

primitive weight is (s1/p
n )∞n=1,

dp,∞(w) = d1,∞(w′).

Thus, every sequence Lorentz space dp,q(w) can be identified, up to an equivalent
quasi-norm, with a Lorentz sequence space d1,q(w′) for a suitable weight w′. The
advantages of establishing results concerning sequence Lorentz spaces in terms of the
scale of spaces d1,q(w), 0 < q ≤ ∞, must be understood in light of (7.1) and (7.2).
For a concise introduction to Lorentz sequence spaces we refer to [3,§9.2]. Next we
focus on the features of these spaces that are of interest for the purposes of this paper.

We next include a proof of the fact that all Lorentz sequence spaces are L-convex.
To that end we need to introduce the following concept.
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We say that a sequence (�(m))∞m=1 of positive scalars has the upper regularity
property (URP for short) if there is r ∈ N such that

�(rn) ≤ r

2
�(n), n ∈ N.

If (�(m))∞m=1 has the URP, then there are 0 < α < 1 and 0 < C < ∞ such that

�(n)

�(m)
≤ C

nα

mα
, m ≤ n

(see [19,§4]). This implies that

m∑

n=1

1

�(n)
≤ C ′ m

�(m)
, m ∈ N, (7.4)

for some constant C ′.
Given r ∈ (0,∞), the r -convexification of a sequence spaceL on a countable setJ

is the sequence space consisting of all f : J → F such that | f |r ∈ L. By definition,
L is lattice p-convex if and only its r -convexification is (pr)-convex. Note that the
r -convexification of dp,q(w) is dpr ,qr (w).

Theorem 7.1 (cf. [27, Theorem 8] and [21, Proposition 1]) Let w be a weight whose
primitive weight (sn)

∞
n=1 is doubling. Then d1,q(w) is L-convex for all 0 < q ≤ ∞.

Proof We will show that d1,q(w) is r -convex for some r > 0. Let C ∈ [1,∞) be such
that s2n ≤ Csn for all n ∈ N. Pick α0 ∈ (0, 1) and k ∈ N such that Cα0 ≤ 21−1/k .
Then, if r = 2k ,

sα
rn ≤ 1

2
rsα

n , n ∈ N, 0 < α < α0.

That is, (sα
n )∞n=1 has the URP and, then, satisfies inequality (7.4) for all 0 < α < α0.

We shall prove that d1,q(w) is lattice r -convex for all 0 < r < min{α0, q}. Set
p = 1/r . In the case when q < ∞, an application of [15, Theorem 2.5.10] gives
that dpq,pq(wq) is locally convex, where wq is the weight whose primitive weight is
(sq

n )∞n=1. Hence, by (7.3), dp,pq(w) is locally convex. In the case when q = ∞, by
[15, Theorem 2.5.11] this result still holds. Taking into account that local convexity
is equivalent to lattice 1-convexity, we infer that d1,q(w) is lattice r -convex. ��

Next we tackle the strong absoluteness of the canonical basis of Lorentz sequence
spaces.

Proposition 7.2 Suppose that the primitive weight (sn)
∞
n=1 of w = (wn)∞n=1 is dou-

bling.

(a) The following are equivalent:

(i) d1,∞(w) is continuously included in �1.
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(ii)
∑∞

n=1 1/sn < ∞.
(iii) The unit vector system is a strongly absolute basis of d 0

1,∞(w).

(b) Let 1 < q < ∞ and let q ′ be its conjugate exponent. Suppose that
∑∞

n=1 w
−q ′+1
n s−1

n < ∞. Then the unit vector system is a strongly absolute basis
of d1,q(w).

(c) Let 0 < q ≤ 1.

(i) d1,q(w) is continuously included in �1 if and only if infn sn/n > 0. Moreover.
(ii) if limn sn/n = ∞, then the unit vector system is a strongly absolute basis of

d1,q(w).
(iii) if infn sn/n > 0 and q < 1, the unit vector system of d1,q(w) is uniformly

universal for well complemented block basic sequences.

Proof The implication (iii) ⇒ (i) in (a) is obvious. If f = (1/sn)∞n=1, we have
‖ f ‖1,∞,w = 1. This yields (i) ⇒ (ii). To prove (b) and the implication (ii) ⇒ (iii) in
(a) we pick 1 < q ≤ ∞ and 0 < R < ∞. Choose m = m(R) ∈ N such that

∞∑

n=m+1

1

w
q ′
n

wn

sn
≤ 1

(2R)q ′ .

Let f ∈ F
N and denote by (an)∞n=1 its non-increasing rearrangement. By Holder’s

inequality,

‖ f ‖1 =
m∑

n=1

an +
∞∑

n=m+1

1

wn
ansn

wn

sn

≤ m‖ f ‖∞ + 1

2R

( ∞∑

n=m+1

aq
n sq

n
wn

sn

)1/q

≤ m‖ f ‖∞ + 1

2R
‖ f ‖1,q,w.

Thus, if ‖ f ‖1,q,w ≤ R‖ f ‖1, we obtain ‖ f ‖1 ≤ 2ma1 = 2m‖ f ‖∞.
As far as (c) is concerned, the “only if” part in (i) is clear. By (7.1), to prove the

converse it suffices to consider the case q = 1. If w′ = (w′
n)∞n=1 is the weight defined

by w′
n = 1 for all n ∈ N, then d1,1(w) ⊆ d1,1(w′). Since d1,1(w′) = �1 we are done.

(ii) is essentially known (see [34, Lemma 4] and [25, Theorem 2.6]). However, as
an explicit proof is not available in the literature, we next include one for the sake
of completeness. Again, by Lemma 3.19, it suffices to consider the case q = 1. Let
R ∈ (0,∞). Choose m ∈ N such that sn ≥ 2Rn for all n ≥ m + 1. If (an)∞n=1 is the
non-increasing rearrangement of f , by Abel’s summation formula,

∞∑

n=1

an =
∞∑

n=1

(an − an+1)n
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≤
m∑

n=1

(an − an+1)n + 1

2R

∞∑

n=m+1

(an − an+1)sn

≤ −mam+1 +
m∑

n=1

an + 1

2R

∞∑

n=1

(an − an+1)sn

≤ m‖ f ‖∞ + 1

2R
‖ f ‖1,1,w.

Therefore, ‖ f ‖1 ≤ 2m whenever ‖ f ‖1,1,w ≤ R‖ f ‖1.
In regards to (iii), we point out that it was proved in [1, Proposition4.2] that d1,q(w)

has the peaking property. A close look at the proof of this result reveals that, in
fact, it has the uniform peaking property. Essentially, this is due to the validity of a
constructive version of the proof of [35, Lemma 3.1]. Specifically, there is a function
ζ : (0,∞) → (0,∞) depending on p and w such that every normalized disjointly
supported sequence ( ym)∞m=1 with respect to (en)

∞
n=1 with lim infm ‖ ym‖∞ < ζ(ε)has

a subsequence that (1+ε)-dominates the unit vector systemof �p . By Proposition 3.15,
(en)

∞
n=1 is uniformly universal for block basic sequences. ��

To complement the theoretical contents of this section we shall introduce lattice
concavity and a quantitative tool from approximation theory that serves in particular
to measure how far an unconditional basis is from the canonical �1-basis. The main
idea is to use embeddings into Lorentz sequence spaces to deduce that certain bases
are strongly absolute.

Given a (semi-normalized) unconditional basis X of a quasi-Banach space X we
define its lower democracy function as

ϕl [X ](m) = inf|A|≥m
‖1A[X ]‖, m ∈ N.

If L is a sequence space, ϕl [L] will denote the lower democracy function of its unit
vector system. The quasi-Banach lattice L is said to be q-concave, 0 < q ≤ ∞, if
there is a nonnegative constant C such that

(
k∑

i=1

‖ fi‖q

)1/q

≤ C

∥
∥
∥
∥
∥
∥

(
k∑

i=1

| fi |q
)1/q

∥
∥
∥
∥
∥
∥

, fi ∈ L.

Any quasi-Banach lattice is trivially ∞-concave.

Theorem 7.3 Let X be a quasi-Banach space with a normalized unconditional basis
X = (xn)∞n=1. Suppose that X induces a q-concave lattice structure on X for some
0 < q ≤ ∞. Let w = (wn)

∞
n=1 be a weight with

sm :=
m∑

n=1

wn ≤ ϕl [X ](m), m ∈ N.
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Then X dominates the unit vector system of d1,q(w), i.e., X continuously embeds into
d1,q(w) via X .

Proof If q = ∞ the result is known (see [4, Lemma 6.1]). Suppose that q < ∞.
Put w′ = (w′

n)
∞
n=1, where w′

n = sq
n − sq

n−1 with the convention that s0 = 0. Let
(an)∞n=1 ∈ c00 such that (|an|)∞n=1 is non-increasing. Put t = |a1| and for each k ∈ N

consider the set

Jk = {n ∈ N : t2−k < |an| ≤ t2−k+1}.

Notice that (Jk)
∞
k=1 is a partition of {n ∈ N : an �= 0}. Set m0 = 0 and for j ∈ N put

m j = ∑ j
k=1 |Jk |, so that J j = {n ∈ N : m j−1 + 1 ≤ n ≤ m j } for all j ∈ N. Define

fk = 2k
∑

n∈Jk

an xn .

By Abel’s summation formula,

f :=
∞∑

n=1

an xn =
∞∑

k=1

2−k fk = 1

2

∞∑

j=1

2− j
j∑

k=1

fk .

Therefore, if C is the q-concavity constant of X and K is its unconditionality basis
constant,

‖ f ‖q ≥ tq

2qCq K q

∞∑

j=1

2− jq sq
m j

= tq

2qCq K q

∞∑

j=1

2− jq
j∑

k=1

∑

n=Jk

w′
n

= (2q − 1)tq

Cq K q

∞∑

k=1

2−kq
∑

n=Jk

w′
n

= (2q − 1)

2qCq K q

∞∑

n=1

|an|qw′
n .

Using (7.3), and taking into account that the concavity constants and the uncondition-
ality constants of (xπ(n))

∞
n=1 are still C and K for any permutation π of N, we are

done. ��
We also need the dual property of URP. A sequence (�(m))∞m=1 of positive scalars

is said to have the lower regularity property (LRP for short) if there is r ∈ N such that

�(rn) ≥ 2�(n) n ∈ N.
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(�(m))∞m=1 has the LRP if and only if (m/�(m))∞m=1 has the URP. Hence a dual
inequality of (7.4) holds, i.e., for any sequence (�(m))∞m=1 with the LRP there is a
constant C such that

m∑

n=1

�(n)

n
≤ C�(m), m ∈ N.

Lemma 7.4 Suppose that a sequence space L on a set J is q-concave for some 0 <

q < ∞. Then ϕl [L] has the LRP.

Proof Let r , m ∈ N, and A ⊆ J with |A| = rm. Pick a partition (A j )
r
j=1 of A with

|A j | = m for all j = 1, . . . , r . If C is the q-concavity constant of L,

‖1A‖L ≥ 1

C

⎛

⎝
q∑

j=1

‖1A j ‖q
L

⎞

⎠

1/r

≥ r1/q

C
ϕl [L](m).

Hence, if we pick r ≥ (2C)q we get ϕl [L](rm) ≥ 2ϕl [L](m). ��
Even without having any information on the concavity of the space X , Proposi-

tion 7.5 below provides an improvement of [1, Proposition 5.6]. In addition to that,
it shows that imposing some nontrivial concavity to the lattice structure allows to
weaken the assumption on the lower democracy function.

Proposition 7.5 Let X be a quasi-Banach space with a normalized unconditional basis
X . Suppose that X induces a q-concave lattice structure, 1 ≤ q ≤ ∞. Denote by q ′
the conjugate exponent of q, and put sm = ϕl [X ](m) for all m ∈ N. Suppose that
either q = 1 and

lim
m

sm

m
= ∞,

or q > 1 and

∞∑

m=1

mq ′−1

sq ′
m

< ∞.

Then X is strongly absolute.

Proof If 1 ≤ q < ∞, applying Lemma 7.4 gives a constant C such that

m∑

n=1

sn

n
≤ Csm, m ∈ N.

Set w = (sn/n)∞n=1 if 1 < q < ∞, and let w be the weight whose primitive weight is
(sm)∞m=1 if q ∈ {1,∞}. Notice that (sm)∞m=1 is doubling (see [3, p. 40]). By Proposi-
tion 7.2, the unit vector system of d1,q(w) is strongly absolute. Then, the result follows
from combining Theorem 7.3 with Lemma 3.19. ��

123



Uniqueness of unconditional basis... Page 33 of 43    35 

Example 7.6 Let w = (wn)
∞
n=1 be a weight whose primitive weight (sn)∞n=1 is dou-

bling.

(i) If
∑∞

n=1 1/sn < ∞, the spaces

�p(d
0
1,∞(w)) = (d 0

1,∞(w) ⊕ · · · ⊕ d 0
1,∞(w) ⊕ · · · )�p ,

d 0
1,∞(w)(�p) = (�p ⊕ · · · ⊕ �p ⊕ · · · )d 0

1,∞(w)

have a (UTAP) unconditional basis for all 0 < p < 1.
(ii) Let 1 < q < ∞ and denote by q ′ its conjugate exponent. Suppose that

∑∞
n=1 w

−q ′+1
n s−1

n < ∞. Then the spaces

�p(d1,q(w)) = (d1,q(w) ⊕ · · · ⊕ d1,q(w) ⊕ · · · )�p ,

d1,q(w)(�p) = (�p ⊕ · · · ⊕ �p ⊕ · · · )d1,q (w)

have a (UTAP) unconditional basis for all 0 < p < 1.
(iii) If infm sn/n > 0, then the space

�p(d1,q(w)) = (d1,q(w) ⊕ · · · ⊕ d1,q(w) ⊕ · · · )�p

has a (UTAP) unconditional basis for all 0 < p < 1 and 0 < q < 1. Recall that
d1,q(w) is, for a different weight w′, the classical space d(q,w′), considered in
[9] (see 7.1).

(iv) Let 0 < q ≤ 1 and suppose that limn sn/n = ∞. Then the spaces �p(d1,q(w))

and d1,q(w)(�p) have a (UTAP) unconditional basis for all 0 < p ≤ 1.

7.2 Orlicz sequence spaces

A normalized Orlicz function is a right-continuous increasing function F : [0,∞) →
[0,∞) such F(0) = 0 and F(1) = 1. The topological vector space built from the
modular

(an)∞n=1 �→
∞∑

n=1

F(|an|)

is the Orlicz sequence space usually denoted by �F . The space �F is locally bounded
if and only if there is p > 0 such that

sup
0<x,t≤1

F(t x)

x p F(t)
< ∞ (7.5)
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(see [22, Proposition 4.2]), in which case �F is complete, i.e., �F is a quasi-Banach
space equipped with the quasi-norm

‖(an)∞n=1‖F = inf

{

ρ > 0 :
∞∑

n=1

F(|an|/ρ) ≤ 1

}

.

Moreover, if (7.5) holds for a given p, then the unit vector system induces a p-convex
lattice structure on �F .

Let G be the “dual” function of F , defined by G(t) = t/F(t) for 0 < t < ∞. A
standard argument gives that (7.5) holds for some p if and only if G is doubling near
the origin, i.e., there is a constant C such that

G(t) ≤ CG(t/2), 0 < t ≤ 1.

Summing up, if G is doubling near the origin, then �F is an L-convex (symmetric)
sequence space. The sequence space �F is minimal if and only F is doubling near the
origin. Moreover �F is contained in �1 if and only if inf0≤t≤1 F(t)/t > 0.

Given a normalized Orlicz such F we define its inverse by

H(s) = sup{t ∈ [0,∞) : F(t) ≤ s}, 0 ≤ s < ∞.

If the dual function G is doubling near the origin, then �F is a symmetric sequence
space.

In order to apply Theorems 4.1 and 6.1 to Orlicz squence spaces it is convenient to
have a criterion that guarantees that the unit vector system of �F is strongly absolute,
which will imply that it is uniformly universal for well complemented block basic
sequences. In some particular cases, the strong absoluteness of the unit vector system
of �F can be derived from Proposition 7.5. However, using specific techniques for this
type of spaces allows to obtain better results. For instance, we will next show that the
unit vector system of most Orlicz sequence spaces contained in �1 is strongly absolute.

Proposition 7.7 Let F be a normalized Orlicz function and set G(t) = t/F(t), 0 <

t < ∞. Suppose that G is doubling near the origin, essentially increasing, and satisfies
limt→0+ G(t) = 0. Then F is doubling near the origin, the Orlicz sequence space �F

is minimal, and the canonical basis is strongly absolute.

Proof Let C ∈ [1,∞) be such that G(s) ≤ CG(t) for all 0 < s ≤ t ≤ 1. Since

F(t) = t

G(t)
≤ Ct

G(s)
= Ct

s
F(s), 0 < s ≤ t ≤ 1,

F is doubling near the origin.
Fix R < ∞ and pick δ > 0 such that G(t) ≤ 1/(RC) for every 0 < t ≤ δ. Given

f = (an)∞n=1 ∈ �F , set u = ‖ f ‖∞ and v = ‖ f ‖�F . Then

w :=
∞∑

n=1

|an| =
∞∑

n=1

vF

( |an|
v

)

G

( |an|
v

)
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≤ CvG
(u

v

) ∞∑

n=1

F

( |an|
v

)

≤ CvG
(u

v

)
.

In the case when u/v ≤ δ we have w ≤ v/R. Otherwise,

w ≤ CvG
(u

v

)
= Cu

F(u/v)
≤ Cu

F(δ)
.

Hence, �F is strongly absolute with function α given by

α(R) = C

F(inf{t : RCG(t) < 1}) , 0 < R < ∞.

��
Let us mention that Kalton [22] (implicitly) proved that if F and its dual function

G are doubling near the origin, G is bounded near the origin, and

lim
ε→0+ inf

0<s<1

−1

log ε

∫ 1

ε

F(sx)

sx2
dx = ∞,

then the unit vector system of theminimal sequence space �F has the peaking property.
It is unclearwhether these assumptions imply that �F has the uniformpeaking property.

Example 7.8 Let F be a normalized Orlicz function and for t > 0 let G(t) = t/F(t).
Assume that F and G are doubling near the origin, that G is essentially increasing,
and that limt→0+ G(t) = 0. Then the following spaces have a (UTAP) unconditional
basis:

(i) �1(�F ) = (�F ⊕ �F ⊕ · · · ⊕ �F ⊕ · · · )1;
(ii) (

⊕∞
n=1 �n

q)�F = (�1q ⊕ �2q ⊕ · · · ⊕ �n
q ⊕ · · · )�F for all 0 < q ≤ 1;

(iii) �F (c0) = (c0 ⊕ c0 ⊕ · · · ⊕ c0 ⊕ · · · )�F ;
(iv) �F (d 0

1,∞(w)) = (d 0
1,∞(w) ⊕ d 0

1,∞(w) ⊕ · · · d 0
1,∞(w) . . . )�F ,

d 0
1,∞(w)(�F ) = (�F ⊕ �F ⊕ · · · �F . . .)d 0

1,∞(w), and �F (c0(d 0
1,∞(w))), where w

is as in Example 7.6 (i).
(v) �F (d1,q(w)) = (d1,q(w) ⊕ d1,q(w) ⊕ · · · d1,q(w) . . .)�F and

d1,q(w)(�F ) = (�F ⊕ �F ⊕ · · · �F . . .)d1,q (w), where w and q are as in Exam-
ple 7.6 (ii) and (iv).

For instance, the uniqueness of unconditional basis in �1(�F ) is an application of
Theorem 6.3. To see (ii) when 0 < q < 1, we just need to apply Theorem 3.18 since
condition (c) in Lemma 3.4 is fulfiled. Then by Proposition 3.20, the canonical basis of
�F (�q) is strongly absolute and equivalent to its square. To show the casewhenq = 1 in
part (ii) and part (iii) however, we need to appeal to Theorem 4.2 and take into account
that the unit vector basis of �1 and c0 is perfectly homogeneous, hence uniformly
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universal for well complemented block basic sequences with function C �→ 1. To
obtain the uniqueness of unconditional basis of the third space in (iv) wemust combine
Theorem 5.1 with Theorem 4.2. The verification of the corresponding hypotheses
leading to the uniqueness property in the remaining cases is totally straightforward,
and so we leave it for the reader.

7.3 Bourgin–Nakano spaces

A Bourgin–Nakano index is a family (pn)n∈N in (0,∞) with p = infn pn > 0. The
Bourgin–Nakano space �(pn) is the quasi-Banach space built from the modular

m(pn) : FN → [0,∞), (an)n∈N �→
∑

n∈N
|an|pn .

If we endow �(pn) with the natural ordering, it becomes a p-convex quasi-Banach
lattice. The separable part h(pn) = [en : n ∈ N ] of �(pn) is a minimal sequence
space. We have �(pn) = h(pn) if and only if supn pn < ∞.

The unit vector system (en)
∞
n=1 of �(pn) is a 1-unconditional basiswhich is universal

for well complemented block basic sequences ( [1, Proposition 4.7]), and which is
strongly absolute if and only if q := lim sup pn < 1. Indeed, this condition implies
that the space embeds naturally into �q and so we can apply Lemma 3.19. Moreover,
the Banach envelope of �(pn) is anti-Euclidean if and only if lim sup pn ≤ 1 (see
[1, Proposition 4.5 and Corollary 4.6]). Combining [1, Lemma 4.3] with Lemma 3.14
gives that the unit vector system of any Bourgin–Nakano space is uniformly universal
for well-complemented block basic sequences with function C �→ 4C2.

Example 7.9 The following spaces have a (UTAP) unconditional basis:

(i) �(pn)(�1) = {(zn)
∞
n=1 : zn ∈ �1 and

∑∞
n=1 ‖zn‖pn

1 < ∞}, where lim sup pn <

1.
(ii) �F (�(pn)) = (�(pn) ⊕ �(pn) ⊕ · · · ⊕ �(pn) ⊕ · · · )�F , where F is an Orlicz

function as in Example 7.8 and lim sup pn ≤ 1.
(iii) �1(�(pn)) = (�(pn) ⊕ �(pn) ⊕ · · · ⊕ �(pn) ⊕ · · · )�q , where lim pn < 1.

Indeed, the uniqueness of unconditional basis in the first example follows from
a direct application of Theorem 4.2, where we use that the canonical basis of �1
is equivalent to its square (condition (iv) (a)). In the second example we use also
Theorem 4.2, but now we employ condition (iv) (b) since, while �(pn) needs not be
lattice isomorphic to its square, �F is. The last case is just a direct application of
Theorem 6.3, since the hypothesis ensures that the canonical basis of �(pn) is strongly
absolute. Note that in the cases (ii) and (iii), the uniqueness of unconditional basis
in the direct sum is obtained without knowing whether the space �(pn) has a unique
unconditional basis or not!
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7.4 Hardy spaces

Because of their importance in Analysis, we single out as well some examples involv-
ing Hardy spaces. For the convenience of the reader we will next state a few known
facts about the spaces Hp(T

d) that we will need in order to apply Theorems 4.2 and
6.3.

The first unconditional bases in Hp(T) for 0 < p < 1 were constructed in [36].
It is remarkable that thanks to them we obtain a manageable expression for the norm
in terms of the coefficients relative to the basis. Namely, if H = (xn)∞n=0 is such a
normalized basis then

∥
∥
∥
∥
∥

∞∑

n=0

an xn

∥
∥
∥
∥
∥

Hp(T)

≈
⎛

⎝
∫ 1

0

( ∞∑

n=0

|an|2h2
n

)p/2
⎞

⎠

1/p

, (an)∞n=1 ∈ c00, (7.6)

where (hn)
∞
n=0 is the classical Haar system on [0, 1] normalized with respect to the

norm in L p([0, 1]). In addition, those bases permit to construct unconditional bases in
Hp(T

d) for d ∈ N bymeans of tensor productswhich satisfy an equivalence analogous
to (7.6). Using those tensored bases, Kalton et al. [25] showed that the spaces Hp(T

d)

and Hp(T
d ′

) with 0 < p < 1 and d, d ′ ∈ N, are isomorphic if and only if d = d ′.
Then it was proved in [37] that all the spaces Hp(T

d) for 0 < p < 1 and d ∈ N have
a (UTAP) unconditional basis.

The canonical basisH of theHardy spaces Hp(T
d), 0 < p < 1, induces a p-convex

lattice structure and satisfies the estimate

m1/p ≈ ϕl
m[H, Hp(T

d)], m ∈ N.

Hence, Proposition 7.5 implies thatH is strongly absolute. This waywe can use Hardy
spaces (or more generally subspaces of Hardy spaces generated by subbases of the
Haar system) to build examples of spaces with a (UTAP) unconditional basis. Given
a (finite or infinite) nonempty subset n ⊆ N, Hn

p (T) denotes the subspace of Hp(T)

generated by Haar functions belonging to layers in n.

Example 7.10 The following spaces have a (UTAP) unconditional basis:

(i) The space Hp(T, d1,q(w)) = d1,q ⊕d1,q(w)⊕· · ·⊕d1,q(w)⊕· · · )Hp , consisting
of all sequences (zn)∞n=1 such that zn ∈ d1,q(w) for all n ∈ N and

⎛

⎝
∫ 1

0

( ∞∑

n=0

‖zn‖2h2
n(t)

)p/2

dt

⎞

⎠

1/p

< ∞,

where p < 1, 0 < q < 1 and the primitive weight (sm)∞m=1 of w satisfies
infm sm/m > 0.

(ii) �F (Hp(T)) = (Hp(T) ⊕ Hp(T) ⊕ · · · ⊕ Hp(T) ⊕ · · · )�F , where F is as in
Proposition 7.7.
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(iii) (
⊕∞

k=1 Hnk
p (T))�1 = (Hn1

p (T) ⊕ Hn2
p (T) ⊕ · · · ⊕ Hnk

p (T) ⊕ · · · )�1 , where 0 <

p < 1 and (nk)
∞
k=1 is an increasing sequence of subsets of N.

Note that in the last example, since there are sets of layers n ⊆ N for which Hn
p (T)

is not isomorphic to its square (see [37]), we must use condition (b) (ii) in order for
all the hypotheses of Theorem 6.3 to be satisfied. As a matter of fact, it is unknown
whether Hn

p (T) has a (UTAP) unconditional basis in the case when it is not isomorphic
to its square (see Theorem 3.18).

7.5 Tsirelson’s space

Casazza and Kalton established in [16] the uniqueness of unconditional basis up to
permutation of Tsirelson’s space T and its complemented subspaces with uncondi-
tional basis as a byproduct of their study of complemented basic sequences in lattice
anti-Euclidean Banach spaces. Their result answered a question by Bourgain et al.
([14]), who had proved the uniqueness of unconditional basis up to permutation of
the 2-convexifyed Tsirelson’s space T (2). Unlike T (2), which is “highly” Euclidean,
the space T is anti-Euclidean. To see the latter requires the notion of dominance,
introduced in [16].

Let X = (xn)
∞
n=1 be a (normalized) unconditional basis of a quasi-Banach space

X . Given f , g ∈ X , we write f ≺ g if m < n for all m ∈ supp( f ) and n ∈ supp(g).
Given D ≥ 1, the basis X is said to be left (resp. right) D-dominant if whenever
( fi )

n
i=1 and (gi )

n
i=1 are disjointly supported families with fi ≺ gi (resp. gi ≺ fi ) and

‖ fi‖ ≤ ‖gi‖ for all i = 1, . . . , n, then ‖∑n
i=1 fi‖ ≤ D‖∑n

i=1 gi‖. As is customary,
if the constant D is irrelevant, we just drop it from the notation. If X is a Banach space
with a left (resp. right) dominant semi-normalized unconditional basis X there is a
unique r = r(X ) ∈ [1,∞] such that �r is finitely block representable in X . In the
case when r(X ) ∈ {1,∞}, X is anti-Euclidean (see [16, Proposition 5.3]).

The canonical basis of the Tsirelson space T is (normalized, 1-unconditional and)
right–dominant (see [16, Proposition 5.12]) with r(T ) = 1. In turn, by [16, Lemma
5.1], the canonical basis of the original Tsirelson’s space T ∗ is left-dominant.

Moreover, by [16, Proposition 5.5] and [18, page 14], the canonical bases of T and
T ∗ (as well as each of their subases) are equivalent to their square. In our language,
[16, Theorem 5.6] says that every left (resp. right) dominant unconditional basis is
universal for well complemented block basic sequences. Combining the arguments
used in its proof with Lemma 3.14 yields the following quantitative result.

Theorem 7.11 Let X = (xk)
∞
k=1 be a left (or right) D-dominant normalized K -

unconditional basis of a quasi-Banach space X with modulus of concavity at most
κ . Then X is uniformly universal for well complemented block basic sequences with
function depending on D, K and κ .

Proof Let us just do the right-dominant case since the left-dominant case is similar.
For that, we first show that there are constants D1 and D2 (depending only on D),
κ and K such that any semi-normalized disjointly supported basic sequence U =
(um)m∈M D2-dominates (a xkm )m∈M and it is D1-dominated by (b x jm )m∈M, where
a = infm ‖um‖, b = supm ‖um‖, jm = min(supp( ym)), and km = max(supp( ym)).
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Indeed, if Am = supp(um)\{ jm}, and (am)m∈M ∈ c00(M),

∥
∥
∥

∑

m∈M
am um

∥
∥
∥ ≤ κ

(∥
∥
∥
∥
∥

∑

m∈M
am SAm (um)

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

∑

m∈M
am x∗

jm (um) x jm

∥
∥
∥
∥
∥

)

≤ κ D

(∥
∥
∥
∥
∥

∑

m∈M
am ‖SAm (um)‖x jm

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

∑

m∈M
am x∗

jm (um) x jm

∥
∥
∥
∥
∥

)

≤ 2κK Db

∥
∥
∥
∥
∥

∑

m∈M
am x jm

∥
∥
∥
∥
∥

.

In turn, if Fm = supp(um)\{km}, there are (λm)m∈M and (γm)m∈M such that a =
κ(λm + γm), 0 ≤ λm ≤ ‖SFm (um)‖, and 0 ≤ γm ≤ |x∗

km
(um)| for all m ∈ M. Hence,

∥
∥
∥

∑

m∈M
am um

∥
∥
∥

≥ 1

K
max

{∥
∥
∥
∥
∥

∑

m∈M
am λm

SFm (um)

‖SFm (um)‖

∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

∑

m∈M
am γm xkm

∥
∥
∥
∥
∥

}

≥ 1

K D
max

{∥
∥
∥
∥
∥

∑

m∈M
am λm xkm

∥
∥
∥
∥
∥

,

∥
∥
∥
∥
∥

∑

m∈M
am γm xkm

∥
∥
∥
∥
∥

}

≥ a

2κ2K D

∥
∥
∥
∥
∥

∑

m∈M
am xkm

∥
∥
∥
∥
∥

.

Pick 0 < λ < 1. Let Y = ( ym)m∈M be a well complemented normalized basic
sequence with good C-projecting functionals Y = ( y∗

m)m∈M. For each m ∈ M there
is km ∈ supp( ym) such that, if Al

m = supp( ym) ∩ [1, km] and Ar
m = supp( ym) ∩

[km,∞),

| y∗
m(SAl

m
( ym))| ≥ λ, | y∗

m(SAr
m
( ym))| ≥ 1 − λ.

By Lemma 3.14, Yr := (SAr
m
( ym))m∈M (C K/(1 − λ))-dominates Y , and Y (C K )-

dominates Y l := (SAl
m
( ym))m∈M. Moreover Y l (C K/λ)-dominates Y , whence

‖SAl
m
( ym)‖ ≥ λ

C K
, m ∈ M.

Therefore, Y l (C K D2/λ)-dominates (xkm )m∈M. Since ‖SAr
m
( ym)‖ ≤ K for all m ∈

M, (xkm )m∈M (K D1)-dominates Yr . Summing up, choosing λ = 1/(1 + κC K )

we infer that X is uniformly universal for well complemented basic sequences with
function
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C �→ 2κC K 3D(1 + κC).

��
Finally, since they are locally convex, both T and T ∗ are trivially L-convex lattices.
Combining the above background information with our main results we show a

couple of examples:

Example 7.12 For 0 < p < 1 and F an Orlicz function as in Proposition 7.7, the
spaces

(i) �p(T ) = (T ⊕ T ⊕ · · · ⊕ T ⊕ · · · )�p and
(ii) �F (T ∗) = (T ∗ ⊕ T ∗ ⊕ · · · ⊕ T ∗ ⊕ · · · )�F

have a (UTAP) unconditional basis.

7.6 Mixed-norm Lebesgue sequence spaces

We close with applications to finite and infinite direct sums of mixed-norm Lebesgue
sequence spaces.

Example 7.13 Suppose (p j )
n
j=1 is a sequence of indexes in (0, 1] with p j = 1 for at

most one j . We consider the space

X = �p1(�p2(· · · �p j (· · · (�pn )))

of recursive direct sums of a finite number of (possibly repeated) sequence spaces
�p j . X is a p-Banach space for p = min j p j , and its canonical basis X is uncon-
ditional and equivalent to its square. Moreover, X induces on X a p-convex lattice
structure, and it dominates the unit vector system of �q , where q := max j p j . Thus,
in the case when q < 1, Lemma 3.19 implies that X is also strongly absolute. There-
fore, by Theorem 3.18, X has a (UTAP) unconditional basis. If we let one (and only
one) of the indexes p j be 1, we need to distinguish two cases. Suppose first that
p1 = 1 and 0 < p j < 1 for 1 < j ≤ n. Then, as before, the canonical basis
of �p2(�p3(· · · �pi (· · · (�pn ))) is strongly absolute and so the uniqueness of uncon-
ditional basis of �1(�p2(· · · �pi (· · · (�pn ))) follows from Theorem 6.3. Now, suppose
that an index other than p1, say p3, is equal to 1. On one hand, the canonical basis of
�p4(�p5(· · · �pi (· · · (�pn ))) is strongly absolute, so that by Theorem 6.1, the canonical
basis of �p3(�p4(�p5(· · · �pi (· · · (�pn ))) is uniformly universal for well-complemented
block basic sequences. On the other hand, since the canonical basis of �p1(�p2) is
strongly absolute, we just need to apply Theorem 4.2.

Remark 7.14 In Example 7.13, the hypothesis that at most one p j = 1 is important for
the validity of the uniqueness result. For instance,we don’t knownwhether �1(�p(�1)))

has a (UTAP) unconditional bases.

Example 7.15 Suppose (p j )
n
j=1 is a sequence of indexes in (0, 1), and let k ∈ [0, n]∩Z.

Then

X = �p1(· · · �p j (· · · (�pk (c0(�pk+1(· · · �pi (· · · (�pn ))))))))
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has a (UTAP) unconditional basis.

Example 7.16 Let (pn)∞n=1 be a one-to-one sequence in (0, 1] with s := infn pn > 0,
and let q ∈ (0, 1]. Consider now the space

X =
( ∞⊕

n=1

�pn

)

�q

= (�p1 ⊕ �p2 ⊕ · · · ⊕ �pn ⊕ · · · )�q .

Note that since �p(�p) = �p isometrically for all p > 0, there is no real restriction in
assuming that the indices p j are not repeated.

The unit vector system Ep of �p is 21/p-equivalent to its square. Moreover, Ep is
perfectly homogeneous, thus uniformly universal for well complemented block basic
sequences with function C �→ 1. Finally, Ep is 1-unconditional and, if we consider
on �p the lattice structure induced by Ep, Mr (�p) = 1 for all r ≤ p. Hence, in the
case when q < 1, the uniqueness of unconditional basis of X is an application of
Theorem 4.2, where the hypothesis (iv) is fulfilled with condition (a).

Suppose now that q = 1 and t := supn pn < 1. The important detail here is that
the canonical basis of �pn is strongly absolute with the same function α. In fact, by
[5,Lemma 3.2], we can choose

α(R) =
{

Rt/(1−t) if R ≥ 1,

Rs/(1−s) if R ≤ 1.

Hence, applying Theorem 6.3 gives that X has a (UTAP) unconditional basis.

Remark 7.17 In Example 7.16, we do not knowwhether X has a (UTAP) unconditional
basis in the case when q = 1 and limn pn = 1. Similarly, in Example 7.15 we do
not know whether X has a (UTAP) unconditional basis in the case when some of the
indices p j are equal to 1.
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27. Kamińska, A., Parrish, A.M.: Convexity and concavity constants in Lorentz andMarcinkiewicz spaces.
J. Math. Anal. Appl., 343(1), 337–351 (2008). https://doi.org/10.1016/j.jmaa.2008.01.034

123

https://doi.org/10.48550/arXiv.1903.11651
https://doi.org/10.48550/arXiv.1903.11651
https://doi.org/10.1016/j.jat.2016.06.005
https://doi.org/10.1016/j.jfa.2020.108871
https://doi.org/10.1007/978-3-319-31557-7
https://doi.org/10.4064/sm150-1-4
https://doi.org/10.1090/S0002-9939-08-09222-8
https://doi.org/10.1016/j.exmath.2010.03.004
https://doi.org/10.1016/j.jmaa.2010.09.048
https://doi.org/10.1007/s11856-011-0060-2
https://doi.org/10.1007/BF02760331
https://doi.org/10.1090/memo/0322
https://doi.org/10.1090/memo/0877
https://doi.org/10.1007/BF02762272
https://doi.org/10.1007/BFb0085267
https://doi.org/10.1007/s00365-002-0525-y
https://doi.org/10.1007/s00365-002-0525-y
https://doi.org/10.1090/S0002-9904-1948-09098-X
https://doi.org/10.1090/S0002-9904-1948-09098-X
https://doi.org/10.1007/PL00004364
https://doi.org/10.1017/S0305004100053342
https://doi.org/10.1017/S0017089500005553
https://doi.org/10.4153/CJM-1986-004-2
https://doi.org/10.4153/CJM-1986-004-2
https://doi.org/10.1007/BF02773786
https://doi.org/10.1007/BF02773786
https://doi.org/10.1017/CBO9780511662447
https://doi.org/10.1017/CBO9780511662447
https://doi.org/10.1016/j.jmaa.2008.01.034


Uniqueness of unconditional basis... Page 43 of 43    35 

28. Leránoz, C.: Uniqueness of unconditional bases of c0(l p), 0<p<1. Studia Math. 102(3), 193–207
(1992)
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