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Abstract
We present a new approach to define a suitable integral for functions with values in quasi-
Banach spaces. The integrals of Bochner and Riemann have deficiencies in the non-locally
convex setting. The study of an integral for p-Banach spaces initiated byVogt is neither totally
satisfactory, since there are quasi-Banach spaces which are p-convex for all 0 < p < 1, so
it is not always possible to choose an optimal p to develop the integration. Our method puts
the emphasis on the galb of the space, which permits a precise definition of its convexity. The
integration works for all spaces of galbs known in the literature.We finish with a fundamental
theorem of calculus for our integral.
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1 Introduction

If X is a non-locally convex space, it is easy to construct a sequence of simple functions

sn : [0, 1] → X, sn(t) =
n∑

m=1

χAm,n (t)xm,n,
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where (Am,n)n
m=1 is a partition of the interval [0, 1] for each n ∈ N, and χ denotes the

characteristic function, such that

sup
1≤m≤n

‖xm,n‖ → 0,
n∑

m=1

μ(Am,n)xm,n � 0,

as n goes to infinity,whereμdenotes theLebesguemeasure (cf. [31,pp. 121–123]). Therefore,
Bochner–Lebesgue integration cannot be extended to non-locally convex spaces. On the other
hand, the definition of the Riemann integral extends verbatim for functions defined on an
interval [a, b]with values in an F-spaceX. However, it has some problems in the non-locally
convex setting. For example, Mazur and Orlicz [28] proved that the F-space X is non-locally
convex if and only if there is a continuous function f : [0, 1] → X which is not Riemann
integrable. But the main drawback is that the Riemann integral operator IR, acting from the
set of X-valued simple functions S([a, b], X) to X by

IR

⎛

⎝
n∑

j=1

x jχ[t j−1,t j )

⎞

⎠ =
n∑

j=1

(t j − t j−1)x j ,

is not continuous when X is not locally convex (see [1,Theorem 2.3]).
An important attempt (somehowmissed in the literature) to develop a theory of integration

based on operators for functions with values in a quasi-Banach-space (i.e. a locally bounded
F-space) was initiated by Vogt [40]. A remarkable theorem of Aoki and Rolewicz [5, 30]
says that any quasi-normed space is p-convex for some 0 < p ≤ 1. The idea of Vogt was
the following. Given a quasi-Banach space X, let 0 < p ≤ 1 be such that X is p-convex.
For this fixed p, he developed a theory of integration based on an identification of tensor
spaces with function spaces (see [40,Satz 4]). Among the papers that approach integration
of quasi-Banach-valued functions from Vogt’s point of view we highlight [27].

The main advantage of Vogt’s integration with respect other approaches to integration
in the non locally convex setting is that it provides a bounded operator from the space of
integrable functions into the target quasi-Banach space. Regarding the limitations, its main
drawback is that it depends heavily on the convexity parameter p chosen, and for some spaces
there is no optimal choice of p. Take, for instance, the weak Lorentz space L1,∞ = L1,∞(R).
This classical space, despite not being locally convex, is p-convex for any 0 < p < 1 (see
[18,(2.3) and (2.6)]).

The concept that permits a precise definition of the convexity of a space was introduced
and developed by Turpin in a series of papers (cf. [36, 37]) and amonograph ([38]) in the early
1970’s. Given an F-space X, its galb, denoted by G (X), is the vector space of all sequences
(an)∞n=1 of scalars such that whenever (xn)∞n=1 is a sequence in X with lim xn = 0, the series∑∞

n=1 an xn converges in X. We say that a sequence space Y galbs X if Y ⊆ G (X). With
this terminology, X is p-convex if and only if �p ⊆ G (X).

The galb of certain classical spaces is known. Turpin [36] computed the galb of locally
bounded, non-locally convex Orlicz function spaces Lϕ(μ), where μ is either a nonatomic
measure or the counting measure, and showed that the result is an Orlicz sequence space �φ

modeled after a different Orlicz function φ. Hernández [13–15] continued the study initiated
by Turpin and computed, in particular, the galb of certain vector-valued Orlicz spaces. The
study of the convexity of Lorentz spaces took a different route. Before Turpin invented the
notion of galb, Stein andWeiss [35] proved that the Orlicz sequence space � log � galbs L1,∞,
and used this result to achieve a Fourier multiplier theorem for L1,∞. Sjögren [33] concluded
the study by (implicitely) proving that G (L1,∞) = � log �. Later on, the convexity type of
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Lorentz spaces L1,q for 0 < q < ∞ was estudied (see [10, 34]). In [9], general weighted
Lorentz spaces were considered.

The geometry of spaces of galbs is quite unknown, however. Probably, themost significant
advance in this direction since seminal Turpin work was made in [19]. Solving a question
raised in [38], Kalton proved that if X is p-convex and is not q-convex for any q > p, then
G (X) = �p .

In this paper, we use galbs to develop a theory of integration for functions taking values in
quasi-Banach spaces in the spirit of Vogt that fits as well as possible the convexity of the target
space. Our construction is closely related to tensor products, and to carry out it we construct
topological tensor products adapted to our neeeds. More precisely, given a quasi-Banach
space X and a σ -finite measure space (Ω,Σ,μ), for an appropriate function quasi-norm λ

over N (see Definition 1) we define the tensor product space X ⊗λ L1(μ) so that there are
bounded linear canonical maps

J : X ⊗λ L1(μ) → L1(μ, X), x ⊗ f 	→ x f , and

I : X ⊗λ L1(μ) → X, x ⊗ f 	→ x
∫

Ω

f dμ.

If I factors through J , that is, there is a map I (defined on the range of J ) such that the
diagram

X ⊗λ L1(μ)

J
I

Lλ
1(μ, X) := J (X ⊗λ L1(μ)) I X

commutes, then I defines a suitable integral for functions in Lλ
1(X). Thus, we say that (λ, X)

is amenable if λ galbs X (i.e., (an)∞n=1 ∈ G (X) whenever λ((an)∞n=1) < ∞) and I factors
through J .

There is a tight connection between the existence of the integral I and the injectivity of
J . In fact, we will prove that if (λ, X) is amenable, then J is one-to-one (see Theorem 5).
This connection leads us to study the injectivity of J . More generally, we consider the map

J : X ⊗λ Lρ → Lρ(X)

associated with the quasi-Banach space X, the function quasi-norm λ and a function quasi-
norm ρ over (Ω,Σ,μ), and we obtain results that generalize those previously obtained for
Lebesgue spaces Lq(μ) and tensor quasi-norms in the sense of �p , 0 < p ≤ q ≤ ∞ (see
[40,Satz 4]).

With the terminology of this paper, Vogt proved that if X is a p-Banach space (see the
precise definition in the next section), 0 < p ≤ 1, then (�p, X) is amenable. So, in order
to exhibit the applicability of the theory of integration developed within this paper, we must
exhibit new examples of amenable pairs. Since the space of galbs of the quasi-Banach space
X arises from a function quasi-norm on N, say λX, the question of whether the pair (λX, X)

is amenable arises. For answering it, one first need to know whether the space of galbs G (X)

is always 1-concave as a quasi-Banach lattice or not. See Questions 2 and 4. As long as there
is no general answer to these questions, we focus on the spaces of galbs that have appeared in
the literature. In Theorem 6, we prove that for all of them Question 4 has a positive answer.
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Once the theory is built, the first goal should be the study of its integration properties. By
construction, our integral behaves linearly and has suitable convergence properties. Hence,
we finish with a fundamental theorem of calculus for our integral (see Theorem 7).

The paper is organized as follows. In Sect. 2, we introduce the terminology and notation
that will be employed. The theory of function norms (i.e., the locally convex setting) has
been deeply developed (cf. [6, 26]). However, even though some generalizations of results
from harmonic analysis to quasi-Banach function spaces are known (see, e.g., [9, 16, 17] for
recent work within this area), a systematic study in the non-locally convex setting is missing.
For that reason, in Sect. 3, we do a brief survey on function quasi-norms covering the most
relevant aspects, and all the results that we need. Section 4 is devoted to galbs. In Sect. 5,
we briefly collect some results on tensor products. In Sect. 6, we present our main results on
integration for functions taking values in quasi-Banach spaces. Finally, in Sect. 7, we give a
fundamental theorem of calculus that improves [1,Theorem 5.2].

2 Terminology

We use standard terminology and notation in Banach space theory as can be found, e.g., in
[3]. The unfamiliar reader will find general information about quasi-Banach spaces in [23].
We next gather the notation on quasi-Banach spaces that we will use.

A quasi-normed space will be a vector space over the real or complex field F endowed
with a quasi-norm, i.e., a map ‖ · ‖ : X → [0,∞) satisfying

(Q.1) ‖x‖ = 0 if and only if x = 0;
(Q.2) ‖t x‖ = |t |‖x‖ for t ∈ F and x ∈ X; and
(Q.3) there is a constant κ ≥ 1 so that for all x and y in X we have

‖x + y‖ ≤ κ(‖x‖ + ‖y‖).

The smallest number κ in (Q.3) will be called the modulus of concavity of the quasi-norm.
If it is possible to take κ = 1 we obtain a norm. A quasi-norm clearly defines a metrizable
vector topology on X whose base of neighborhoods of zero is given by sets of the form
{x ∈ X : ‖x‖ < 1/n}, n ∈ N. Given 0 < p ≤ 1, a quasi-normed space is said to be p-convex
if it has an absolutely p-convex neighborhood of the origin. A quasi-normed space X is
p-convex if and only if there is a constant C such that

∥∥∥∥∥∥

n∑

j=1

x j

∥∥∥∥∥∥

p

≤ C
n∑

j=1

‖x j‖p, n ∈ N, x j ∈ X. (1)

If, besides (Q.1) and (Q.2), (1) holds with C = 1 we say that ‖ · ‖ is a p-norm. Any
p-norm is a quasi-norm with modulus of concavity at most 21/p−1. A p-normed space is
a quasi-normed space endowed with a p-norm. By the Aoki–Rolewicz theorem [5, 30] any
quasi-normed space is p-convex for some 0 < p ≤ 1. In turn, any p-convex quasi-normed
space can be equipped with an equivalent p-norm. Hence, any quasi-normed space becomes,
for some 0 < p ≤ 1, a p-normed space under suitable renorming.

A p-Banach (resp. quasi-Banach) space is a complete p-normed (resp. quasi-normed)
space. It is known that a p-convex quasi-normed space is complete if and only if for every
sequence (xn)∞n=1 in X such that

∑∞
n=1 ‖xn‖p < ∞ the series

∑∞
n=1 xn converges.
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A semi-quasi-norm on a vector space X is a map ‖ · ‖ : X → [0,∞) satisfying (Q.2)
and (Q.3). A standard procedure, to which we refer as the completion method allow us to
manufacture a quasi-Banach from a semi-quasi-norm (see e.g. [2,Sect. 2.2]).

As the Hahn–Banach Theorem depends heavily on convexity, it does not pass through
general quasi-Banach spaces. In fact, there are quasi-Banach spaces as L p([0, 1]) for 0 <

p < 1 whose dual space is null (see [11]). Following [23], we say that the quasi-Banach
space X has point separation property if for every f ∈ X \ {0} there is f ∗ ∈ X

∗ such that
f ∗( f ) �= 0.
Given a σ -finite measure space (Ω,Σ,μ) and a quasi-Banach space X, we denote by

L+
0 (μ) the set consisting of all measurable functions from Ω into [0,∞], and by L0(μ, X)

the vector space consisting of all measurable functions from Ω into X. As usual, we identify
almost everywhere (a.e. for short) coincident functions. We set L0(μ) = L0(μ, F) and

Σ(μ) = {A ∈ Σ : μ(A) < ∞}.
Wedenote byS(μ, X) the vector space consisting of all integrableX-valued simple functions.
That is,

S(μ, X) = span(xχE : E ∈ Σ(μ), x ∈ X).

We say that (Ω,Σ,μ) is infinite-dimensional if S(μ) = S(μ, F) is.
An order ideal in L0(μ) will be a (linear) subspace L of L0(μ) such that the conjugate

function f ∈ L whenever f ∈ L , and max{ f , g} ∈ L whenever f and g are real-valued
functions in L . A cone in L+

0 (μ) will be a subset C of L+
0 (μ) such that for all f , g ∈ C and

all α, β ≥ 0 we have f < ∞ a.e., α f + βg ∈ C, and max{ f , g} ∈ C. It is immediate that if
L is an order ideal in L0(μ), then

L+ := L ∩ L+
0 (μ)

is a cone in L+
0 (μ); and reciprocally, if C is a cone in L+

0 (μ), there is a unique order ideal L
with L+ = C. Namely,

L = { f ∈ L0(μ) : | f | ≤ g for some g ∈ C}.
Given a quasi-Banach space X, we say that a quasi-Banach space U is complemented in

X via a map S : U → X if there is a map P : X → U such that P ◦ S = IdU.
The unit vector system is the sequence (ek)

∞
k=1 in F

N defined by ek = (δk,n)∞n=1, where
δk,n = 1 if k = n and δk,n = 0 otherwise. A block basis sequence with respect to the unit
vector system is a sequence ( fk)

∞
k=1 such that

fk =
nk∑

n=1+nk−1

an en, k ∈ N

for some sequence (an)∞n=1 in F
N and some increasing sequence (nk)

∞
k=0 of non-negative

scalars with n0 = 0.

3 Function quasi-norms

As mentioned in the Introduction, in contrast to the theory of function norms, there is no
systematic study in the non-locally convex setting. In this section, we try to go one step
forward in that direction. We begin with the basic properties of function quasi-norms. Here,
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we do not impose them to satisfy a Fatou property (something that Bennet and Sharpley
[6] do for function norms). We devote a subsection to the study of this property. Then we
study the properties of absolute continuity and domination for function quasi-norms, as well
as Minkowski-type inequalities. We also discuss the use of conditional expectation (via the
notion of leveling function quasi-norms), which will be relevant for the proof of Theorem 5.
We conclude the section with some comments on function quasi-norms overN endowed with
the counting measure, a specially important particular case.

Definition 1 A function quasi-norm over a σ -finite measure space (Ω,Σ,μ) is a mapping
ρ : L+

0 (μ) → [0,∞] such that
(F.1) ρ(t f ) = tρ( f ) for all t ≥ 0 and f ∈ L+

0 (μ);
(F.2) if f ≤ g a.e., then ρ( f ) ≤ ρ(g);
(F.3) if E ∈ Σ(μ), then ρ(χE ) < ∞;
(F.4) for every E ∈ Σ(μ) and every ε > 0, there is δ > 0 such that μ(A) ≤ ε whenever

A ∈ Σ satisfies A ⊆ E and ρ(χA) ≤ δ; and
(F.5) there is a constant κ such that ρ( f + g) ≤ κ(ρ( f ) + ρ(g)) for all f , g ∈ L+

0 (μ).

The optimal κ in (F.5) is called the modulus of concavity of ρ.

Notice that (F.4) implies that ρ(χE ) > 0 for all E ∈ Σ with μ(E) > 0.

Definition 2 A function norm is a function quasi-norm with modulus of concavity 1. More
generally, given 0 < p ≤ 1, a function p-norm is a function ρ : L+

0 (μ) → [0,∞] which
satisfies (F.1)–(F.4), and

(F.6) ρ p( f + g) ≤ ρ p( f ) + ρ p(g) for all f , g ∈ L+
0 (μ).

The inequality a p + bp ≤ 21−p(a + b)p for all a, b ∈ [0,∞] and p ∈ (0, 1] yields that any
function p-norm is a function quasi-norm with modulus of concavity at most 21/p−1.

This generalization of the notion of a function norm follows ideas from [6, 26]. Asides
(F.5), themain differences between our definition and that adopted by Luxemburg and Zaanen
in [26] lie in restricting ourselves to σ -finite spaces, and in imposing condition (F.3), which,
on the one hand, prevents from existing non null sets E on which ρ is trivial (in the sense that
if f ∈ L+

0 (μ) is null outside E then ρ( f ) is either 0 or∞) and, on the other hand, guarantees
the existence of enough functions with finite quasi-norm. Regarding the approach in [6], we
point out that Bennet and Sharpley imposed a function norm to satisfy

(F.7) for every E ∈ Σ(μ) there is a constant C = CE such that
∫

E
f dμ ≤ CEρ( f ), f ∈ L+

0 (μ).

The most natural examples of functions quasi-norms are L p-quasi-norms, 0 < p < ∞,
defined by

f 	→
(∫

Ω

f p dμ

)1/p

, f ∈ L+
0 (μ).

To avoid introducing cumbrous notations, sometimes the symbol L p(μ) will mean the func-
tion quasi-norm defining the space L p(μ) instead of the space itself, and the same convention
will be used for Lorentz and Orlicz spaces. Since, if μ is not purely atomic and 0 < p < 1,
L p(μ) does not satisfy (F.7), imposing this condition to all function quasi-norms is some-
what nonsense in the non-locally convex setting. Thus we impose its natural substitute (F.4)
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instead. Also, unlike Bennet and Sharpley, we do not a priori impose ρ to satisfy Fatou
property (see Sect. 3.1).

Given f ∈ L+
0 (μ) and a function quasi-norm ρ over (Ω,Σ,μ), we set

Ω f (s) = {ω ∈ Ω : f (ω) > s} and ρ f (s) = ρ(χΩ f (s)), s ∈ [0,∞).

Set also Ω f (∞) = {ω ∈ Ω : f (ω) = ∞} and ρ f (∞) = ρ(χΩ f (∞)). If ρ is the function
quasi-norm associated with L1(μ), then μ f := ρ f is the distribution function of f . We say
f has a finite distribution function if μ f (s) < ∞ for all s > 0.

Definition 3 Wesay that a function quasi-normρ is rearrangement invariant if every function
f ∈ L+

0 (μ) with ρ( f ) < ∞ has a finite distribution function, and ρ( f ) = ρ(g) whenever
μ f = μg .

The proof of the following lemma is based on the elementary inequality

sρ f (s) ≤ ρ( f ), f ∈ L+
0 (μ), s ∈ [0,∞].

Lemma 1 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ).

(i) If f ∈ S(μ), then ρ(| f |) < ∞.
(ii) If f ∈ L+

0 (μ) satisfies ρ( f ) < ∞, then f < ∞ a.e.
(iii) If f ∈ L+

0 (μ) satisfies ρ( f ) = 0, then f = 0 a.e.
(iv) Let E ∈ Σ(μ), s > 0, and ε > 0. Then there is δ > 0 such that for all f ∈ L+

0 (μ)

with ρ( f ) ≤ δ we have

μ({ω ∈ E : f (ω) > s}) ≤ ε.

Proof Statement (i) is clear. Now let f ∈ L+
0 (μ). If ρ( f ) is finite, then ρ f (∞) = 0 and

(ii) follows. If ρ( f ) = 0, then ρ f (s) = 0 for all s > 0. Since Ω f (0) = ∪∞
n=1Ω f (2−n), we

obtain (iii). Finally, let E ∈ Σ(μ), s > 0, and ε > 0. By (F.4), there is δ̃ > 0 such that if
A ⊆ E with ρ(χA) ≤ δ̃, then μ(A) ≤ ε. Take δ := sδ̃, and let f ∈ L+

0 (μ) with ρ( f ) ≤ δ.
Set A := {ω ∈ E : f (ω) > s}. Since ρ(χA) ≤ ρ( f )/s ≤ δ̃, we obtain (iv). ��
Definition 4 A function quasi-norm ρ is said to be p-convex if there is a constant C such
that

ρ p(
∑n

j=1 f j ) ≤ C
∑n

j=1 ρ p( f j ), n ∈ N, f j ∈ L+
0 (μ).

Proposition 1 (Aoki–Rolewicz Theorem for function quasi-norms)Any function quasi-norm
is p-convex for some 0 < p ≤ 1. Indeed, if κ is the modulus of concavity we can choose p
such that 21/p−1 = κ .

Proof It goes over the lines of the proof of the Aoki-Rolewicz Theorem (see e.g. [23,Lemma
1.1]). So, we omit it. ��
Definition 5 Given two function quasi-norms ρ and λ over a σ -finite measure space
(Ω,Σ,μ), we say that ρ dominates λ if there is a constant C such that λ( f ) ≤ Cρ( f )

for all f ∈ L+
0 (μ). If ρ dominates and is dominated by λ, we say that ρ and λ are equivalent.

Lemma 2 Let 0 < p ≤ 1, and let ρ be a function quasi-norm. Then ρ is equivalent to a
function p-norm if and only if it is p-convex.
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Proof It is clear that any function p-norm is p-convex, and p-convexity is inherited by
passing to an equivalent function quasi norm. Reciprocally, if ρ is a p-convex function
quasi-norm over a σ -finite measure space (Ω,Σ,μ), then it is immediate that the map
λ : L+

0 (μ) → [0,∞] given by

λ( f ) = inf

⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

j=1

ρ p( f j )

⎞

⎠
1/p

: n ∈ N, f j ∈ L+
0 (μ), f =

n∑

j=1

f j

⎫
⎪⎬

⎪⎭

is a function p-norm equivalent to ρ. ��
Corollary 1 Any function quasi-norm is equivalent to a function p-norm for some 0 < p ≤ 1.

Proof It follows from Proposition 1 and Lemma 2. ��
In light of Corollary 1, it is natural, and convenient in some situations, to restrict ourselves

to function quasi-norms that are function p-norms for some p. However, we emphasize that
some p-convex spaces arising naturally in Mathematical Analysis are given by a function
quasi-norm that is not a p-norm. Take, for instance the 1-convex (i.e., locally convex) function
space Lr ,∞, r > 1. So, whenworking in the general framework of non-locally convex spaces,
it is convenient to know whether a given property pass to equivalent function quasi-norms.

Definition 6 LetX be a quasi-Banach space, and letρ be a function quasi-normover aσ -finite
measure space (Ω,Σ,μ). The space

Lρ(X) = { f ∈ L0(μ, X) : ‖ f ‖ρ := ρ(‖ f ‖) < ∞}.
endowed with the gauge ‖ · ‖ρ will be called the vector-valued Köthe space associated with
ρ and X. The space Lρ = Lρ(F) will be called the Köthe space associated with ρ.

Note that we do not impose the functions in Lρ(X) to be strongly measurable. If ρ is
the function quasi-norm associated to the Lebesgue space L p(μ), 0 < p < ∞, we set
L p(μ, X) := Lρ(X). If A ∈ Σ , we set L p(A, μ, X) := L p(μ|A, X), where μ|A is the
restriction of μ to Σ ∩ P(A). In general, if ρ|A is the function quasi-norm defined by
ρ|A( f ) = ρ( f̃ ), where

f̃ (ω) =
{

f (ω) if ω ∈ A,

0 otherwise,

we set Lρ(A, X) = Lρ|A (X).
It is clear that Lρ is an order ideal in L0(μ). By Lemma 1 (ii), its cone is given by

L+
ρ = { f ∈ L+

0 (μ) : ρ( f ) < ∞}.
Lemma 3 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ) and X

be a quasi-Banach space.

(i) Lρ(X) is a quasi-normed space.
(ii) S(μ, X) ⊆ Lρ(X).
(iii) If we endow L0(μ, X) with the vector topology of the local convergence in measure,

then Lρ(X) ⊆ L0(μ, X) continuously.
(iv) If K is a closed subset of X, then Lρ(K) := { f ∈ Lρ(X) : f (ω) ∈ K a.e. ω ∈ Ω} is

closed in Lρ(X).
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Proof Statements (i), (ii), and (iii) are straightforward from the very definition of function
quasi-norm and Lemma 1. Now let K be a closed subset of X, and let x be a function in
Lρ(X) \ Lρ(K) (assuming that this set is non-empty). There is ε > 0 and A ⊆ Σ with
μ(A) > 0 such that ‖x(a) − k‖ ≥ ε for all a ∈ A and all k ∈ K. Therefore ‖x − y‖ρ ≥
ερ(χA) > 0 for all y ∈ Lρ(K), and we obtain (iv). ��
Lemma 4 Let ρ be a function quasi-norm, and let X be a Banach space. If a sequence (xn)∞n=1
converges to x in Lρ(X), then (‖xn‖)∞n=1 converges to ‖x‖ in Lρ .

Proof It follows from the inequality |‖xn‖ − ‖x‖| ≤ ‖xn − x‖ for all n ∈ N. ��
Proposition 2 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ), let
X be a quasi-Banach space, and let (xn)∞n=1 be a sequence in L0(μ, X) such that limn ‖xn −
x‖ρ = 0 for some x ∈ L0(μ, X). Then, there is a subsequence (yn)∞n=1 of (xn)∞n=1 such that
limn yn = x a.e.

Proof Let (A j )
∞
j=1 be an increasing sequence of finite-measure sets such that xn is null

outside A = ∪∞
j=1A j for all n ∈ N. Then ρ(‖x‖χΩ\A) = 0. Therefore x(ω) = 0 a.e.

ω ∈ Ω \ A. By Lemma 3 (iii), for each j ∈ N there is an increasing sequence (nk)
∞
k=1 such

that limk xnk (ω) = x(ω) a.e. ω ∈ A j . The Cantor diagonal technique yields a subsequence
(yn)∞n=1 of (xn)∞n=1 such that limn yn(ω) = x(ω) a.e. ω ∈ A. ��

3.1 The Fatou property

Definition 7 Suppose that ρ is a function quasi-norm over a σ -finite measure space
(Ω,Σ,μ). We say that ρ has the rough Fatou property if there is a constant C such that
ρ(limn fn) ≤ C limn ρ( fn) whenever ( fn)∞n=1 is non-decreasing sequence in L+

0 (μ). If the
above holds with C = 1 we say that ρ has the Fatou property. We say that ρ has the weak
Fatou property if ρ(limn fn) < ∞whenever the non-decreasing sequence ( fn)∞n=1 in L+

0 (μ)

satisfies limn ρ( fn) < ∞.

Note that Fatou property says that if fn ↗ f then ρ( fn) ↗ ρ( f ), so it does not pass
to equivalent function quasi-norms. In contrast, both rough and weak Fatou property are
preserved. In fact, these two notions are equivalent.

Proposition 3 (cf. [4,Lemma]) If ρ is a function quasi-norm with the weak Fatou property,
then it also has the rough Fatou property.

Proof Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ). By Corol-
lary 1, we can assume without loss of generality that it is a function p-norm for some
0 < p ≤ 1. Suppose that ρ does not have the rough Fatou property. Then, for each
k ∈ N there is a non-decreasing sequence ( fk,n)∞n=1 in L+

0 (μ) with supn ρ( fk,n) ≤ 1 and
ρ(limn fk,n) > 22k/p. The sequence (gn)∞n=1 defined by

gn =
n∑

k=1

2−k/p fk,n, n ∈ N,

is non-decreasing, and we have

2−k/p fk,n ≤ g := lim
n

gn, k ≤ n.
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Then ρ(g) ≥ 2−k/pρ(limn fk,n) > 2k/p for all k ∈ N. That is, ρ(g) = ∞. On the other
hand, since ρ is a function p-norm, ρ p(gn) ≤ ∑n

k=1 2
−k ≤ 1 for all n ∈ N. Therefore ρ

does not have the weak Fatou property. ��
Proposition 4 (cf. [6,Theorem 1.8]) Let λ and ρ be two function quasi-norms over the same
σ -finite measure space. Suppose that ρ has the weak Fatou property. Then ρ dominates λ if
and only if L+

ρ ⊆ L+
λ .

Proof The direct implication is obvious. Suppose now that ρ does not dominate λ. Then there
is a sequence ( fn)∞n=1 in L+

0 (μ) such that 4nρ( fn) < λ( fn) for all n ∈ N. Set

f =
∞∑

n=1

2−n

ρ( fn)
fn .

Using that ρ has the rough Fatou property (due to Proposition 3) and Proposition 1, we obtain
that ρ( f ) < ∞. Since

λ( f ) ≥ sup
n

2−nλ( fn)

ρ( fn)
≥ sup

n
2n = ∞,

the space L+
ρ is not contained in L+

λ . ��
Definition 8 Let 0 < p ≤ 1 and let ρ be a function quasi-norm over a σ -finite measure space
(Ω,Σ,μ). We say that ρ has the Riesz–Fischer p-property if for every sequence ( fn)∞n=1 in
L+
0 (μ) with

∑∞
n=1 ρ p( fn) < ∞ we have ρ(

∑∞
n=1 fn) < ∞.

Lemma 5 (cf. [4,Theorem]) Let ρ be a p-convex function quasi-norm with the weak Fatou
property. Then ρ has the Riesz–Fischer p-property.

Proof Let ( fn)∞n=1 be a sequence in L+
0 (μ) with A := ∑∞

n=1 ρ p( fn) < ∞. If C denotes the
p-convexity constant of ρ, then

ρ

(
m∑

n=1

fn

)
≤ C1/p

(
m∑

n=1

ρ p( fn)

)1/p

≤ C1/p A1/p, m ∈ N.

Hence limm ρ(
∑m

n=1 fn) < ∞, and therefore ρ(
∑∞

n=1 fn) < ∞ (since ρ has the weak Fatou
property). That is, ρ has the Riesz–Fischer p-property. ��
Proposition 5 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ).
Given 0 < p ≤ 1, the following statements are equivalent:

(i) ρ has the Riesz–Fischer p-property;
(ii) there is a constant C such that ρ p(

∑∞
n=1 fn) ≤ C

∑∞
n=1 ρ p( fn) for every sequence

( fn)∞n=1 in L+
0 (μ);

(iii) Lρ is a p-convex quasi-Banach space.

Moreover, the optimal constant in (ii) is the p-convexity constant of Lρ . In particular, Lρ is
a p-Banach space if and only if (ii) holds with C = 1.

Also, we have that any of the previous statements hold for some 0 < p ≤ 1 if and only if

(iv) Lρ(X) is a quasi-Banach space for any (resp. some) nonzero quasi-Banach space X.
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Proof Let us see first that if (i) holds for some 0 < p ≤ 1, then (ii) also holds for the same p.
We use an argument by contradiction. Fix 0 < p ≤ 1 and suppose that there is noC > 0 such
that ρ p(

∑∞
n=1 fn) ≤ C

∑∞
n=1 ρ p( fn) for every sequence ( fn)∞n=1 in L+

0 (μ). This means that
for every k ∈ N there is a sequence ( fk,n)∞n=1 in L+

0 (μ) such that

ρ p

( ∞∑

n=1

fk,n

)
≥ k and

∞∑

n=1

ρ p( fk,n) ≤ 2−k .

Then
∑

(k,n)∈N2 ρ p( fk,n) ≤ 1, and also

ρ p

⎛

⎝
∑

(k,n)∈N2

fk,n

⎞

⎠ ≥ ρ p

( ∞∑

n=1

fk,n

)
≥ k

for all k ∈ N. That is, ρ(
∑

(k,n)∈N2 fk,n) = ∞. Hence ρ does not have the Riesz–Fischer
p-property, as we wanted to prove.

Now suppose that (ii) holds for some 0 < p ≤ 1, and let X be any nonzero quasi-Banach
space. Let us see that Lρ(X) is a quasi-Banach space. By Lemma 3 (i), we already know
that Lρ(X) is a quasi-normed space. To obtain the completeness of the space, notice that it
suffices to prove that the series

∑∞
n=1 fn converges in Lρ(X) for every sequence ( fn)∞n=1 in

Lρ(X) such that
∞∑

n=1

κnpρ p(‖ fn‖) < ∞, (2)

where κ is the modulus of concavity of X. Using (ii) and Lemma 1 (ii), we obtain that∑∞
n=1 κn‖ fn‖ converges a.e. in Ω; say it converges in Ω \ N where μ(N ) = 0. Set gn :=

fnχΩ\N . Obviously ‖gn‖ ≤ ‖ fn‖, so ρ(‖gn‖) ≤ ρ(‖ fn‖) for all n ∈ N. Then (2) is also
true if we put gn instead of fn .

For all M, N ∈ N with M ≥ N , we have ‖∑M
n=N gn‖ ≤ ∑M

n=N κn‖gn‖. Since∑∞
n=1 κn‖gn(t)‖ converges for all t ∈ Ω , (

∑m
n=1 gn(t))∞m=1 is a Cauchy sequence in X.

Therefore
∑∞

n=1 gn(t) =: f (t) converges for all t ∈ Ω . Let us see that
∑∞

n=1 fn converges
to f in Lρ(X).

Notice that if a sequence (xn)∞n=1 converges to x in X, since ‖x‖ ≤ κ‖xn‖ + κ‖x − xn‖,
we have ‖x‖ ≤ κ lim infn‖xn‖. Recall that if two functions u, v in L+

0 (μ) are equal a.e., then
ρ(u) = ρ(v). Hence

ρ

(∥∥∥∥∥ f −
m∑

n=1

fn

∥∥∥∥∥

)
= ρ

(∥∥∥∥∥ f −
m∑

n=1

gn

∥∥∥∥∥

)
= ρ

(∥∥∥∥∥

∞∑

n=m+1

gn

∥∥∥∥∥

)

≤ ρ

(
κ lim inf

M→∞

∥∥∥∥∥

M∑

n=m+1

gn

∥∥∥∥∥

)
≤ κρ

( ∞∑

n=m+1

κn‖gn‖
)

≤ κ

( ∞∑

n=m+1

κnpρ p(‖gn‖)
)1/p

−−−−→
m→∞ 0.

Therefore, Lρ(X) is a quasi-Banach space, as wanted.
Now suppose that Lρ(X) is a quasi-Banach space for some nonzero quasi-Banach space

X. Take a nonzero vector x in X. Since obviously F is isomorphic to {t x : t ∈ F}, which is a
closed subset of X, it follows that Lρ is a quasi-Banach space using Lemma 3 (iv). By the
Aoki-Rolewicz theorem, Lρ is p-convex for some 0 < p ≤ 1. Hence (iv) implies (iii).
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85 Page 12 of 38 J. L. Ansorena, G. Bello

Finally, assume that Lρ is a p-convex (with constant C) quasi-Banach space for some
0 < p ≤ 1. Let ( fn)∞n=1 be a sequence in L+

0 (μ) such that
∑∞

n=1 ρ p( fn) < ∞. Since Lρ is
p-convex (with constant C), for all M, N ∈ N with M ≥ N we have

ρ

(
M∑

n=N

fn

)
≤ C1/p

(
M∑

n=N

ρ p( fn)

)1/p

.

Therefore (
∑m

n=1 fn)∞m=1 is a Cauchy sequence in the quasi-Banach space Lρ(X), so it
converges to a function f in Lρ(X). By Proposition 2, there is a subsequence (

∑m j
n=1 fn)∞j=1

that converges to f a.e., say in Ω \ N where μ(N ) = 0. Since (
∑m

n=1 fn)∞m=1 is non-
decreasing, it follows that it converges to f in Ω \ N . That is,

∑∞
n=1 fn = f a.e., and

therefore ρ(
∑∞

n=1 fn) = ρ( f ) < ∞. Thus ρ has the Riesz–Fischer p-property, and we have
proved that (iii) implies (i).

This completes the proof of the theorem. ��

3.2 Absolute continuity and domination

Definition 9 Suppose that ρ is a function quasi-norm over a σ -finite measure space
(Ω,Σ,μ). We say that f ∈ L+

ρ is absolutely continuous with respect to ρ if

limn ρ( fn) = ρ(limn fn)

for every non-increasing sequence ( fn)∞n=1 in L+
0 (μ) with f1 ≤ f . If the above holds only

in the case when limn fn = 0, we say that f is dominating. We denote by La
ρ (resp. Ld

ρ) the
set consisting of all f ∈ L0(μ) such that | f | is absolutely continuous (resp. dominating).
We say that ρ is absolutely continuous (resp. dominating) if La

ρ = Lρ (resp. Ld
ρ = Lρ). If

χE ∈ La
ρ (resp. Ld

ρ) for every E ∈ Σ(μ), we say that ρ is locally absolutely continuous
(resp. locally dominating).

Notice that domination is preserved under equivalence of function quasi-norms, but
absolute continuity is not. Propostion 6 below yields that if the function quasi-norm is
continuous (in the sense that limn ‖xn‖ρ = ‖x‖ρ whenever (xn)∞n=1 and x in Lρ satisfy
limn ‖xn − x‖ρ = 0), then both concepts are equivalent. Notice that any function p-norm,
0 < p ≤ 1, is continuous. So, the existence of non-continuous function quasi-norms is a
‘pathology’which only occurs in the non-locally convex setting.Wemust point out that, since
it is by no means clear whether absolutely continuous norms are continuous, the terminology
could be somewhat confusing. Notwithstanding, we prefer to use terminology similar to that
it is customary within framework of function norms.

Proposition 6 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ).
Suppose that f ∈ L+

ρ is dominating. Then limn xn = x in Lρ(X) for every quasi-Banach
space X and every sequence (xn)∞n=1 in L0(μ, X) with limn xn = x a.e. and ‖xn‖ ≤ f a.e.
for all n ∈ N.

Proof Let N be a null set such that supn ‖xn(ω)‖ ≤ f (ω) < ∞ and limn xn(ω) = x(ω)

for all ω ∈ Ω \ N . Then ‖x(ω)‖ ≤ κ f (ω) for all ω ∈ Ω \ N , where κ is the modulus of
concavity of the quasi-norm ‖·‖. Set

fn = sup
j≥n

‖x j − x‖χΩ\N , n ∈ N.
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The sequence ( fn)∞n=1 in L+
0 (μ) decreases to 0, and supn fn ≤ κ(κ + 1) f . Consequently,

limn ρ( fn) = 0. Since ‖x j − x‖ρ ≤ ρ( fn) whenever j ≥ n we are done. ��
Proposition 7 (cf. [6,Proposition 3.6])Let ρ be a function quasi-norm over a σ -finite measure
space (Ω,Σ,μ), and let f be a function in L+

ρ . Then, f is dominating if and only if

lim
n

ρ( f χAn ) = 0

whenever the sequence (An)∞n=1 in Σ decreases to ∅.

Proof The direct implication is obvious. Conversely, suppose that ρ( f χAn ) → 0 whenever
(An)∞n=1 decreases to ∅. Let ( fn)∞n=1 be a non-increasing sequence of functions in L+

0 (μ)

such that f1 ≤ f and fn → 0. Let us prove that ρ( fn) → 0. Let κ be the modulus of
concavity of ρ, and fix ε > 0.

Assume first that μ(Ω) < ∞. Then ρ(χΩ) < ∞, and we can set

s = ε

2κρ(χΩ)
.

For each n ∈ N, let Bn = { fn < s} ⊆ Ω . It is a non-decreasing sequence in Σ whose union
is Ω . Since fn ≤ f χΩ\Bn + sχBn , we have

ρ( fn) ≤ κρ( f χΩ\Bn ) + κsρ(χBn ) ≤ κρ( f χΩ\Bn ) + ε/2 < ε

for n sufficiently large.
Now suppose that μ(Ω) = ∞. Let (Ωm)∞m=1 be a non-decreasing sequence in Σ(μ)

whose union is Ω . Take m such that κρ( f χΩ\Ωm ) < ε/2. Since fn ≤ fnχΩm + f χΩ\Ωm ,
using that μ(Ωm) < ∞ and the previous case, we have

ρ( fn) ≤ κρ( fnχΩm ) + κρ( f χΩ\Ωm ) ≤ κρ( fnχΩm ) + ε/2 < ε

for n sufficiently large. ��
Given a function quasi-norm ρ and a set E ∈ Σ we define

Φ[E, ρ](t) = sup{ρ(χA) : A ∈ Σ, A ⊆ E, μ(A) ≤ t},
and we set Φ[ρ] = Φ[Ω,ρ]. Notice that the function Φ[E, ρ] is non-negative and non-
decreasing. In particular, there exists the limit of Φ[E, ρ](t) when t → 0+.

Corollary 2 A function quasi-norm ρ is locally dominating if and only if

lim
t→0+ Φ[E, ρ](t) = 0

for every E ∈ Σ(μ).

Proof If limt→0+ Φ[E, ρ](t) = 0 for every E ∈ Σ(μ), using Proposition 7 we obtain that ρ
is locally dominating. Now assume that s := limt→0+ Φ[E, ρ](t) > 0 for some E ∈ Σ(μ).
Then there is a sequence (An)∞n=1 of measurable subsets of E such that μ(An) ≤ 1/2n and
ρ(χAn ) > s/2 for all n ∈ N. Set Bn = ∪∞

k=n Ak . The sequence (Bn)∞n=1 decreases to a null set
and ρ(χBn ) ≥ s/2 for all n ∈ N, so χB1 is not dominating. Hence ρ is not locally dominating.

��
Definition 10 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ). We
say say L ⊆ Lρ is an order ideal with respect to ρ if it is an order ideal and it is closed in
Lρ .
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Lemma 6 (cf. [6,Theorem 3.8]) Let ρ be a function quasi-norm over a σ -finite measure
space (Ω,Σ,μ). Then Ld

ρ is an order ideal with respect to ρ.

Proof It is straightforward that Ld
ρ is a subspace of L0(μ). If a function f belongs to Ld

ρ ,

obviously f also belongs to Ld
ρ . Let f and g be real-valued functions in Ld

ρ . Set A =
{ω ∈ Ω : | f (ω)| < |g(ω)|}. Let (hn)∞n=1 be a sequence in L+

0 (μ) decreasing to 0 with
h1 ≤ max{| f |, |g|}. Since | f | and |g| are dominating, h1χA ≤ |g|, and h1χΩ\A ≤ | f |, we
obtain that limn ρ(hnχA) = 0 and limn ρ(hnχΩ\A) = 0. Hence limn ρ(hn) = 0. Therefore
max{| f |, |g|} is dominating. This implies that |max{ f , g}| is also dominating, so Ld

ρ is an
order ideal.

Now we prove that Ld
ρ is closed in Lρ . Let ( f j )

∞
j=1 be a sequence in Ld

ρ that converges in

Lρ to a function f . Let (gn)∞n=1 be a non-increasing sequence in L+
0 (μ) with g1 ≤ | f | and

limn gn = 0. Then gn ≤ min{gn, | f j |} + | f − f j | for each j ∈ N. Consequently, if κ is the
modulus of concavity of ρ, we have

ρ(gn) ≤ κρ(min{gn, | f j |}) + κρ(| f − f j |).
Hence limn ρ(gn) = 0. So | f | is dominating, as we wanted to prove. ��
Definition 11 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ). We
denote by Lb

ρ the closure of S(μ) in Lρ . We say that ρ is minimal if Lb
ρ = Lρ .

Lemma 7 (cf. [6,Proposition 3.10]) Let ρ be a function quasi-norm over a σ -finite measure
space (Ω,Σ,μ). Then Lb

ρ is an order ideal with respect to ρ. Moreover Lb,+
ρ is the closure

in Lρ of

C = { f ∈ L+
0 (μ) : ‖ f ‖∞ < ∞, μ f (0) < ∞}.

Proof It is obvious that Lb
ρ is an order ideal in L0(μ), and it is closed in Lρ by definition.

Hence Lb
ρ is an order ideal with respect to ρ.

Let f be a function in C, and set E := {0 < f < ∞} ⊆ Ω . Since μ(E) < ∞,
we have ρ(χE ) < ∞. Fix ε > 0, and let 0 ≤ g ≤ f be a simple function such that
‖ f − g‖∞ < ε/ρ(χE ). Then

ρ( f − g) ≤ ‖ f − g‖∞ρ(χE ) < ε.

This means that C is contained in Lb,+
ρ . Therefore, the closure of C in Lρ is also contained

in Lb,+
ρ . On the other hand, it is obvious that every non-negative simple function which is

finite a.e. belongs to C. So the second part of the statement follows. ��
Proposition 8 (cf. [6,Theorem 3.11]) For any function quasi-norm ρ over a σ -finite measure
space (Ω,Σ,μ) we have Ld

ρ ⊆ Lb
ρ .

Proof It is enough to prove that Ld,+
ρ ⊆ Lb,+

ρ . Let f be a function in Ld,+
ρ . Let (An)∞n=1

be an increasing sequence in Σ(μ) whose union is { f > 0} ⊆ Ω . Pick an increasing
sequence ( f j )

∞
j=1 of measurable positive simple functions with limn fn = f . We have

limn ρ( f − f χAn ) = 0 and lim j ρ( f χAn − f jχAn ) = 0 for each n ∈ N. Since f jχAn ∈ Lb,+
ρ

for all j , n ∈ N, we infer that f ∈ Lb,+
ρ . ��

Corollary 3 A function quasi-norm ρ is locally dominating if and only if Ld
ρ = Lb

ρ . Moreover
if ρ is dominating, then ρ is minimal.
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Proof It is a straightforward consequence of Proposition 8 ��
Since we could need to deal with non-continuous function quasi-norms, we give some

results pointing to ensure that limn ‖xn‖ρ = ‖x‖ρ under the assumption that (xn)∞n=1 con-
verges to x .

Lemma 8 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ) with the
Fatou property, and let ( fn)∞n=1 be a sequence in L+

0 (μ). Then

ρ(lim inf
n

fn) ≤ lim inf
n

ρ( fn).

Proof Just apply Fatou property to infk≥n fk , n ∈ N. ��
Lemma 9 Let ρ be a function quasi-norm with the Fatou property and X be a Banach space.
If x ∈ Lρ(X) and (xn)∞n=1 ⊆ Lρ(X) satisfy supn ‖xn‖ ≤ ‖x‖ and limn ρ(‖xn − x‖) = 0,
then limn ρ(‖xn‖) = ρ(‖x‖).
Proof Since it is obvious that

lim sup
n

ρ(‖xn‖) ≤ ρ(‖x‖),

we will see that ρ(‖x‖) ≤ lim infn ρ(‖xn‖). Let (yn)∞n=1 be a subsequence of (xn)∞n=1 such
that limn ρ(‖yn‖) = lim infn ρ(‖xn‖). Since limn ρ(‖x − yn‖) = 0, by Lemma 4 we have
limn ρ(‖x‖ − ‖yn‖) = 0. Then Proposition 2 guarantees the existence of a subsequence
(zn)∞n=1 of (yn)∞n=1 such that limn‖zn‖ = ‖x‖. Using Lemma 8 we obtain

ρ(‖x‖) = ρ(lim
n

‖zn‖) ≤ lim inf
n

ρ(‖zn‖) = lim
n

ρ(‖yn‖),
as we wanted to prove. ��
Lemma 10 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ) with the
Fatou property, and let X be a Banach space. If x ∈ L0(μ, X) and (xn)∞n=1 ⊆ L0(μ, X) satisfy
limn xn = x a.e., and supn ‖xn‖ ≤ g for some g ∈ La,+

ρ , then limn ρ(‖xn‖) = ρ(‖x‖).
Proof Note that since limn xn = x a.e. and X is a Banach space, we have

lim
n

‖xn‖ = ‖x‖ a.e.

Consider two particular cases. First, suppose that ‖xn‖ ≤ ‖x‖ for all n ∈ N. Obviously,
lim supn ρ(‖xn‖) ≤ ρ(‖x‖). Then, by Lemma 8, ρ(‖x‖) ≤ lim infn ρ(‖xn‖). Second,
suppose that ‖xn‖ ≥ ‖x‖ for all n ∈ N. Obviously, lim infn ρ(‖xn‖) ≥ ρ(‖x‖). Set
gn = supk≥n ‖xk‖. Then g ≥ g1 and (gn)∞n=1 is non-increasing with limn gn = ‖x‖ a.e.
Using the absolute continuity of g, we have lim supn ρ(‖xn‖) ≤ lim ρ(gn) = ρ(‖x‖). In the
general case, set gn = min{‖xn‖, ‖x‖} and hn = max{‖xn‖, ‖x‖}. Then both (ρ(gn))∞n=1
and (ρ(hn))∞n=1 converge to ρ(‖x‖). Since gn ≤ ‖xn‖ ≤ hn , the statement follows. ��
Proposition 9 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ) with
the Fatou property, and let X be a Banach space. If x ∈ L0(μ, X) and (xn)∞n=1 ⊆ L0(μ, X)

satisfy limn‖x − xn‖ρ = 0, and supn ‖xn‖ ≤ g for some g ∈ La,+
ρ , then limn ρ(‖xn‖) =

ρ(‖x‖).
Proof It suffices to prove that any subsequence of (xn)∞n=1 has a further subsequence (yn)∞n=1
with limn ‖yn‖ρ = ‖x‖ρ . But this follows combining Proposition 2 with Lemma 10. ��
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3.3 The role of lattice convexity andMinkowski-type inequalities

Function spaces built from function quasi-norms have a lattice structure. Let ρ be a function
quasi-norm over a σ -finite measure space (Ω,Σ,μ). Given 0 < p ≤ ∞, we say that ρ is
lattice p-convex (resp. concave) if Lρ is. Equivalently, ρ is lattice p-convex (resp. concave)
if and only if there is a constant C such that G ≤ C H (resp. H ≤ CG) for every n ∈ N and
( f j )

n
j=1 in L+

0 (μ), where

G = ρ((
∑n

j=1 f p
j )1/p), H = (

∑n
j=1 ρ p( f j ))

1/p.

If the above holds for disjointly supported families, we say that ρ satisfies an upper (resp.
lower) p-estimate.

If ρ is lattice p-convex, then it is p-convex, where p = min{1, p}. The notions of 1-
convexity and lattice 1-convexity are equivalent. This identification does not extend to p < 1
since there are function quasi-norms over N which are lattice p-convex for no p > 0 (see
[22]). Kalton [21] characterized quasi-Banach lattices (in particular, function quasi-norms)
that are p-convex for some p as those that are L-convex. We say that a function quasi-norm
is L-convex if there is 0 < ε < 1 such that if f and ( f j )

n
j=1 in L+

0 (μ) satisfy

max
1≤ j≤n

f j ≤ f and
1

n

n∑

j=1

f j ≥ (1 − ε) f ,

then max1≤ j≤n ρ( f j ) ≥ ερ( f ).
Given 0 < r < ∞, the r-convexified quasi-norm ρ(r) is defined by

ρ(r)( f ) = ρ1/r ( f r ).

It is straightforward to check that ρ(r) is a function quasi-norm. If ρ has the Fatou (resp. weak
Fatou) property, then ρ(r) does have. If ρ is p-convex (resp. concave), then ρ(r) is pr -convex
(resp. concave). We set

L(r)
ρ = Lρ(r) .

A question implicit in Sect. 3.2 is whether any p-convex function quasi-norm with the weak
Fatou property is equivalent to a function p-normwith the Fatou property. For function norms
the answer to this question is positive, and its proof relies on using the associated gauge ρ′
given by

ρ′( f ) = sup

{∫

Ω

f g dμ : g ∈ L+
0 (μ), ρ(g) ≤ 1

}
.

In fact, we have the following analogue of [6,Theorem 2.2 of Chapter 1].

Lemma 11 Let ρ be a function quasi-norm fulfiling (F.7). Then ρ′ is a function norm with
the Fatou property.

Proof It is a routine checking. ��
Theorem 1 (cf. [6] and [41,Theorem 112.2]) Let ρ be a function norm with the weak Fatou
property. Suppose that ρ satisfies (F.7). Then ρ′′ is equivalent to ρ. Moreover, if ρ has the
Fatou property, then ρ′′ = ρ.

In the non-locally convex setting, it is hopeless to try to obtain full information for ρ from
the associated function norm ρ′. Nonetheless, the following is a partial positive answer to
the aforementoned question.
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Proposition 10 Let 0 < p < ∞ and let ρ be a function quasi-norm over a σ -finite measure
space (Ω,Σ,μ). Suppose that ρ is p-convex, has the weak Fatou property, and that for every
E ∈ Σ(μ) there is a constant CE such that

∫
E f p dμ ≤ CEρ( f ) for all f ∈ L+

0 (μ). Then
ρ is equivalent to a function p-norm with the Fatou property. In fact, there is G ⊂ L+

0 (μ)

such that ρ is equivalent to the function quasi-norm λ given by

λ( f ) = sup
g∈G

(∫

Ω

f pg dμ

)1/p

.

Proof The function quasi-norm ρ(1/p) is 1-convex and, then, equivalent to a function norm
σ . The properties of ρ yields that σ satisfies (F.7) and has the weak Fatou property. By
Theorem 1, σ is equivalent to the function norm σ ′′. Consequently, ρ is equivalent to the
function quasi-norm λ = σ ′′(p). Hence, the result holds with G = {g ∈ L+

0 (μ) : σ ′(g) ≤ 1}.
��

Definition 12 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ), and
let (Θ, T , ν) be another σ -finite measure space. Given f ∈ L+

0 (μ ⊗ ν) and g ∈ L+
0 (ν ⊗ μ)

we set

ρ[1, f ] : Θ → [0,∞], ρ[1, f ](θ) = ρ( f (·, θ)); and

ρ[2, g] : Θ → [0,∞], ρ[2, g](θ) = ρ(g(θ, ·)).

The following proposition is related to the results in [25, 39].

Proposition 11 Let ρ be a locally absolutely continuous function quasi-norm over a σ -finite
measure space (Ω,Σ,μ) with the Fatou property. Let (Θ, T , ν) be another σ -finite measure
space. Let f ∈ L+

0 (μ ⊗ ν) and g ∈ L+
0 (ν ⊗ μ). Then ρ[1, f ] and ρ[2, g] are measurable

functions.

Proof It suffices to prove the result for f . The Fatou property yields that if the result holds
for a non-decreasing sequence ( fn)∞n=1, then it also holds for limn fn . Consequently, we can
suppose that μ(Ω) < ∞ and that f is a measurable simple function. Given a measurable
simple positive function f we denote by M f the set consisting of all E in the product σ -
algebraΣ ⊗T such that the result holds for f + tχE for every t ≥ 0. The absolute continuity
and the Fatou property yields thatM f is amonotone class for anymeasurable simple function
f . Therefore, if R denotes the algebra consisting of all finite disjoint unions of measurable
rectangles, the monotone class theorem yields that R ⊆ M f implies Σ ⊗ T ⊆ M f . Let
Cr denote the cone consisting of all positive functions measurable with respect to R. Given
n ∈ N, let C[n] be the cone consisting of all measurable non-negative functions which take
at most n − 1 different positive values. It is straightforward to check that the result holds for
all functions in Cr (which is clearly equal to Cr + C[1]). Suppose that the result holds for all
functions in Cr + C[n]. ThenR ⊆ M f for all f ∈ Cr + C[n]. Consequently, Σ ⊗ T ⊆ M f

for all f ∈ Cr + C[n]. In other words, the result holds for all functions in Cr + C[n + 1]. By
induction, the result holds for every f ∈ C := ∪∞

n=1Cr + C[n]. Since C is the cone consisting
of all measurable simple non-negative functions, we are done. ��

Proposition 11 allows us to iteratively apply function quasi-noms to measurable functions
defined on product spaces. A Minkowski-type inequality is an inequality that compares the
gauges that appear when iterating in different ways.
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Definition 13 Let ρ and λ be locally absolutely continuous function quasi-norms with the
Fatou property over σ -finite measure spaces (Ω,Σ,μ) and (Θ, T , ν) respectively. Given
f ∈ L+

0 (μ ⊗ ν) we set

(ρ, λ)[1, 2]( f ) = ρ(λ[2, f ]), (λ, ρ)[2, 1]( f ) = λ(ρ[1, f ]).
We say that the pair (ρ, λ) has the Minkowski’s integral inequality (MII for short) property
if there is a constant C such that

(ρ, λ)[1, 2]( f ) ≤ C(λ, ρ)[2, 1]( f )

for all f ∈ L+
0 (μ ⊗ ν).

The following result is obtained from the corresponding one for function norms [32]. We
do not know whether a direct proof which circumvent using lattice convexity is possible.

Theorem 2 Let ρ and λ be locally absolutely continuous L-convex function quasi-norms
with the Fatou property. Then (ρ, λ) has the MII property if and only if there is 0 < p ≤ ∞
such that λ is lattice p-convex and ρ is lattice p-concave.

Proof Pick 0 < s < ∞ such that ρ(s) and λ(s) are 1-convex. Since

(ρ(s), λ(s))[1, 2]( f ) = (
(ρ, λ)[1, 2]( f s)

)1/s
,

(ρ, λ) has the MII property if and only if (ρ(s), λ(s)) does have. It turn, by [32,Theorems
2.3 and 2.5], (ρ(s), λ(s)) has the MII property if and only if there is q ∈ (0,∞] such that
λ(s) is lattice q-convex and ρ(s) is lattice q-concave. This latter condition is equivalent to the
existence of p ∈ (0,∞] (related with q by q = sp) as desired. ��

Given 0 < p < ∞ and a σ -finite measure space (Ω,Σ,μ), the Lebesgue space L p(μ)

is absolutely continuous and lattice p-convex. Moreover, if μ is infinite-dimensional, then
L p(μ) is not lattice q-concave for any q < p. Consequently, we have the following.

Proposition 12 Let 0 < p < ∞ and ρ be a locally absolutely continuous L-convex func-
tion quasi-norm over an infinite-dimensional σ -finite measure space. Given another σ -finite
measure space (Ω,Σ,μ) such that L0(μ) is infinite-dimensional, the pair (ρ, L p(μ)) has
the MII property if and only if ρ is lattice p-concave.

Another Köthe space of interest for us is the weak Lorentz space L1,∞(μ) defined from
the function quasi-norm

f 	→ sup
s>0

sμ f (s) = sup
s>0

sμ{ω ∈ Ω : f (ω) ≥ s}, f ∈ L+
0 (μ).

We will denote by ‖ · ‖1,∞ the quasi-norm in L1,∞(μ). We infer from the properties of the
distribution function that L1,∞(μ) is continuous, has the Fatou property, and it is locally
dominating. Kalton [20] proved that then L1,∞([0, 1]) is lattice p-convex for any p < 1. We
emphasize that the milestone paper [21] allows to achieve this convexity result regardless
the σ -finite measure space (Ω,Σ,μ). In fact, given 0 < p < 1, the p−1/2-convexified
of L1,∞(μ), namely the Lorentz space L p−1/2,∞, is locally convex [18]. Therefore, by
[21,Theorem 2.2], L p−1/2,∞ is lattice p1/2-convex. Consequently, L1,∞(μ) is lattice p-
convex. Since L1,∞(μ) is not locally convex unless finite-dimensional [18], we have the
following.

Theorem 3 Let ρ be a locally absolutely continuous L-convex function quasi-norm, and let
(Ω,Σ,μ) an infinite-dimensional σ -finite measure space. Then the pair (ρ, L1,∞(μ)) has
the MII property if and only if ρ is p-concave for some p < 1.
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3.4 Conditional expectation in quasi-Banach function spaces

Given a sub-σ -algebra Σ0 ⊆ Σ , we denote by L+
0 (μ,Σ0) the set consisting of all non-

negative Σ0-measurable functions. Given f ∈ L+
0 (μ) there is a unique g ∈ L+

0 (μ,Σ0) such
that

∫
A f dμ = ∫

A g dμ for all A ∈ Σ0. We say that g is the conditional expectation of f
with respect to Σ0, and we denote E( f ,Σ0) := g.

Definition 14 Let ρ be a function quasi-norm over a σ -finite measure space (Ω,Σ,μ). We
say that ρ is leveling if there is a constant C such that ρ(E( f ,Σ0)) ≤ Cρ( f ) for every finite
sub-σ -algebra Σ0 and every f ∈ L+

0 (μ).

This terminology follows that used in [12]. We remark that Ellis and Halperin imposed
leveling function norms to satisfy the above definition with C = 1. Not imposing conditional
expectations to be contractive turns the notion stable under equivalence.

Given a function quasi-norm ρ, a sub-σ -algebra Σ0, and a quasi-Banach space X, we
denote by Lρ(Σ0, X) the space consisting of all Σ0-measurable functions in Lρ(X). Note
that, if ρ|Σ0 is the restriction of ρ to Σ0, then Lρ(Σ0, X) = Lρ|Σ0

(X). For further reference,
we write down an elementary result.

Lemma 12 Let ρ be a leveling function quasi-norm over a σ -finite measure space (Ω,Σ,μ).
Then there is a constant C such that for any finite sub-σ -algebra Σ0 there is positive projection
T : Lρ → Lρ(Σ0) such that ‖T ‖ ≤ C and

∫
A f dμ = ∫

A T ( f ) dμ whenever f ≥ 0 or∫
A | f | dμ < ∞.

Definition 15 If ρ, Σ0 and T are as in Lemma 12, we denote E[ρ,Σ0] := T .

Lemma 13 Leveling function quasi-norms satisfy (F.7).

Proof Suppose that ρ is a leveling function quasi-norm over a σ -finite measure space
(Ω,Σ,μ). Given A ∈ Σ(μ) with μ(A) > 0, let Σ0 be the smallest σ -algebra contain-
ing A. For all f ∈ L+

0 (μ) we have

∫

A
f dμ ≤ μ(A)

ρ(χA)
ρ(E( f ,Σ0)) ≤ C

μ(A)

ρ(χA)
ρ( f ).

��

It is known that, if q ≥ 1, Lq(μ) has the conditional expectation property. Locally convex
Lorentz and Orlicz spaces do have. More generally, we have the following. Recall that a
measure space is said to be resonant if either is non-atomic or it consists of equi-measurable
atoms.

Theorem 4 Let ρ be a rearrangement invariant function norm over a resonant measure space.
If ρ satisfies (F.7), then it is leveling.

Proof By Calderón-Mitjagin Theorem (see [8, 29], and also [6,Theorem 2.2]), Lρ is an
interpolation space between L1 and L∞. Since both L1 and L∞ are leveling, the result
follows by interpolation. ��
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3.5 Function quasi-norms overN

Suppose that ρ is a function quasi-norm over N endowed with the counting measure. In this
particular case, ρ is locally dominating, and the space of integrable simple functions is the
space c00 consisting of all eventually null sequences. Concerning the density of c00 in Lρ

we have the following.

Proposition 13 Let ρ be a function quasi-norm over N. Then ρ is not minimal if and only if
�∞ is a subspace of Lρ , in which case Lρ has block basic sequence equivalent to the unit
vector system of �∞.

Before tackling the proof of Proposition 13 we give an auxiliary lemma that will be used
a couple of times.

Lemma 14 Let ρ be a function quasi-norm over N and let (an)∞n=1 be a sequence in Lρ .
Then (an)∞n=1 does not belong to Lb

ρ if and only there is an increasing sequence (mk)
∞
k=1 of

non-negative integers such that

infk∈N ρ((|an |)m2k
n=1+m2k−1

) > 0.

Proof Use that (an)∞n=1 ∈ Lρ \ Lb
ρ if and only if the series

∑∞
n=1 an en does not converge. ��

Proof of Proposition 13 Assume that Lb
ρ �= Lρ . By Lemma 14, there is (an)∞n=1 in [0,∞)N

such that, if

xk = ∑m2k
n=1+m2k−1

an en, k ∈ N,

then infk ‖xk‖ρ > 0 and supm ‖ ∑m
k=1 xk‖ρ < ∞. So, (xk)

∞
k=1 is a block basic sequence as

desired. ��
Corollary 4 Let ρ be a function quasi-norm over N. If ρ satisfies a lower p-estimate for some
p < ∞, then ρ is minimal and L-convex.

Proof Our assumptions yields that �∞ is not finitely represented in Lρ by means of block
basic sequences. Then, result follows from Proposition 13 and [21,Theorem 4.1]. ��

Notice that function quasi-norms overN are closely related to unconditional bases. In fact,
if ρ is a function quasi-norm over N, then the unit vector system (en)∞n=1 is an unconditional
basis of Lb

ρ . Reciprocally, if (xn)∞n=1 is an unconditional basis of a quasi-Banach space X,
then the mapping

ρ
(
(an)∞n=1

) = sup

{∥∥∥∥∥

∞∑

n=1

bn xn

∥∥∥∥∥ : (bn)∞n=1 ∈ c00, ∀ n ∈ N |bn | ≤ |an |
}

defines a function quasi-norm over N, and the linear map given by xn 	→ en extends to an
isomorphism from X onto Lb

ρ .

4 The galb of a quasi-Banach space

In this section, we deal with function quasi-norms associated with galbs of quasi-Banach
spaces.
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Definition 16 A function quasi-norm over N is said to be symmetric (or rearrangement
invariant) if ρ( f ) = ρ(g) whenever g = (bn)∞n=1 is a rearrangement of f = (an)∞n=1, i.e.,
there is a permutation π of N such that bn = aπ(n) for all n ∈ N.

The symmetry of ρ allows us to safely define ρ( f ) for any countable family of non-negative
scalars f = (a j ) j∈J . In the language of bases, if ρ is a symmetric function-quasi-norm, then
the unit vector system is a 1-symmetric basis of Lb

ρ .

Definition 17 Given a quasi-Banach space X and a sequence f = (an)∞n=1 in [0,∞]N we
define

λX( f ) = sup

{∥∥∥∥∥

N∑

n=1

an xn

∥∥∥∥∥ : N ∈ N, ‖xn‖ ≤ 1

}

if an < ∞ for all n ∈ N, and λX( f ) = ∞ otherwise.

Proposition 14 Let X be a quasi-Banach space. Then λX is a symmetric function quasi-norm
with modulus of concavity at most that of X. Moreover,

(i) λX is locally absolutely continuous.
(ii) λX has the Fatou property.
(iii) If Y is a subspace of X, then λX dominates λY.
(iv) If X and Y are isomorphic, then λX and ρY are equivalent.
(v) (λX, λX)[1, 2] dominates λX (regarded as a function quasi-norm over N

2).
(vi) If X is a p-Banach space, 0 < p ≤ 1, then λX is a function p-norm.
(vii) If X a p-convex quasi-Banach lattice, 0 < p ≤ 1, then λX is lattice p-convex.

Proof We will prove (vii), and we will leave the other assertions, which are reformulations
of results from [38], as an exercise for the reader. Let X be a p-convex quasi-Banach lattice.
Recall that the lattice structure of the space allows to define the absolute value |x | of any
vector x ∈ X (cf. [24,Chapter 1]). Notice that �1 is a p-convex lattice, that is, we have

∞∑

n=1

⎛

⎝
J∑

j=1

|an, j |p

⎞

⎠
1/p

≤
⎛

⎝
∑

j∈J

( ∞∑

n=1

|an, j |
)p

⎞

⎠
1/p

, an, j ∈ F.

Hence, the lattice defined by the quasi-norm

g = (xn)∞n=1 	→
∥∥∥∥∥

∞∑

n=1

|xn |
∥∥∥∥∥ , g ∈ X

N,
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is p-convex. Let C denote its p-convexity constant. Let f j = (a j,n)∞n=1 ∈ [0,∞)N, 1 ≤ j ≤
J . Given (xn)N

n=1 ∈ B N
X

we have
∥∥∥∥∥∥∥

N∑

n=1

⎛

⎝
J∑

j=1

a p
j,n

⎞

⎠
1/p

xn

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥

N∑

n=1

⎛

⎝
J∑

j=1

(a j,n |xn |)p

⎞

⎠
1/p

∥∥∥∥∥∥∥

≤ C

⎛

⎝
J∑

j=1

∥∥∥∥∥

N∑

n=1

a j,n |xn |
∥∥∥∥∥

p⎞

⎠
1/p

≤ C

⎛

⎝
J∑

j=1

λ
p
X
( f j )

⎞

⎠
1/p

.

Consequently, λX(
∑J

j=1 | f j |p)1/p) ≤ C(
∑J

j=1 λ
p
X
( f j ))

1/p . ��
Definition 18 LetX be a quasi-Banach space.We denote G (X) = LλX , and we say that G (X)

is the galb of X. The positive cone of G (X) will be denoted by G+(X), and Gb(X) stands for
the closure of c00 in G (X).

Roughly speaking, it could be said that the galb of a space is a measure of its convexity.
The notion of galb was introduced and developed by Turpin, within the more general setting
of “espaces vectoriels à convergence”, in a series of papers [36, 37] and a monograph [38].
In this section, we restrict ourselves to galbs of locally bounded spaces and touch only a few
aspects of the theory and summarize without proofs the properties that are more relevant to
our work.

Proposition 15 (see [38]) Let X be a quasi-Banach space. Then G (X) ⊆ �1, and G (X) = �1
if and only if X is locally convex.

Proposition 16 (see [38]) Let X be a quasi-Banach space. Then G (G (X)) = G (X).

Proposition 17 (see [38])Let X be a quasi-Banach space and 0 < p ≤ 1. Then X is p-convex
if and only if �p ⊆ G (X).

Proposition 18 (see [36]) Let X be a quasi-Banach space. Then the mapping

B : G (X) × c0(X) → X,
(
(an)∞n=1, (xn)∞n=1

) 	→
∞∑

n=1

an xn

is well-defined, and defines a bounded bilinear map.

It is natural to wonder whether the map B defined as in Proposition 18 can be extended
to a continuous bilinear map defined on G (X) × �∞(X). In fact, the authors of [23], perhaps
taking for granted that the answer to this question is positive, defined a sequence (an)∞n=1
to be in the galb of X if

∑∞
n=1 an xn converges for every bounded sequence (xn)∞n=1. If we

come to think of it, we obtain the following.

Lemma 15 Let X be a quasi-Banach space and let f = (an)∞n=1 ∈ F
N. Then, f ∈ Gb(X) if

and only if
∑∞

n=1 an xn converges for every bounded sequence (xn)∞n=1 in X.
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Proof Let G denote the set consisting of all sequences f = (an)∞n=1 ∈ F
N such that∑∞

n=1 an xn converges for every bounded sequence (xn)∞n=1 in X. It is routine to check
that G is a closed subspace of G (X) which contains c00. Consequently, Gb(X) ⊆ G. Assume
that f = (an)∞n=1 ∈ G (X) \ Gb(X). Then, by Lemma 14, there are δ > 0 and an increasing
sequence (mk)

∞
k=1 of non-negative integers such that ρ((|an |)m2k

n=1+m2k−1
) > δ for all k ∈ N.

Consequently, there is (xn)∞n=1 in the unit ball of �∞(X) such that
∥∥∥
∑m2k

n=1+m2k−1
an xn

∥∥∥ ≥ δ, k ∈ N.

We infer that
∑∞

n=1 an xn does not converge. ��
Corollary 5 Let X be a quasi-Banach space. Then the mapping

B ′ : Gb(X) × �∞(X) → X,
(
(an)∞n=1, (xn)∞n=1

) 	→
∞∑

n=1

an xn

is well-defined, and defines a continuous bilinear map. Moreover, if Gb(X) � G ⊆ G (X),
then B ′ can not be extended to a continuous bilinear map defined on G × �∞(X).

Proof It follows from Lemma 15 and, alike the proof of Proposition 18, the Open Mapping
Theorem. ��

In light of Corollary 5, the following question arise.

Question 1 Is G (X) minimal for any quasi-Banach space X?

Corollary 4 alerts us of the connection between Question 1 and the existence of lower
estimates for λX. Lattice concavity also plays a key role when studying galbs of vector-valued
spaces.

Definition 19 We say that a symmetric function quasi-norm λ over N galbs a quasi-Banach
space X if λ dominates λX, i.e., Lλ ⊆ G (X). We say that λ galbs a function quasi-norm ρ if
it galbs Lρ . If λ galbs itself, we say that λ is self-galbed.

Remark 1 Given 0 < p ≤ 1, the function quasi-norm defining �p is self-galbed. More
generally, λX is self-galbed for any quasi-Banach space X (see Proposition 16).

Proposition 19 Let ρ and λ be locally absolutely continuous L-convex function quasi-norms
with the Fatou property. Suppose that λ galbs a quasi-Banach space X. If there is 0 < p < ∞
such that λ is p-concave and ρ is p-convex, then λ galbs Lρ(X).

Proof By Theorem 2, the pair (λ, ρ) has the MII property for some constant C . Since λ galbs
X, there is a constant K > 0 such that λ K -dominates λX. Therefore, if (an)∞n=1 is a sequence
in Lλ, and f1, . . . , fN belong the unit ball of Lρ(X), we have

ρ

(∥∥∥∥∥

N∑

n=1

an fn

∥∥∥∥∥

)
≤ ρ

(
λX

(
(an ‖ fn‖)N

n=1

))

≤ Kρ
(
λ

(
(an ‖ fn‖)N

n=1

))

≤ C Kλ
(
ρ

(
(an ‖ fn‖)N

n=1

))

≤ C Kλ
(
(an)N

n=1

)

≤ C Kλ((an)∞n=1).
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Hence (an)∞n=1 belongs the galb of Lρ(X). ��

Proposition 19 gives, in particular, that if λ is a 1-concave function quasi-norm which
galbs X, then it galbs L1(μ, X). As we plan to develop an integral for functions belonging
to a suitable subspace of L1(μ, X), the following question arises.

Question 2 Is G (X) 1-concave for any quasi-Banach space X?

Note that a positive answer to Question 2 would yield a positive answer to Question 1. To
properly understand Question 2, we must go over the state-of-the-art of the theory galbs.

We point out that all known examples suggest a positive answer to Question 2. Galbs
of Lorentz spaces were explored through several papers [9, 10, 33–35] within the study of
convolution operators, and all computed galbs occur to be Orlicz sequence spaces modeled
after a concave Orlicz function. Also, Turpin [38] proved that the galb of any locally bounded
Orlicz space is an Orlicz sequence space modeled after a concave Orlicz function. Recall that
anOrlicz function is a non-null left-continuous non-decreasing functionϕ : [0,∞) → [0,∞)

such that limt→0+ ϕ(t) = 0.Given anOrlicz functionϕ, with the convention thatϕ(∞) = ∞,
the gauge

f = (an)∞n=1 	→ λϕ( f ) = inf

{
t > 0 :

∞∑

n=1

ϕ
(an

t

)
≤ 1

}
, f ∈ [0,∞]N

is a function quasi-norm if and only if

lim
t→0+ sup

u∈(0,1]
ϕ(tu)

ϕ(u)
= 0. (3)

(see [38]), in which case λϕ has the Fatou property. If (3) holds, the Orlicz sequence space
�ϕ is the Köthe space associated with λϕ . If ϕ is 1-concave, then G (�ϕ) = �ϕ (see [38]).
We notice that convexifying an Orlicz space yields another Orlicz space. Namely, for every
0 < r < ∞we have λ

(r)
ϕ = λϕ(r) , where theOrlicz function ϕ(r) is defined byϕ(r)(t) = ϕ(tr )

for all t > 0.
A function ϕ is said to be r -concave, 0 < r < ∞, if ϕ(1/r) is concave.

Proposition 20 Let ϕ be a r-concave Orlicz function, 0 < r < ∞, fulfilling (3). Then λϕ is
lattice r-concave.

Proof By a stantard convexification technique we can suppose that r = 1. Let ( f j )
J
j=1 be a

finite family consisting of non-negative sequences. We will prove that

H :=
J∑

j=1

λϕ( f j ) ≤ G := λϕ

⎛

⎝
J∑

j=1

f j

⎞

⎠ .

To that end, it suffices to prove that if G < ∞ and 0 < t < H , then, t < G. Assume without
loss of generality that λϕ( f j ) > 0 for all j . Then, pick (t j )

J
j=1 such that

∑J
j=1 t j = t and

0 < t j < ρ( f j ). Then, if f j = (a j,n)∞n=1, a j,n < ∞ for all n ∈ N, and

∞∑

n=1

ϕ

(
a j,n

t j

)
> 1, j = 1, . . . , J .
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Consequently,

∞∑

n=1

ϕ

(∑J
j=1 a j,n

t

)
=

∞∑

n=1

ϕ

⎛

⎝
J∑

j=1

t j

t

a j,n

t j

⎞

⎠ ≥
∞∑

n=1

J∑

j=1

t j

t
ϕ

(
a j,n

t j

)
> 1.

Therefore, t < G. ��
The lattice convexity of spaces of galbs is also quite unknown. It is known that if the gauge

λϕ associated with an Orlicz function ϕ is function quasi-norm, so that �ϕ is a quasi-Banach
lattice, then there is p > 0 such that

sup
0<u,t≤1

ϕ(t u)

u pϕ(t)
< ∞ (4)

(see [19,Proposition 4.2]). Moreover, if (4) holds for a given p, then �ϕ is a p-convex lattice.
Therefore, �ϕ is L-convex. The behavior of general spaces of galbs is unknown.

Question 3 Is λX an L-convex function quasi-norm for any quasi-Banach space X?

Note that Proposition 14 (vii) partially solves in the positive Question 3.

5 Topological tensor products built bymeans of symmetric function
quasi-norms over N

Definition 20 Let X and Y be quasi-Banach spaces and λ be a symmetric minimal function
quasi-norm over N with the Fatou property. We define

‖ · ‖X⊗λY
: X ⊗ Y → [0,∞)

by

‖τ‖X⊗λY
= inf

⎧
⎨

⎩λ
((‖x j‖ ‖y j‖

)n
j=1

)
: τ =

n∑

j=1

x j ⊗ y j

⎫
⎬

⎭ .

It is clear that ‖ · ‖X⊗λY
is a semi-quasi-norm whose modulus of concavity is at most that

of λ, and that ‖x ⊗ y‖X⊗λY
≤ C‖x‖ ‖y‖ for all x ∈ X and y ∈ Y, where C = λ(e1).

Definition 21 Let X and Y be quasi-Banach spaces and λ be a symmetric minimal function
quasi-norm with the Fatou property. The quasi-Banach space built from ‖ · ‖X⊗λY

will be
called the topological tensor product of X and Y by λ, and will be denoted by X ⊗λ Y. The
canonical norm-one bilinear map from X × Y to X ⊗λ Y given by (x, y) 	→ x ⊗ y will be
denoted by Tλ[X, Y].
Proposition 21 Let X, Y, U and V be quasi-Banach spaces, and let λ be a symmetric minimal
function quasi-norm with the Fatou property.

(i) If λ is a function p-norm, 0 < p ≤ 1, then X ⊗λ Y is a p-Banach space.
(ii) G (Lλ) ⊆ G (X ⊗λ Y).
(iii) If λ galbs U, there is a constant C such that for every bounded bilinear map B : X ×

Y → U there is a unique linear map Bλ : X⊗λ Y → U such that Bλ ◦ Tλ[X, Y] = B
and ‖Bλ‖ ≤ C‖B‖.
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(iv) If R : X → U and S : Y → V are bounded linear operators, then there is a unique
bounded linear operator R⊗λ S : X⊗λY → U⊗λV such that (R⊗λ S)◦Tλ[X, Y] =
Tλ[U, V] ◦ (R, S).

(v) If U is complemented in X through R and V is complemented in Y through S, then
U ⊗λ V is complemented in X ⊗λ Y through R ⊗λ S. Moreover, if U

c and V
c are

such that X � U ⊕ U
c and Y � V ⊕ V

c, then

X ⊗λ Y � (U ⊗λ V) ⊕ (U ⊗λ V
c) ⊕ (Uc ⊗λ V) ⊕ (Uc ⊗λ V

c).

(vi) Let ρ be a symmetric minimal function quasi-norm with the Fatou property. If ρ

dominates λ, then there is a bounded linear map I : X ⊗ρ Y → X ⊗λ Y such that
I ◦ Tρ[X, Y] = Tλ[X, Y].

(vii) There is a constant C such that if (x j )
∞
j=1 in X and (y j )

∞
j=1 in Y are such that

H = λ
((‖x j‖ ‖y j‖

)∞
j=1

)
< ∞, (5)

then
∑∞

j=1 x j ⊗y j converges in X⊗λY to a vector τ ∈ X⊗λY with ‖τ‖X⊗λY
≤ C H.

Conversely, for all τ ∈ X ⊗λ Y and ε > 0 there are (xn)∞n=1 in X and (yn)∞n=1 in Y

such that, if

f := (‖x j‖ ‖y j‖)∞j=1,

then λ( f ) ≤ ε + C‖τ‖X⊗λY
and τ = ∑∞

j=1 x j ⊗ y j . Moreover, if λ is a function
p-norm, 0 < p ≤ 1, we can pick C = 1. And, if X0 and Y0 are dense subspaces of
X and Y respectively, we can pick x j ∈ X0 and y j ∈ Y0 for all j ∈ N.

(viii) If λ galbs X and Y is finite dimensional, then X ⊗λ Y � X
n, where n = dim(Y).

To be precise, if ( y j )
n
j=1 is a basis of Y, the map R : X

n → X ⊗λ Y given by

(x j )
n
j=1 	→ ∑n

j=1 x j ⊗ y j is an isomorphism.
(ix) If λ galbs X and Y has the point separation property, then ‖ · ‖X⊗λY

is a quasi-norm
on X ⊗ Y.

Proof A simple computation yields (i).
Let f = (ak)

∞
k=1 ∈ [0,∞)N, and let (τk)

m
k=1 in X ⊗ Y be such that ‖τk‖X⊗λY

≤ 1. Then,
given ε > 0, for each k = 1, . . . , m there is an expansion

τk =
nk∑

j=1

bk, j xk, j ⊗ yk, j ,

with max{‖xk, j‖, ‖yk, j‖} ≤ 1 for all (k, j) ∈ N := {(k, j) ∈ N
2 : 1 ≤ k ≤ m, 1 ≤ j ≤ nk}

and λ((bk, j )
nk
j=1) ≤ 1 + ε. The expansion

τ :=
m∑

k=1

ak τk =
∑

(k, j)∈N
ak bk, j xk, j ⊗ yk, j

gives

‖τ‖X⊗λY
≤ ‖(ak bk, j )(k, j)∈N ‖λ ≤ (1 + ε)λLλ ( f ).

Consequently, λX⊗λY
( f ) ≤ λLλ ( f ), and we obtain (ii).

Let us prove (iii). Let C be such that ‖ ∑n
j=1 a j u j‖ ≤ Cλ((a j )

n
j=1) for all (a j )

n
j=1 in

[0,∞)n and (u j )
n
j=1 in the unit ball of U. Given a bounded bilinear map B : X×Y → U, let

123



Toward an optimal theory of integration… Page 27 of 38 85

B0 : X⊗Y → Ube the linearmapdefinedby B(x⊗y) = B(x, y).Given τ = ∑n
j=1 xk⊗yk ∈

X ⊗ Y we have

‖B0(τ )‖ ≤ Cλ((‖B(x j , y j )‖)n
j=1) ≤ C‖B‖λ((‖x j‖ ‖y j‖)n

j=1).

Consequently, ‖B0(τ )‖ ≤ C‖B‖‖τ‖X⊗λY
. We infer that B0 ‘extends’ to an operator as

desired.
Nowwe prove (iv). Let τ ∈ X⊗Y. Themere definitions of the semi-quasi-norms involved

give

‖(R ⊗λ S)τ‖U⊗λV
≤ inf

{
λ

((‖R(x j )‖ ‖S(y j )‖
)n

j=1

)
: τ =

n∑

j=1

x j ⊗ y j

}

≤ ‖R‖ ‖S‖ ‖τ‖X⊗λY
.

For statement (v), it suffices to consider the case when V = Y and Sv = IdY. Let
I : U → X and P : X → U be such that P◦ I = IdU. Then (P⊗λIdY)◦(I ⊗λIdY) = IdU⊗λY

.
Let J : U

c → X and Q : X → U
c be such that Q ◦ J = IdUc and J ◦ Q + I ◦ P = IdX.

Then

(I ⊗λ IdY) ◦ (P ⊗λ IdY) + (J ⊗λ IdY) ◦ (Q ⊗λ IdY) = IdX⊗λY
.

Statement (vi) is immediate from definition.
Let us prove (vii). Assume without lost of generality that λ is function p-norm for some

0 < p ≤ 1. If (5) holds, then
∑∞

j=1 x j ⊗ y j is a Cauchy series. Therefore, it converges to
τ ∈ X ⊗λ Y. The continuity of the quasi-norm ‖ · ‖X⊗λY

yields

‖τ‖X⊗λY
= lim

m

∥∥∥∥∥∥

m∑

j=1

x j ⊗ y j

∥∥∥∥∥∥
X⊗λY

≤ H .

Conversely, let τ ∈ X ⊗λ Y and ε > 0. Assume that X0 and Y0 are dense subspaces of X

and Y respectively. Pick (τn)∞n=1 in X0 ⊗ Y0 such that limn ‖τ − τn‖X⊗λY
= 0, and pick a

sequence (εn)∞n=1 of positive numbers with

ε1 > ‖τ‖X⊗λY
>

( ∞∑

n=1

ε
p
n

)1/p

− ε.

Passing to a subsequence we can suppose that ‖τn − τn−1‖X⊗λY
< εn for all n ∈ N, with

the convention τ0 = τ . Therefore, for all n ∈ N, we can write

τn − τn−1 =
jn∑

j=1

x j,n ⊗ y j,n, Rn := λ
((‖x j,n‖ ‖y j,n‖) jn

j=1

)
< εn .

Let N = {( j, n) ∈ N
2 : 1 ≤ j ≤ jn}. Then

λ
((‖x j,n‖ ‖y j,n‖)

( j,n)∈N
)

≤
( ∞∑

n=1

R p
n

)1/p

≤ ε + ‖τ‖X⊗λY
.

Hence, we can safely define τ ′ = ∑
( j,n)∈N x j,n ⊗ y j,n , and we have

τ ′ =
∞∑

n=1

jn∑

j=1

x j,n ⊗ y j,n =
∞∑

n=1

(τn − τn−1) = lim
n

τn = τ.
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Now we prove (viii). The mapping R is linear and bounded, and R(Xn) spans X ⊗λ Y.
Since λ galbs X, there is a bounded linear map S : X⊗λ Y → X

n such that S(x ⊗ y j ) = x e j

for all x ∈ X and j = 1, . . . , n. Taking into account that S ◦ R = IdXn , we are done.
Finally, letV be finite-dimensional subspace ofY. SinceV is complemented inY,X⊗λ V

is complemented in X ⊗λ Y via the canonical map. Hence, it suffices to consider the case
when Y is finite dimensional. In this particular case, statement (ix) follows from (viii). ��

6 Topological tensor products as spaces of functions and integrals for
spaces of vector-valued functions

Let us give another approach to the proof of Proposition 21 (ix). Given quasi-Banach spaces
X andY, let B : X×Y → �∞(Ball(Y∗), X), where Ball(Y∗) denotes the unit ball of the space
Y

∗, be defined by B(x, y)(y∗) = y∗(y)x . Since B is linear and bounded, if λ galbsX, there is
a bounded linear map Bλ : X⊗λY → �∞(Ball(Y∗), X) given by Bλ(x ⊗ y)(y∗) = y∗(y)x . If
Y has the point separation property, then Bλ is one-to-one onX⊗Y. Consequently, no vector
in X ⊗ Y is norm-zero. Note the injectivity of Bλ on X ⊗ Y does not implies the injectivity
of Bλ on its closure X ⊗λ Y. That is, we can not, a priori, identify vectors in X ⊗λ Y with
functions defined over Ball(Y∗). More generally, if Y embeds in F

Ω for some set Ω , then
X ⊗ Y embeds into X

Ω , and it is natural to wonder if the character of the members of X ⊗ Y

is preserved when taking the completions, that is, if we can regard the vectors in X ⊗λ Y as
X-valued functions defined on Ω . In this section, we address this question in the case when
Y is a Köthe space.

Given a quasi-Banach spaceX and aσ -finitemeasure space (Ω,Σ,μ)wehave a canonical
linear map

J [X, μ] : X ⊗ L0(μ) → L0(μ, X), x ⊗ f 	→ x f .

It is routine to check that J [X, μ] is one-to-one. Suppose that λ is a symmetric function
quasi-norm and ρ is a function quasi-norm over (Ω,Σ,μ) such that λ is p-concave and ρ

is p-convex for some 0 < p < ∞. Then λ is minimal (see Corollary 4). So, we can safely
define X ⊗λ Lρ . If, moreover, λ galbs X, then λ also galbs Lρ(X) (see Proposition 19).
Hence, if ρ has the weak Fatou property, there is a bounded linear canonical map

J [ρ, X, λ] : X ⊗λ Lρ → Lρ(X), x ⊗ f 	→ x f .

Consider the range

Lλ
ρ(X) := J [ρ, X, λ](X ⊗λ Lρ)

of this operator endowed with the quotient topology. If J [ρ, X, λ] is one-to-one, then Lλ
ρ(X)

is a space isometric toX⊗λLρ which embeds continuously into Lρ(X). This is ourmotivation
to studying the injectivity of J [ρ, X, λ]. Vogt [40] gave a positive answer to this question in
the case when λ is the function quasi-norm associated with �p for some 0 < p ≤ 1 and ρ is
the function quasi-norm associated with Lq(μ) for some p ≤ q ≤ ∞. A detailed analysis of
the proof of [40,Satz 4] reveals that it depends heavily on the fact that λ is both p-convex and
p-concave and ρ is both q-convex and q-concave. So, it is hopeless to try to extend this result
using analogous ideas. In this paper, we use an approach based on conditional expectations.

Before going on, let usmention that if λ is the �1-norm restricted to nonnegative sequences
(and ρ and X are 1-convex), then a routine computation yields that J [ρ, X, λ] is an isometric
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embedding when restricted to X⊗S(μ). We infer that J [ρ, X, λ] is an isometric embedding
and that Lλ

ρ(X) consists of all strongly measurable functions in Lρ(X).

Lemma 16 Let λ be a minimal symmetric function quasi-norm. For i = 1, 2, let ρi be a
function quasi-norm with the weak Fatou property over aσ -finite measure space (Ωi ,Σi , μi ),
and let Xi be a quasi-Banach space galbed by λ. Suppose that the bounded linear operators
S : X1 → X2, T : Lρ1 → Lρ2 and R : Lρ1(X1) → Lρ2(X2) satisfy

R(x f ) = S(x) T ( f ), x ∈ X1, f ∈ Lρ1 .

Then, R restricts to a bounded linear map from Lλ
ρ1

(X1) → Lλ
ρ2

(X2).

Proof Our assumptions yield a commutative diagram

X1 ⊗λ Lρ1

J [ρ1,X1,λ]

S⊗λT
X2 ⊗λ Lρ2

J [ρ2,X2,λ]

Lρ1(X1)
R

Lρ2(X2).

We infer that R maps the range of themap J [ρ1, X1, λ] into the range of themap J [ρ2, X2, λ].
That is, there is a linear map R[λ] : Lρ1(X1) → Lρ2(X2) such that the diagram

X1 ⊗λ Lρ1

J [ρ1,X1,λ]

S⊗λT
X2 ⊗λ Lρ2

J [ρ2,X2,λ]

Lλ
ρ1

(X1)
R[λ] Lλ

ρ2
(X2)

commutes. Since both Lλ
ρ1

(X1) and Lλ
ρ2

(X2) are endowed with the quotient topology and
S ⊗λ T is continuous, so is R[λ]. ��

Let λ be a 1-concave symmetric function quasi-norm that galbs a quasi-Banach space
X. Let (Ω,Σ,μ) be a σ -finite measure space. If ρ is the L1-norm on L+

0 (μ), we denote
Lλ
1(μ, X) = Lλ

ρ(X). Given A ∈ Σ , we set Lλ
1(A, μ, X) = Lλ

1(μ|A, X). The bounded linear
operator

I [μ] : L1(μ) → F, f 	→
∫

Ω

f dμ

yields a bounded linear operator

I [μ, X, λ] : X ⊗λ L1(μ) → X, x ⊗ f 	→ x
∫

Ω

f dμ.

Definition 22 Suppose that a 1-concave symmetric function quasi-norm λ galbs a quasi-
Banach space X. We say that the pair (λ, X) is amenable if I [μ, X, λ](τ ) = 0 whenever
(Ω,Σ,μ) is a σ -finitemeasure and the vector τ ∈ X⊗λ L1(μ) satisfies J [L1(μ), X, λ](τ ) =
0.

In other words, (λ, X) is amenable if and only if for every σ -finite measure μ there is an
operator

I[μ, X, λ] : Lλ
1(μ, X) → X
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such that the diagram

X ⊗λ L1(μ)

J [L1(μ),X,λ] I [μ,X,λ]

Lλ
1(μ, X) I[μ,X,λ] X

commutes. The bounded linear operator I[μ, X, λ] satisfies
I[μ, X, λ](x f ) = x

∫

Ω

f dμ, x ∈ X, f ∈ L1(μ).

So, we must regard it as ‘integral’ for functions in Lλ
1(μ, X). Loosely speaking, that (λ, X)

is amenable means that there is an integral for functions in Lλ
1(μ, X).

Definition 23 Let X be a quasi-Banach space. We say that a net (Ti )i∈I in L(X) is a bounded
approximation of the identity if supi ‖Ti‖ < ∞ and limi Ti (x) = x for all x ∈ X. We say
that X has the BAP if it has a bounded approximation of the identity consisting of finite-rank
operators.

Note that if a net (Ti )i∈I in L(X) is uniformly bounded then the set {x ∈ X : limi Ti (x) =
x} is closed. This yields the following elementary result.

Lemma 17 Let X be a quasi-Banach space. Let (Pi )i∈I be a net consisting of uniformly
bounded projections with Pj ◦ Pi = Pi if i ≤ j and ∪i∈I Pi (X) is dense in X. Then (Pi )i∈I

is a bounded approximation of the identity.

If ρ satisfies (F.7), then for every A ∈ Σ(μ) we have a bounded linear map

S[A, ρ] : Lρ → L1(A, μ), f 	→ f |A.

Theorem 5 Let λ be a 1-concave symmetric function quasi-norm, let ρ be a leveling function
quasi-norm with the weak Fatou property over a σ -finite measure space (Ω,Σ,μ), and let
X be a quasi-Banach space. Suppose that (λ, X) is amenable. Then J [ρ, X, λ] is one-to-one.

Proof Let A ∈ Σ(μ). By Lemma 13, ρ satisfies (F.7). Therefore, for each quasi-Banach
space Y there is a bounded linear operator

S[A, ρ, Y] : Lρ(Y) → L1(A, μ, Y), f 	→ f |A.

Set S[A, ρ, F] = S[A, ρ]. It is routine to check that the diagram

X ⊗λ Lρ

IdX⊗λS[A,ρ]

J [ρ,X,λ]

X ⊗λ L1(A, μ)

J [L1(A,μ),X,λ]

Lρ(X)
S[A,ρ,X] L1(A, μ, X)

commutes. Using that (λ, X) is amenable we obtain the commutative diagram

X ⊗λ Lρ

IdX⊗λS[A,ρ]

J [ρ,X,λ]

X ⊗λ L1(A, μ)

J [L1(A,μ),X,λ] I [μ|A,X,λ]

Lλ
ρ(X)

S[A,ρ,X] Lλ
1(A, μ, X) I[μ|A,X,λ] X

(6)
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Suppose that μ(Ω) < ∞. Let Σ0 be a finite sub-σ -algebra. If Σ0 is generated by the
partition (A j )

n
j=1 of Ω consisting of nonzero measure sets, then

E(ρ,Σ0) =
n∑

j=1

χA j

μ(A j )
I [μ|A j ] ◦ S[A j , ρ].

By Proposition 21 (viii), there is an isomorphism S : X
n → X ⊗λ Lρ(Σ0) such that

S((x j )
n
j=1) =

n∑

j=1

x j ⊗ χA j

μ(A j )
, x j ∈ X.

Therefore,

IdX ⊗λ E(ρ,Σ0) = S ◦ (I [μ|A j , X, λ] ◦ (IdX ⊗ S[A j , ρ]))n
j=1.

Combining this identity with the commutative diagrams (6) associated with each set A j

yields a bounded linear map R : Lλ
ρ(X) → X ⊗λ Lρ(Σ0) such that the diagram

X ⊗λ Lρ

J [ρ,X,λ] IdX⊗λE(ρ,Σ0)

Lλ
ρ(X)

R
X ⊗λ Lρ(Σ0)

commutes. The operators IdX ⊗λ E(ρ,Σ0) are uniformly bounded projections. Let (Σi )i∈I

a non-decreasing net of finite σ -algebras whose union generates Σ . By Lemma 17, (IdX ⊗λ

E(ρ,Σi ))i∈I is a bounded approximation of the identity. We infer that J [ρ, X, λ] is one-to-
one, as wanted, in the particular case that μ(Ω) < ∞.

In general, let R[A, X] : Lρ(X) → Lρ(A, X) be the canonical projection on a set A ∈
Σ(μ). Set R[A] = R[A, F]. Since R[A, X] is bounded, applying Lemma 16 yields a bounded
linear operator R[A, X, λ] such that the diagram

X ⊗λ Lρ

J [ρ,X,λ]

IdX⊗λ R[A]
X ⊗λ Lρ(A)

J [ρ|A,X,λ]

Lλ
ρ(X)

R[A,X,λ] Lλ
ρ(A, X)

commutes. Let (An)∞n=1 be a non-decreasing sequence in Σ(μ) whose union is Ω .
By Lemma 17, (IdX ⊗λ R[An])∞n=1 is a bounded approximation of the identity. Since
J [ρ|An , X, λ] is one-to-one (by the previous particular case), it follows that J [ρ, X, λ] is
one-to-one. ��

We emphasize that the applicability of Theorem 5 depends on the existence of amenable
pairs. In the optimal situation, we would be able to choose λ to be the smallest symmetric
function quasi-norm which galbs the quasi-Banach space X. Thus, the following question
arises.

Question 4 Let X be a quasi-Banach space. Is (λX, X) amenable?

As long as there is no general answer to Question 4, we will focus on the spaces of galbs
that have appeared in the literature. We next prove that for all of them Question 4 has a
positive answer.
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Theorem 6 Let ϕ be a concave Orlicz function fulfilling (3). Suppose that λϕ galbs a quasi-
Banach space X. Then (λϕ, X) is amenable.

Proof Assume that ϕ(1) = 1. Assume by contradiction that there is a σ -finite measure space
(Ω,Σ,μ), a positive sequence α = (a j )

∞
j=1 in �ϕ , a sequence ( f j )

∞
j=1 in the unit ball of

L1(μ), and a sequence (x j )
∞
j=1 in the unit ball of X such that

∑∞
j=1 a j x j f j = 0 in Lϕ(X)

and

x :=
∞∑

j=1

a j x j

∫

Ω

f j dμ �= 0.

The following claim will be used a couple of times.
Claim. If (Ωk)

∞
k=1 is a non-decreasing sequence in Σ(μ) such that Ω \∪∞

k=1Ωk is a null set,
then

∑∞
j=1 a j x j

∫
Ωk

f j dμ �= 0 for some k ∈ N.
Proof of the claim. Since limk

∫
Ωk

f j dμ = ∫
Ω

f j dμ for all j ∈ N and λϕ is dominating,
we have

lim
k

∥∥∥∥∥

(
a j

∫

Ω

f j dμ

)∞

j=1
−

(
a j

∫

Ωk

f j dμ

)∞

j=1

∥∥∥∥∥
ϕ

= 0.

Since �ϕ embeds continuously in Gb(X),

lim
k

∥∥∥∥∥∥

∞∑

j=1

a j x j

∫

Ω

f j dμ −
∞∑

j=1

a j x j

∫

Ωk

f j dμ

∥∥∥∥∥∥
= 0.

This limit readily gives our claim.
The claim allow us assume that μ(Ω) < ∞. By Proposition 21 (vii), we can assume that

f j ∈ S(μ) for all j ∈ N. Also, we can assume without lost of generality that λϕ(α) < 1, so
that

∑∞
j=1 ϕ(a j ) < 1. Set

Fm =
∞∑

j=m+1

ϕ(a j )| f j |, m ∈ N ∪ {0}.

We have
∫
Ω

F0 dμ < ∞. Therefore, F0 < ∞ a.e. By Severini–Egorov theorem, limm Fm =
0 quasi-uniformly. By Proposition 2, there is an increasing sequence (Jn)∞n=1 such that, if

Gn =
Jn∑

j=1

a j x j f j , n ∈ N,

then limn Gn = 0 a.e. Taking into account the claim, we can assumewithout lost of generality
that limm Fm = 0 uniformly and that limn Gn = 0 pointwise.

Pick 0 < ε < 1. There is m0 ∈ N such that λϕ((a j )
∞
m0+1) < ε, i.e.,

A :=
∞∑

j=m0+1

ϕ
(a j

ε

)
< 1.

Let m ≥ m0 be such that

Fm(ω) ≤ ε(1 − A)

μ(Ω)
, ω ∈ Ω.
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Let Σ0 be a finite σ -algebra such that f j is Σ0-measurable for all 1 ≤ j ≤ m. Let (Ah)H
h=1

be a partition of Ω which generates Σ0. Pick points ωh ∈ Ah for each 1 ≤ h ≤ H , and set

g j = f j −
H∑

h=1

f j (ωh)χAh , j ∈ N.

Since g j = 0 for all 1 ≤ j ≤ m we have

x = lim
n

Jn∑

j=1

a j x j

∫

Ω

f j dμ −
H∑

h=1

μ(Ah) lim
n

Gn(ωh)

= lim
n

Jn∑

j=1

a j x j

∫

Ω

g j dμ = lim
n

Jn∑

j=m+1

a j x j

∫

Ω

g j dμ.

Notice that
∥∥∥∥∥∥

Jn∑

j=m+1

a j x j

∫

Ω

g j dμ

∥∥∥∥∥∥
≤ λX((a j b j )

∞
j=m+1),

where b j = |∫
Ω

g j dμ|. Recall that if a sequence (un)∞n=1 converges to x in X, then ‖x‖ ≤
κ lim inf‖un‖, where κ is the modulus of concavity of X. Therefore, since λϕ galbs X, we
have

‖x‖ ≤ κλX((a j b j )
∞
j=m+1) ≤ κCλϕ((a j b j )

∞
j=m+1),

for some constant C > 0. Now let us see that λϕ((a j b j )
∞
j=m+1) ≤ ε. Using the concavity of

ϕ and that ε < 1, we have

∞∑

j=m+1

ϕ

(
a j b j

ε

)
≤

∞∑

j=m+1

max{1, b j }ϕ
(a j

ε

)

≤
∞∑

j=m+1

(
1 +

H∑

h=1

| f j (ωh)|μ(Ah)

)
ϕ

(a j

ε

)

≤
∞∑

j=m+1

ϕ
(a j

ε

)
+

H∑

h=1

∞∑

j=m+1

1

ε
μ(Ah)| f j (ωh)|ϕ(a j )

=
∞∑

j=m+1

ϕ
(a j

ε

)
+ 1

ε

H∑

h=1

μ(Ah)Fm(ωh)

≤ A + 1

ε

H∑

h=1

μ(Ah)
ε(1 − A)

μ(Ω)
= 1.

Therefore ‖x‖ ≤ kCε. Letting ε tend to 0 we arise to absurdity. ��
Given a quasi-Banach spaceX, a σ -finite measure space (Ω,Σ,μ), a symmetric function

quasi-norm λ such that (λ, X) is amenable, and a function f : Ω → X, we say that f is
λ-integrable if f ∈ Lλ

1(μ, X), and we write
∫ λ

Ω

f dμ = I[μ, X, λ]( f ).
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A natural question is whether
∫ λ

Ω
f dμ = I[μ, X, λ]( f ) really depends on λ. That is, do we

have I[μ, X, λ1]( f ) = I[μ, X, λ2]( f ) whenever (λ1, X) and (λ2, X) are amenable pairs?
This question is equivalent to the following one. Given function quasi-norms ρ1 and ρ2 over
the same σ -finite measure space (Ω,Σ,μ) we define a function quasi-norm ρ1 ∩ ρ2 by

(ρ1 ∩ ρ2)( f ) = inf{ρ1(g) + ρ2(h) : g, h ∈ L+
0 (μ), f = g + h},

for each f ∈ L+
0 (μ). It can be proved that if ρ1 and ρ2 are p-concave (resp. p-convex),

0 < p < ∞, then ρ1 ∩ ρ2 is p-concave (resp. p-convex).

Question 5 Let X be a quasi-Banach space, and let λ1 and λ2 be symmetric function quasi-
norms such that (λ1, X) and (λ2, X) are amenable. Is (λ1 ∩ λ2, X) amenable?

Of course, a positive answer to Question 4 would yield a positive answer to Question 5.
We close this section with an example of an integrable function taking values in a Lorentz

space.

Example 1 Fix a > 1 and define for each t > 3 a sequence f (t) = ( f (t, k))∞k=1 by

f (t, k) =
⎧
⎨

⎩

1
t2 log2 t loga(log t)

log(k + 1) if k ≤ t,

1
t2 log2 t loga(log t)

log
(

k+1
k−�t�+1

)
if k > t .

We regard f as a function from (3,∞) into theweakLorentz space �1,∞. Recall that the space
�1,∞ consists of all sequences b = (bk)

∞
k=1 whose non-increasing rearrangement (b∗

k )∞k=1
satisfies

‖b‖1,∞ = sup
k≥1

k b∗
k < ∞.

We have

‖ f (t)‖1,∞ ≈ 1

t log t loga(log t)
, t > 3.

Hence
∫ ∞
3 ‖ f (t)‖1,∞ dt < ∞. However, in the lack of local convexity, this fact guarantees

neither the integrability of f (see [1,Theorem 2.2]) nor that the sequence (
∫ ∞
3 f (t, k) dt)∞k=1

belongs to �1,∞. To address this task, we must look for series expansions of the function f .
It is known [33] that the galb of �1,∞ is the space � log � consisting of all sequences

(an)∞n=1 such that

∞∑

n=1

|an | log
(∑∞

j=1 |a j |
|an |

)
< ∞.

The quasi-Banach space � log � coincides with the Orlicz sequence space �ϕ , where ϕ(t) =
−t log t near the origin. Since such Orlicz function can be chosen to be concave, (λϕ, �1,∞)

is an amenable pair by Theorem 6. We have

f (t, k) =
∞∑

n=1

fn(t)xn(k), t ∈ (3,∞), k ∈ N,

where

fn(t) = 1

t2 log2 t loga(log t)
χ[n,∞)(t) and xn(k) = log

(
k − n + 2

k − n + 1

)
χ[n,∞)(k).
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Note that

‖ fn‖1 ≈ 1

n log2(1 + n) loga(2 + n)
, n ∈ N.

Then (‖ fn‖1)∞n=1 ∈ � log �. Since the sequence (‖xn‖1,∞)∞n=1 is uniformly bounded, f ∈
L

λϕ

1 ((3,∞), �1,∞).

7 The fundamental theorem of calculus

Let X be a quasi-Banach space and let λ be a symmetric function quasi-norm such that
(λ, X) is amenable. If d ∈ N, A ⊆ R

d is measurable, and μ is the Lebesgue measure
on A, we set Lλ

1(A, X) = Lλ
1(μ, X) and, for f ∈ Lλ

1(A, X),
∫ λ

A f (x) dx = ∫ λ

A f dμ. A
function f : R

d → X is said to be locally λ-integrable if f |A ∈ Lλ
1(A, X) for every bounded

measurable A ⊆ R
d .

Given d ∈ N, we denote by Q the set consisting of all d-dimensional open cubes. If
y ∈ R

d , the setQ[y] consisting of all Q ∈ Q such that y ∈ Q is a directed set when ordered
by inverse inclusion. We denote by “Q ∈ Q → y” the convergence with respect to that
directed set.

The following nonlocally convex version of the Lebesgue differentiation theorem for
vector-valued integrals (see, e.g., [7,Proposition 5.3] for the classical locally convex version)
improves [1,Theorem 5.2].

Theorem 7 Let X be a quasi-Banach space and λ be a symmetric function quasi-norm.
Suppose that λ is p-concave for some 0 < p < 1 and that (λ, X) is amenable. Then, for any
locally λ-integrable function f : R

d → X,

lim
Q∈Q→y

1

|Q|
∫ λ

Q
f (x) dx = f (y) a.e. y ∈ R

d . (7)

Proof Set

M[X, λ]( f )(y) = sup
Q∈Q[y]

1

|Q|
∥∥∥∥
∫ λ

Q
f (x) dx

∥∥∥∥ , f ∈ Lλ
1(R

d , X), y ∈ R
d .

If κ is the modulus of concavity of X, the quasi-triangle inequality

M[X, λ]( f + g) ≤ κM[X, λ]( f ) + κM[X, λ](g), f , g ∈ Lλ
1(R

d , X)

holds. Hence, the set of functions f that satisfy (7) is a vector space. Since this set contains

F = {x χQ : x ∈ X, Q ∈ Q},
and [F] = Lλ

1(R
d , X), it suffices to prove that the maximal function M[X, λ] is bounded

from Lλ
1(R

d , X) into L1,∞(Rd).
Let M be the classical scalar-valued Hardy-Littlewood maximal function. Let f =∑∞
j=1 x j f j , where (x j )

∞
j=1 is in the unit ball of X and ( f j )

∞
j=1 in L1(R

d) satisfies

λ((‖ f j‖1)∞j=1) < ∞, be an expansion of f ∈ Lλ
1(R

d , X). We have

M[X, λ]( f ) ≤ λ((M( f j ))
∞
j=1).

By Theorem 3, the pair (λ, L1,∞(Rd)) has the MII property. Hence,

‖M[X, λ]( f )‖1,∞ ≤ ‖λ((M( f j ))
∞
j=1)‖1,∞ ≤ C1λ((‖M( f j )‖1,∞)∞j=1),
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where the constant C1 does not depend on f . In turn, since M is bounded from L1(R
d) into

L1,∞(Rd),

λ((‖M( f j )‖1,∞)∞j=1) ≤ C2λ((‖ f j‖1)∞j=1),

where the constant C2 does not depend on f either. Consequently, if C = C1C2,
‖M[X, λ]( f )‖1,∞ ≤ C‖ f ‖Lλ

1(R
d ,X) for all f ∈ Lλ

1(R
d , X). ��

We close with an application to the theory of Lipschitz functions. Derivatives and integrals
are relevant tools within the study of Lipschitz maps whose target space is a Banach space
(see, e.g., [3,Sect. 14]). So, the lack of an integration theory as powerful as Bochner-Lebesgue
integral is a drawback to extend to quasi-Banach spaces results achieved in the locally convex
setting. The theory of integration presented here allows us to obtain a partial result for
functions taking values in an Orlicz space.

Theorem 8 Let 0 < p < 1, and let ϕ be a p-concave Orlicz function. Let F =
(Fn)∞n=1 : [0, 1] → �ϕ be a Lipschitz map such that each component Fn : [0, 1] → R is
monotone. Then F is almost everywhere differentiable.

Proof Since scalar-valued Lipschitz functions are a.e. differentiable, we can safely define
fn(t) = F ′

n(t) a.e. t ∈ [0, 1], and set

f =
∞∑

n=1

fn en . (8)

We have ‖en‖ϕ = 1 and an := ‖ fn‖1 = |Fn(1) − Fn(0)| ≤ |Fn(1)| + |Fn(0)| for all n ∈ N.
Hence, (an)∞n=1 ∈ �ϕ . By Theorem 6, (λϕ, �ϕ) is an amenable pair, so the series expansion

(8) witnesses that f ∈ L
λϕ

1 ([0, 1]). Consequently,

F(t) − F(s) =
∫ λϕ

[s,t]
f (s) ds, 0 ≤ s < t ≤ 1.

Combining Proposition 20 with Theorem 7 gives limt→s(F(t) − F(s))/(t − s) = f (s) a.e.
s ∈ [0, 1]. ��
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