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A B S T R A C T

The well-known lack of existence of enough integrals to provide a closed form solution to the restricted
three-body problem makes approaching it with numerical methods customary. However, useful perturbation
solutions to this problem can be found in particular regions of phase space. A brief review of three different
cases of interest in astrodynamics illustrates the possibilities offered by the perturbation approach in mission
planning of space orbits.
1. Introduction

I never met Professor John V. Breakwell. In 1991, when I moved to
Zaragoza to finish my undergraduate studies and start my PhD in the
small university research group mentored by A. Deprit, Breakwell was
in his last days. However, there is no doubt that his work inspired my
research in different times along my career as astrodynamicist, and, in
particular, in the use of perturbation methods.

For instance, reported unexpected in-track errors [1] in Brouwer’s
solution of the Earth’s artificial satellite problem [2] were soon iden-
tified with a lack of accuracy in the initialization of the constant
semi-major axis that feeds the analytical perturbation solution [3]. To
solve the issue, Breakwell and Vagners [4] suggested an extremely
simple and smart way of improving this value. While carrying out
the transformation of the initial osculating semi-major axis to the
mean one up to higher accuracy than the other orbital elements is
these days part of the routine of the initialization of the constants of
perturbation theories [5–8], Breakwell and Vagners’ successful shortcut
allows for analogous accuracy without need of increasing the order of
the perturbation solution [9,10].

Other instance is Breakwell’s research on gravity gradient perturba-
tions, which gave full generality to the perturbation problem of attitude
dynamics without constraining to the usual approximation of uniaxial
or nearly uniaxial satellites [11,12]. Breakwell’s investigations moti-
vated further developments [13–15] which are these days in the roots
of modern 6-degrees of freedom hybrid propagation programs [16].

These are just two examples of Breakwell’s direct contributions to
the topic of perturbation theory. But his insights were also relevant in
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the discussions on the critical inclination singularity in artificial satel-
lite theory, Breakwell being among the first who pointed out that the
satellite’s dynamics in the vicinity of the critical inclination is in no way
that of a pendulum [17]. It is also worth mentioning that, soon after
Deprit’s Hamiltonian perturbations method by Lie transforms appeared
in print [18], Kamel showed that Deprit’s fundamental recursion, in
which the method relies upon, applies also to perturbations of vectorial
flows. Remarkably, Breakwell is explicitly acknowledged by Kamel as
his advisor in that research [19,20].

Perturbation solutions in astrodynamics were originally computed
for the propagation of Earth’s artificial satellite orbits [2,21]. In that
case, the Kepler problem was commonly taken as the intermediary —
the integrable part on which the perturbation approach rests upon—
while additional forces like, for instance, non-centralities of the Earth’s
gravitational field, atmospheric drag, or third-body effects, were treated
as small disturbances of the pure Keplerian motion. In particular, third-
body perturbations enter naturally the perturbed Keplerian motion
scheme like time-dependent perturbations, the third-body direction
being obtained from some ephemeris file. This is the common case of
Earth orbiting satellites, in which both lunar and solar perturbations are
of the same order. Still, time-dependency issues are avoided in those
cases in which the satellite moves with much faster mean motion than
the third body. Then, the third-body position can be assumed to remain
fixed in the time in which the satellite travels one orbit [7,22–25]

On the contrary, in other instances, like in the case of motion
about planetary satellites, the gravitational pull of a single disturbing
body dominates over the effects of other possible existing disturbing
bodies or forces. Then, the restricted three-body problem provides a
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better frame to set up the perturbation approach, in which the need
of dealing explicitly with time can mostly be avoided. Needless to say
that, contrary to the Kepler problem, the restricted three-body problem
cannot be completely reduced by integrals [26]. In this complex dy-
namics, the numerical approach is normally preferred in the design of
mission orbits, where the computation of surfaces of section, periodic
orbits, and other invariant manifolds reveal as useful tools [27–30].
While the perturbation approach still applies, it must be constrained
to particular regions of phase space in which the dynamics may hinge
on some simpler integrable problem without constraint to the case
of perturbed Keplerian motion. In fact, most orbits of the restricted
three-body problem do not resemble at all Keplerian ellipses.

In particular, three different regimes of the restricted three-body
problem of interest in astrodynamics are commonly identified like
amenable to the perturbation approach. Namely: a) the motion inside
the sphere of influence of the primary of smaller mass, which applies to
science orbits about planetary satellites and can be approached as the
classical case of perturbed Keplerian motion [31–34]; b) the motion
about the libration points, where the conspicuous Lyapunov and Halo
orbits are found, that can be approached as a case of perturbed elliptic
oscillations [35–38]; c) the co-orbital motion of the satellite and the
smaller-mass primary about the bigger-mass primary [39–43]. This
last case gives rise to the so-called quasi-satellite orbits, which is a
particular case of the co-orbital motion with low eccentricity that can
be stated in terms of perturbed harmonic oscillations.

Some peculiarities of the different perturbation solutions in the
regimes a), b), and c) are briefly reviewed in what follows. In each
case the distance between the massless body and the lighter-mass
primary, which is conveniently placed at the origin, is notably smaller
than the distance between both primaries. This fact allows us the
usual expansion of the third-body potential in Legendre polynomials,
which is then truncated to some power of the ratio between both
distances. When this ratio is small enough —in other words, when the
parallax of the heavier-mass primary is negligible— the truncation of
the Legendre polynomials expansion to the first significative term can
be representative of the dynamics. Additional simplifications of the
restricted three-body problem in the case in which the mass of the
distant primary is much higher than the mass of the primary at the
origin, give rise to the celebrated Hill problem [44].3

In addition to its simplicity, the non-dimensionalization of the Hill
problem by a proper choice of units of length and time shows that it
does not depend on physical parameters [27]. This additional feature
furnishes the Hill problem with a wide generality that makes it repre-
sentative of the restricted dynamics under the gravitational attraction
of different sun-planet, planet–satellite, or other binary systems, the
particular characteristics of which are recovered after a simple rescaling
of the physical units. Hence, for simplicity and greater insight, the three
cases a), b), and c), are discussed in the Hill problem dynamics.

2. The Hill problem as a limit case

Commonly, the mass of the orbiter is negligible compared to ce-
lestial bodies of interest, and hence the three-body dynamics is ap-
proached in the restricted approximation. That is, the mass of the
orbiter has no observable effects on the motion of the primaries, which,
therefore, are assumed to evolve with Keplerian motion. The particular
case in which the primaries evolve with circular motion gives rise to the
circular restricted three-body problem (CRTBP), which is conveniently
formulated in a rotating frame with the rotation rate of the primaries.

3 Alternatively, Hill equations can be derived from a non-restricted problem
n which two of the three involved masses are much smaller than the mass of
he heavier body [45,46].
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Even in the radical simplifications of the CRTBP, the resulting three de-
grees of freedom problem lacks of closed form solution,4 and hence it is
commonly explored with numerical tools, among which the numerical
computation of periodic orbits plays a prominent role [49–51].

The CRTBP admits the Hamiltonian formulation (see [52,53], for
instance)

 = 1
2𝑹 ⋅𝑹 − (𝝎 × 𝒓) ⋅𝑹 + 𝑉 , (1)

where 𝒓 denotes the vector from the primary of smaller mass to the
massless particle, 𝑹 is its conjugate momentum, and 𝝎 = 𝑮∕(𝒅 ⋅ 𝒅),

ith 𝑮 and 𝒅 standing for the angular momentum vector of the system
er mass unit and the vector from the primary of bigger mass to
he other primary, respectively —which are constant in the CRTBP
ssumptions. The acceleration of the massless particle, which is due to
he gravitational attraction of both primaries, of masses 𝑚′ > 𝑚, as well
s the formulation in a rotating frame, stems from the potential

= −𝑚′

𝑠
− 𝑚

𝜌
− 𝜔2(1 − 𝜇)𝒓 ⋅ 𝒅, (2)

in which  is the gravitational constant, 𝜌 = ‖𝒓‖, 𝑠 = ‖𝒅+𝒓‖, 𝜔 = ‖𝝎‖ is
he constant rotation rate of the system, and 𝜇 = 𝑚∕(𝑚′ + 𝑚). The flow
temming from Hamiltonian (1) is then obtained from the integration
f Hamilton equations
d𝒓
d𝑡

= 𝜕
𝜕𝑹

, d𝑹
d𝑡

= − 𝜕
𝜕𝒓

.

When the motion is measured relative to the smaller primary 𝒓 =
(𝜉, 𝜂, 𝜁 ) and

𝑠 =
√

(𝑑 + 𝜉)2 + 𝜂2 + 𝜁2 = 𝑑
√

1 − 2𝜖(−𝜉∕𝜌) + 𝜖2

where 𝜖 = 𝜌∕𝑑. In those cases in which 𝜖 < 1 the inverse of the distance
is customarily given by the usual expansion in Legendre polynomials
𝑖(−𝜉∕𝜌). Besides, in those cases in which 𝑚 ≪ 𝑚′, the bulk of the

dynamics close to the primary of smaller mass is derived from the Hill
problem Hamiltonian

 = 1
2
𝑹 ⋅𝑹 − (𝝎 × 𝒓) ⋅𝑹 − 𝑚

𝜌
+ 𝜔2

2
(

𝜌2 − 3𝜉2
)

, (3)

which is obtained by neglecting higher order terms from Eq. (1).
In fact, Eq. (3) does not depend on physical parameters and, when

such units of length and time are chosen that 𝜔 and 𝑚 become the
nity, can be rewritten in the form

= 1
2
(𝑋2 + 𝑌 2 +𝑍2) − (𝑥𝑌 − 𝑦𝑋) − 1

𝑟
+ 1

2
(

𝑟2 − 3𝑥2
)

. (4)

We replaced Greek letters in Eq. (3) by corresponding ones of the
Roman alphabet in Eq. (4) in order to remark the different units that
are used in each of these equations. The lack of physical parameters
bestows the Hill problem with a wide generality. Particularization of
the results for a given system is obtained after a trivial rescaling.

In different regions of phase space, the Hill problem Hamiltonian
can be arranged like a perturbation problem  = 0+1, where 0 is
integrable and |1|≪ |0|. In particular, when 𝑟 ≪ 1, it can be written
n the form of a perturbed Keplerian problem

0 =
1
2 (𝑋

2 + 𝑌 2 +𝑍2) − 1∕𝑟 (5)

1 = − (𝑥𝑌 − 𝑦𝑋) + 1
2

(

𝑟2 − 3𝑥2
)

(6)

which applies to the case of motion about planetary satellites. On the
other hand, when the motion evolves far enough away from the origin,
the Hill problem can be written in the form

0 =
1
2 (𝑋

2 + 𝑌 2 +𝑍2) − 𝑥𝑌 + 𝑦𝑋 + 1
2 (𝑟

2 − 3𝑥2) (7)

4 The three-body problem admits analytical solution in the form of power
eries [47], yet it is widely accepted that the poor convergence of the series
akes them useless at all for computational purposes [48].
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1 = − 1∕𝑟 (8)

which applies to the case of co-orbital motion with low eccentricity.
That 0 is integrable in this last case results from its quadratic char-
acter, which yields a linear flow as readily derived from Hamilton
equations. A brief review of both astrodynamics applications is pro-
vided below, which is further complemented with a nice application
to the description of the main dynamical features of the motion about
the libration points.

3. Motion about planetary satellites

The preliminary design of missions to planetary satellites can take
a good profit of the description of the main dynamics provided by the
analytical approach. In addition, it fits quite well to the Hill problem
simplifications. Indeed, as checked in Table 1 of [54], the small-mass
assumption of the planetary satellite applies to most natural moons.
On the other hand, the altitude of mapping satellites is commonly low,
making the small parallax assumption acceptable for the dynamical
model. Hence, we write the Hill problem Hamiltonian (3) in the form

 = Kepler +Coriolis +3B, (9)

where the Keplerian term is

Kepler = −𝑚∕(2𝑎), (10)

nd 𝑎 is the orbit semi-major axis. The Coriolis effect is

Coriolis = −𝑚∕(2𝑎)(𝑁∕𝑛) (2𝜂 cos 𝐼), (11)

here 𝑁 denotes the constant rotation rate of the planet–satellite
ystem, 𝑛 =

√

𝑚∕𝑎3 is the mean motion of the orbiter, 𝜂 =
√

1 − 𝑒2 de-
notes the eccentricity function, with 𝑒 standing for orbital eccentricity,
and 𝐼 is inclination. Finally, the third-body effect is [33]

3B = 𝑚∕(2𝑎)(𝑁∕𝑛)2(𝑟∕𝑎)2
[

2

− 6(cosℎ cos 𝜃 − cos 𝐼 sinℎ sin 𝜃)2
]

, (12)

here 𝑟 = 𝑎𝜂2∕(1 + 𝑒 cos 𝑓 ) denotes the radius from the origin, ℎ is the
ongitude of the ascending node in the rotating frame, and 𝜃 = 𝑓 + 𝜔
s the argument of the latitude, with 𝜔 denoting the argument of the
eriapsis and 𝑓 the true anomaly. The latter, we recall, is an implicit
unction of the mean anomaly 𝑀 through the Kepler equation.

Therefore, the ratio 𝑁∕𝑛 between the rotation rate of the planet–
atellite system and the orbiter’s mean motion clearly scales the Hill
roblem Hamiltonian as the typical perturbation problem

=
∑

𝑖≥0

𝜀𝑖

𝑖!
𝑖, (13)

here 0 is the Keplerian (10), 1 is the Coriolis term (11), 2 is the
hird body perturbation (12), and 𝑖 ≡ 0 for 𝑖 ≥ 3. Because 𝑛 is not
onstant at this stage, the ratio 𝑁∕𝑛 cannot be taken like the small
arameter 𝜀 of the perturbation approach, which, on the contrary must
emain formal (𝜀 = 1).

Recall that all the symbols entering the perturbation Hamiltonian
13) must be taken as functions of some set of canonical variables due
o the Hamiltonian formulation. Since we are dealing with perturbed
eplerian motion, we adhere to the tradition and rely on the set of
ction–angle variables of the Kepler problem —the so-called Delaunay
ariables. They are customarily denoted by the angles (𝓁, 𝑔, ℎ), where
=𝑀 , 𝑔 = 𝜔, ℎ = 𝛺−𝑁𝑡, with 𝛺 the longitude of the ascending node

n the non-rotating frame, and the actions (𝐿,𝐺,𝐻), where 𝐿 =
√

𝜇𝑎
s the Delaunay action, 𝐺 = 𝐿𝜂 is the specific angular momentum, and
𝐻 = 𝐺 cos 𝐼 is the component of the angular momentum vector in the
direction orthogonal to the plane of the primaries.

The relevant dynamics of Hamiltonian (13) is better understood
after removing short-period effects by means of canonical perturba-
tion theory. That is, up to some order of the small parameter we
598
Fig. 1. Eccentricity-vector evolution about a planetary satellite, resulting from a second
order truncation of a perturbation solution to the Hill problem dynamics.

compute a transformation from osculating to mean variables  ∶
(𝓁, 𝑔, ℎ, 𝐿,𝐺,𝐻 ; 𝜀) ↦ (𝓁′, 𝑔′, ℎ′, 𝐿′, 𝐺′,𝐻 ′) such that it converts Hamil-
tonian (13) into

◦ =  ≡
𝑚
∑

𝑗=0

𝜀𝑗

𝑗!
𝑗 (−, 𝑔′,−, 𝐿′, 𝐺′,𝐻 ′)

+ 𝜀𝑚+1(𝓁′, 𝑔′, ℎ′, 𝐿′, 𝐺′,𝐻 ′). (14)

How to find the transformation  is the topic of canonical perturbation
theory and is profusely dealt with in the literature [53,55,56].

After neglecting effects of (𝜖𝑚+1) and higher, 𝓁′ and ℎ′ turn into
cyclic variables in the transformed Hamiltonian , and hence 𝐿′ and
𝐻 ′ become (formal) integrals. The preservation of 𝐿′ shows the con-
stancy of the semi-major axis 𝑎 = 𝐿′2∕𝑚, whereas the second integral
shows the symmetry of the system about the axis perpendicular to the
orbital plane of the primaries. Moreover, the latter can be written in
the mean elements space like 𝐻 ′ = 𝐿′

√

1 − 𝑒2 cos 𝐼 , thus disclosing the
coupling of the eccentricity and inclination, an effect that is generally
known as the Lidov–Kozai resonance [57,58]. Replacing the pair of
dynamical parameters (𝐿′,𝐻 ′) by the equivalent one (𝑎, 𝐼circular ), where
circular = arccos(𝐻 ′∕𝐿′) is these days customary [59,60].

Integrals decouple the flow, whose long-term dynamics can then
e investigated from a reduced system in (𝑔′, 𝐺′). While this system
s of just one degree of freedom, the integration of the reduced flow
epends on special functions, a fact that may deprive the solution of
he required insight for mission designing purposes. Alternatively, a
ot of information on the evolution of the system is gained from the
epresentation of the reduced phase as well as from the computation of
articular solution, and, more specifically, the equilibria of the reduced
ystem. To avoid singularities for circular orbits in the cylindrical map
𝑔′, 𝐺′), the reduced flow is customarily studied in the eccentricity-
ector variables (𝑒 cos𝜔, 𝑒 sin𝜔), in which, now, 𝑒 = (1 − 𝐺′2∕𝐿′2)1∕2

nd 𝜔 = 𝑔′.
After truncation of Eq. (14) to (𝜀2), simple computations show that

ircular orbits are always equilibria, whereas elliptic orbits may exist
ith argument of the periapsis ±𝜋∕2. However, the latter exist only
hen 𝐻 ′∕𝐿′ ≤

√

3∕5. That is, when the inclination of the circular orbits
is higher than ≈ 39◦ —the so-called critical inclination of the third body
perturbation [33]. The global, reduced dynamics is then illustrated with
diagrams like the one in Fig. 1, where the different phase flows are
obtained from the inexpensive evaluation of the reduced Hamiltonian
 = (𝑒 cos𝜔, 𝑒 sin𝜔; 𝑎, 𝐼circular ). Since direct and retrograde orbits are
symmetric in the approximation provided by the second order trunca-
tion of the long-term Hamiltonian , only the former are presented in
Fig. 1.

Because the reduced dynamic only shows isolated equilibria, we
do not expect qualitative changes in the long-term behavior when
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Fig. 2. Refinements of the critical inclination of the third body perturbation (dotted
ines) obtained with the 4th- (dashed lines) and 6th-order truncations (full lines) of the
ill problem (after [65]).

ncluding higher order terms in the solution. However, quantitative
changes resulting from higher order refinements of the perturbation
solution may be definitely relevant for mission designing purposes [61–
63]. This is illustrated in Fig. 2, which shows that the third-body critical
inclination depends on the orbit semi-major axis, rather than having
a constant value, on the one hand, and that direct and retrograde
orbits are not at all symmetric, on the other [64,65]. Indeed, direct
orbits enjoy larger areas where circular orbits are stable than retrograde
ones, cf. [66]. In particular, as clearly noted in Fig. 2, the inclina-
tion limit of 39.2◦ for stable circular motion predicted by the second
order truncation, is increased up to approximately 60◦ for an orbit
with semi-major axis of about 0.375 units of the Hill problem. When
the Hill problem units are particularized for the dimensions of the
Saturn–Enceladus system, this semi-major axis is equivalent to twice
the equatorial radius of Enceladus (of about 260 km), which points to
this orbital configuration like a possible placement for an Enceladus
mapping mission [67,68].

This increase in the range of inclinations showing stability of almost
circular direct orbits is, however, less relevant in other planet–satellite
systems like in the case of the Jovian moons. For instance, a mapping
orbit about Europa would have a semi-major axis of roughly 10%
Europa’s equatorial radius of 1565 km. When this is converted into
units of the Hill problem it amounts to only 0.08, a case in which
the upper limit for stability of direct circular orbits is approximately
42◦, as checked in Fig. 2, that is clearly insufficient for the global
coverage of this body. Therefore, one must confront unstable dynamics,
in general, under which the lifetime of a mapping mission is seriously
compromised by the eventual exponential increase of the eccentricity.
In such cases, the classical control strategy based on the design of tours
over the stable–unstable manifolds of the unstable nominal orbit [29]
can also be applied to the averaged dynamics [69]. In this latter case,
the proper use of the transformation from mean to osculating elements
provides clear advantages in the search for long-lifetime orbits [70].

Additional effects, due, for instance, to the non-sphericity of the
planetary satellite or the ellipticity of the orbits of the primaries, intro-
duce both qualitative and quantitative modifications in the problem,
and should be taken into account in the design of the science orbit.
While these additional terms certainly modify the Hill problem dynam-
ics, they can be treated as additional perturbations of the Keplerian
599

motion and are analogously handled within the perturbation approach g
Fig. 3. 1:1 co-orbital motion in inertial (left) and rotating frame (right).

Fig. 4. Typical orbit of the integrable, quadratic part in Eq. (7) of the Hill problem
Hamiltonian.

[54,71–79]. This is also the case of the non-sphericity of the third-body
gravity, which can produce observable effects in the orbital dynamics
in the vicinity of a binary asteroid system [80].

4. Quasi-satellite retrograde orbits

A particular case of co-orbital motion with low eccentricity gives
rise to the so-called quasi-satellite orbits, in which the orbiter moves
about the primary of smaller mass when seen in the rotating frame (see
Fig. 3), but the motion takes place out of the sphere of influence of this
primary. This kind of motion, which is observed in the solar system,
is appealing for artificial satellites mission due to the strong stability
characteristics of these distant retrograde orbits [81–85].

Except for close encounters, the interaction between the primary of
smaller mass and the orbiter in co-orbital motion about the primary of
bigger mass is very small. Therefore, the Hill problem Hamiltonian ac-
cepts the perturbation arrangement in Eqs. (7)–(8). In the planar case,
the linear system stemming from the zeroth order Hamiltonian (7) is
readily integrated in Cartesian coordinates [39,86]. The solution, which
is illustrated in Fig. 4, is a drifting ellipse with eccentricity 𝑒 =

√

3∕4
—that is, the minor and major axis are in the ratio 1:2— that evolves
with constant rate in the direction of the major axes. Alternatively, the
integration of Eq. (7) is achieved by complete Hamiltonian reduction.
The reduction is obtained by a change to epicyclic variables (𝜙, 𝑞,𝛷,𝑄),

here 𝜙 is the parametric phase of the reference ellipse (the eccentric
nomaly of this non-Keplerian ellipse), 𝛷 is related to the ellipse’s
imension, while 𝑞 and 𝑄 are related to the coordinates of its center
n the directions of the major and minor axis, respectively [87–89].
his last construction of the solution immediately discloses the linear
rowth of both the phase 𝜙 and the drift 𝑞.
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Fig. 5. Quasi-satellite, periodic orbit of the Hill problem (4).

Depending on the energy, the nonlinear perturbation term given by
the Keplerian potential (8) can turn the constant growth of 𝑞 into slow
oscillations of the center of the reference ellipse, in this way yielding
long-period oscillations of the quasi-satellite orbit about the smaller
mass primary [39,40]. This kind of trajectory has been found useful in
astrodynamics applications for ‘‘orbiting’’ celestial bodies with very low
mass, as is the case of the Martian moon Phobos [81], and is illustrated
in Fig. 5.

The perturbation approach proceeds by first finding a canonical
transformation 1 ∶ (𝜙, 𝑞,𝛷,𝑄; 𝜀) ↦ (𝜙′, 𝑞′, 𝛷′, 𝑄′) that, up to some trun-
cation order, removes the phase 𝜙′ from the transformed Hamiltonian
◦1 = (−, 𝑞′, 𝛷′, 𝑄′) + (𝜀𝑚), where the formal small parameter 𝜀 is
related to dynamical considerations. Non-trivial difficulties arise in the
reduction process due to the fact that elliptic integrals are unavoidably
involved in the procedure [41]. This preliminary reduction discloses
the nature of the long-term dynamics, and shows that, on average, the
motion is basically composed of two coupled harmonic oscillations.
Namely, an oscillation defining the reference ellipse (𝜙′, 𝛷′) with con-
stant, fast frequency 𝜔 = 𝜔(𝛷′), which is coupled with an oscillation of
the center of the reference ellipse (𝑞′, 𝑄′) with slow, constant frequency
𝛺 = 𝛺(𝛷′).

The basic solution can be solved analytically only for the lower
orders of the perturbation approach, yet refinements of the analytical
solution are obtained with the classical Lindstedt series method [88,
89]. Alternatively, we can carry out an additional reduction in order to
remove the phase of the center of the reference ellipse [53,90]. Indeed,
as far as 𝜎 = 𝛺∕𝜔 ≪ 1, we can choose this ratio as the small parameter
of the new perturbation solution. First of all, we carry out an extended
harmonic transformation 2 ∶ (𝜙′, 𝑞′, 𝛷′, 𝑄′;𝛺(𝛷′)) ↦ (𝜓, 𝜃, 𝛹,𝛩). Then,
we compute the transformation 3 ∶ (𝜓, 𝜃, 𝛹,𝛩; 𝜎) ↦ (𝜓 ′, 𝜃′, 𝛹 ′, 𝛩′)
that casts the partially reduced Hamiltonian in the form ◦2◦3 =
(−,−, 𝛹 ′, 𝛩′) + (𝜎𝑚). After truncation, the transformed Hamiltonian
 is completely reduced, thus showing the constant character of the
momenta 𝛹 ′ and 𝛩′, and the linear evolution of 𝜓 ′ and 𝜃′ with
constant frequencies 𝑛𝜓 = 𝜕∕𝜕𝛹 ′ and 𝑛𝜃 = 𝜕∕𝜕𝛩′, respectively.
The analytical solution must be complemented, of course, with the
canonical transformations that allow to recover the osculating state.

The formal integrals 𝛹 ′ and 𝛩′ of the perturbation solution are
naturally used like orbit design parameters. In particular, 𝛹 ′ is directly
related to the semi-major axis of the reference ellipse 𝑎 = 𝑎(𝛹 ′),
whereas the minimum distance of the reference ellipse to the smaller
primary in the direction of the major axis can be expressed in terms
of both formal integrals 𝑦min = 𝑦min(𝛹 ′, 𝛩′). Moreover, when the values
of 𝛹 ′ and 𝛩′ be such that the ratio 𝜌 = 𝜌(𝛹 ′, 𝛩′) ≡ 𝑛 ∕𝑛 is a rational
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𝜓 𝜃
Fig. 6. Left: Non-periodic orbit of the Hill problem. The locator at 𝑦 ≈ 10 is used to
remark that the orbit does not close after 16 cycles. Right: Nominal 16:1 periodic orbit
(gray) superimposed to a true 16:1 periodic orbit (black, dashed) of the Hill problem
(after [90]).

number, the co-orbital motion will be periodic on average. The detailed
description of the design procedure of a periodic orbit with nominal
semi-major axis 𝑎 and minimum distance to the primary 𝑦min can be
found in [53,90]. It basically conforms to the following steps.

The procedure starts from the explicit computation of 𝛷′ = 𝛷′(𝑎)
obtained from the perturbation theory. Next, 𝛩′ = 𝛩′(𝑎, 𝑦min) is likewise
computed from the perturbation solution. Then, we compute the secu-
lar frequencies 𝑛𝜓 and 𝑛𝜃 , whose ratio will not be a rational number, in
general, but a real one. However, this real number can be turned into
a close rational after a standard root finding procedure. This process
modifies the nominal parameters but only slightly, therefore yield-
ing the desired periodic nominal orbit. After recovering the periodic
terms removed in the perturbation approach, the nominal orbit will
be periodic also in the original problem, yet only up to the truncation
order of the perturbation theory. If required, the periodicity can be
improved through differential corrections to get a true periodic orbit
in the original coordinates [91].

To illustrate the procedure, we borrow from [90] an example of a
nominal orbit with design parameters 𝑎 = 10 and 𝑦min = 2.5, in units
of the Hill problem. For these values the ratio between the secular
frequencies is 𝜌 = 15.8, which does not yield periodicity. We iterate the
values of the design parameters until finding a 16:1 commensurability
between the secular frequencies, thus yielding a periodic orbit in the
secular space. However, when we recover the periodic effects and
propagate an initial osculating state in the true Hill problem dynamics,
we do not find periodicity due to the truncation of the perturbation
solution, as shown in the left plot Fig. 6. Still, the use of differential
corrections make the initial conditions to converge fast to a true peri-
odic orbit of the Hill problem. The agreement between the analytical
solution and the desired periodic orbit is illustrated in the right plot of
Fig. 6, where the analytical solution (black dots) and the true periodic
orbit (gray line) are shown superimposed.

Finally, it deserves to be mentioned that, while the perturbation so-
lution was obtained under the assumption that the libration frequency
of the center of the reference ellipse is much smaller than the frequency
of the orbiter on the reference ellipse, the useful case of the 1:1 reso-
nance can also be approached advantageously with the perturbation
solution. The trick is to search for a nominal orbit with 𝑦 ≈ 𝑎.
min
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Fig. 7. Geometry of one libration point of the Hill problem. The black circle at the
origin is the primary, and 𝜌 = 3−1∕3 ≈ 0.7.

Then, the strong stability characteristics of the distant retrograde orbits
will make the differential corrections process to readily converge to a
1:1 periodic orbit when periodicity in the orbital period (≈ 2𝜋∕𝑛𝜙) is
requested rather than in the much longer librational one (≈ 2𝜋∕𝑛𝜃) .
Particular examples of this last case can be found in [53,90].

5. The libration points dynamics

Hamilton equations of Eq. (4) immediately show that the equilibria
of the Hill problem are constrained to the two symmetric collinear
points 𝑥 = ±3−1∕3, 𝑦 = 𝑧 = 0. Orbits in the vicinity of collinear
points have different applications in astrodynamics, and they have
been profusely studied from both the analytical and numerical point
of view [92].

The first step is to translate the origin to the libration point of
interest. Since they are symmetric, we only need to pay attention to
one of them, and focus on the one at (3−1∕3, 0, 0). The basic geometry
is illustrated in Fig. 7, where the coordinates of the satellite referred to
the libration point are denoted by 𝒓′.

After reformulating the Hill problem Hamiltonian (4) in the new
reference frame, for values 𝑟′∕𝜌 < 1 the Keplerian potential can
be expanded in Legendre polynomials, analogously as we did in the
derivation of the Hill problem from the CRTBP. Thus, after some
rearrangement, the Hill problem Hamiltonian is written in the form

 = 0 − (1∕𝜌)
∑

𝑛>0
(𝑟′∕𝜌)𝑛+2𝑃𝑛+2(cos𝜓) (15)

where 0 is made only of quadratic terms [93]. Therefore, the dynam-
ics about the libration points is amenable to the perturbation approach
with integrable zeroth-order term 0, small parameter 𝜀 proportional to
the ratio 𝑟′∕𝜌, and perturbation terms made of monomials in Cartesian
variables, as results from the nature of Legendre polynomials.

The solution to the linear dynamics stemming from the unperturbed
term is obtained by the usual combination of exponentials, and shows
the saddle × center × center character of the libration points. In partic-
ular, the vertical motion decouples from the planar one and is made
of infinitesimal oscillations in the 𝑧-axis direction. On the contrary,
the 𝑥 and 𝑦 components of the planar motion remain coupled, with
hyperbolic and elliptic modes. However, the hyperbolic component can
be removed by the proper choice of initial conditions, thus showing
the existence of orbits that are infinitesimal ellipses in the (𝑥, 𝑦)-plane.
On the contrary, three dimensional periodic orbits do not exist in the
linearized dynamics because the frequency of the vertical oscillations
is not commensurable with that of the planar elliptic orbits.

Due to the conservative character of the Hill problem, both kinds
of periodic orbits give rise to corresponding families of periodic orbits,
which survive beyond the linearized dynamics [94]. On the other hand,
the linearized dynamics becomes fully decoupled after a linear transfor-
mation [93,95], in this way allowing the realization of the unperturbed
Hamiltonian 0 like the sum of the hyperbolic component and two
uncoupled harmonic oscillators. This decoupling shows that there exists
one manifold of the center × center type, the so-called center manifold,
which is obtained after removing the hyperbolic direction by a proper
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Fig. 8. Poincaré surface of section of the center manifold in the vicinity of the collinear
libration points of the Hill problem. Credits: J.M. Mondelo, KePASSA 2017, ESTEC.

Fig. 9. Reduced phase space showing planar and vertical Lyapunov orbits like fixed
points of the elliptic type (after [38]).

choice of the initial conditions. Orbits on the center manifold are free
from the exponential growth, and hence are appealing for mission
design.

When the linear transformation is applied also to the perturbation
term of Hamiltonian (15), the hyperbolic component is no longer
decoupled. But the corresponding integral of the linearized dynamics is
readily extended to the full Hamiltonian by perturbation methods [96]
in a process that is customarily know as the reduction to the center
manifold. After carrying out this reduction up to the desired trunca-
tion order of the small parameter, the hyperbolic direction is once
more removed by the proper choice of initial conditions on the center
manifold.

Since the center manifold is of just two degrees of freedom, the
reduced problem can be approached with the usual tools on non-
linear dynamics, like the construction of Poincaré surfaces of section,
or the computation of families of periodic orbits and other invariant
manifolds. An example of a sheet of this reduced dynamics is shown
in Fig. 8, which shows three fixed points of the elliptic type, corre-
sponding to the vertical Lyapunov and the two symmetric Halo periodic
orbits, surrounded by closed curves that represent invariant manifolds
of quasi-periodic orbits. In this representation, the curve that bounds
the section corresponds to the planar Lyapunov orbit, whose unstable
manifold is also clearly identified in the figure with the curves enclosing
the Halo-type regime [97].

Alternatively, for values of the energy (or, more properly, the Jacobi
constant) close enough to the energy of the libration points, we can use
again perturbation theory to carry out an additional reduction of the
Hill problem Hamiltonian to a Hamiltonian of one degree of freedom.
Traditionally, different reductions are made to deal with non-resonant
and resonant motions [56,98]. However, since the frequencies of the
elliptic modes of the Hill problem are quite close, 1:1 resonant orbits of
the center manifold can be studied together with the planar and vertical
Lyapunov periodic orbits as well as the quasi-periodic motion about
them [38,93].

Indeed, after a detuning process [99], the partially reduced Hill
problem Hamiltonian takes the form of a perturbed elliptic oscillator,
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Fig. 10. Changes on the dynamics about the libration points for variations of the Jacobi constant (after [38]).
from which we remove the short-period terms, related to the ellip-
tic anomaly, by perturbation methods to get ellipses with constant
semi-major axis on average. Up to the truncation order of the new
perturbation process, this additional reduction decouples the dynamics
of the line of apsides and eccentricity of the ellipse from the fast
motion of the satellite on the ellipse.5 In spite of we now confront
an integrable system of one degree of freedom, the solution, if found,
will involve sophisticated special functions [100–102]. However, the
study of the equilibria of the reduced phase space serves us to identify
the relevant families of periodic orbits. The construction of local phase
space diagrams, which are obtained from the inexpensive generation
of contour plots of the reduced Hamiltonian, helps also in providing a
global view of the long-term dynamics.

On account of the reduced phase space is the sphere [103], the use
of Hopf variables [104] reveals advantageous in the description of the
integrable dynamics. This is illustrated in Fig. 9 where two opposite
views of the sphere are shown for a close value of the Jacobi constant
to that of the libration point. The fixed points of the elliptic type
(±𝐼1, 0, 0) correspond to vertical (𝐼1 > 0) and planar Lyapunov orbits
(𝐼1 < 0) [38], whereas the remaining orbits of the center manifold show
quasi-periodic behavior.

The evolution of the reduced phase space for increasing values of
the Hamiltonian integral (decreasing values of the Jacobi constant) is
shown in Fig. 10. The increasing radius of the Hopf sphere reflects a
corresponding increase in the size of the orbits with the distance to
the libration point. The left plot shows how the flow on the sphere
squeezes towards the meridian passing through the elliptic equilibrium
corresponding to the planar Lyapunov orbit. Eventually, a pitchfork
bifurcation occurs with the change of this fixed point from elliptic to
hyperbolic type, and two new fixed points of the elliptic type emerge
in the 𝐼2 = 0 meridian plane, which are symmetric with respect to
the equatorial, 𝐼3 = 0 plane (second from the left plot of Fig. 10).
They correspond to the bifurcation of Halo orbits from Lyapunov planar
orbits. The size of the orbits continue to increase with the distance
to the libration point, and the reduced flow compresses again, now
towards the equator, about the fixed point corresponding to the planar
Lyapunov orbit (second from the right plot of Fig. 10). At some point, a
new pitchfork bifurcation from this unstable equilibrium occurs, with
the corresponding change to stability (elliptic type), from which two
new symmetric fixed points of the elliptic type emerge on the equatorial
plane, which are symmetric with respect to the 𝐼2 = 0 meridian (right
plot of Fig. 10). They correspond to symmetric orbits of each of the two
branches of the bridge that connects the families of planar and vertical
Lyapunov orbits. Increasing values of the Hamiltonian integral produce
the migration of these fixed points along the equator, until they finally

5 Splitting the Hamiltonian normalization into the preliminary reduction to
the center manifold and the consequent removal of short-period terms, while
systematic and illustrative of the perturbation approach, is, in fact, not needed,
and the reduction of the Hill problem Hamiltonian to the normal form is
efficiently approached at once when using complex variables [93].
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collapse onto the fixed point corresponding to the vertical Lyapunov
orbit, with the consequent change of the type of this fixed point from
elliptic to hyperbolic (not shown in Fig. 10).

While Figs. 9 and 10 have been constructed with just a second
order truncation of the perturbation solution [38], they succeed in
providing the correct qualitative description of the main families of
orbits, including those of the 1:1 resonant dynamics. However, the
accuracy of the initial conditions provided by this truncation is clearly
insufficient except in the very close proximity of the libration points.
The usual differential corrections process helps in finding partner peri-
odic orbits of the Hill problem, but commonly needs much higher order
truncations to ease convergence of the corrector [93].

6. Conclusions

Perturbation techniques originally used in astronomical computa-
tions are still useful for fast orbit propagation under limited precision.
On the other hand, these methods are especially well suited for the
reduction of the dimension of a dynamical system without constraint to
the classical averaging. The examples provided in this paper illustrate
the convenience of having available the transformation from mean
to osculating elements in mission designing procedures, on the one
hand, as well as the importance that qualitative as well as quantitative
changes introduced by higher orders may have in the selection of
a nominal orbit, on the other. Therefore, current mission designing
procedures may get additional benefits from using the perturbation
approach in the preliminary steps.
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