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Abstract

Bernoulli-Dunkl and Euler-Dunkl polynomials have been recently in-
troduced as an extension of Bernoulli and Euler polynomials to the Dunkl
context. In this article we study the asymptotic behavior of them and
prove their convergence to suitable Bessel functions, which are the func-
tions analogous to sine and cosine in the Dunkl context. Finally, we
analyze the behavior of the zeros of the Bernoulli-Dunkl and Euler-Dunkl
polynomials.
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1 Introduction

Bernoulli and Euler polynomials (see [12] for details) have many applications
to number theory, numerical analysis, combinatorics, and other areas, and, as a
consequence, they have been widely studied over the last two centuries. Usually,
Bernoulli polynomials Bn(x) and Euler polynomials En(x) are defined by means
of the generating functions

tetx

et − 1
=

∞∑
n=0

Bn(x)

n!
tn,

2etx

et + 1
=

∞∑
n=0

En(x)

n!
tn.

In [9], Dilcher studies the asymptotic behavior of these polynomials and
proves that they converge to the sine and cosine functions (more details about
this convergence can be seen in [22]). Namely, he proves that the following
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sequences converge uniformly on compact subsets of C:

lim
k→∞

(−1)k−1 (2π)
2k

2(2k)!
B2k(z) = cos(2πz),(1)

lim
k→∞

(−1)k−1 (2π)2k+1

2(2k + 1)!
B2k+1(z) = sin(2πz),(2)

lim
k→∞

(−1)k
π2k+1

4(2k)!
E2k(z) = sin(πz),(3)

lim
k→∞

(−1)k+1 π2k+2

4(2k + 1)!
E2k+1(z) = cos(πz).(4)

Additionally, applying the Hurwitz theorem, it can be deduced that the real
zeros of the Bernoulli and Euler polynomials converge to the zeros of the corre-
sponding cosine or sine functions that appear in the limits. Dilcher also proves
in [11] that the zeros of these polynomials are not multiple.

In the mathematical literature, there are many kinds of generalizations of
the Bernoulli (and Euler) polynomials: generalized Bernoulli polynomials or
Nørlund polynomials [23, 24], Apostol-Bernoulli polynomials [1], hypergeomet-
ric Bernoulli polynomials [17, 18, 14], Bernoulli-Padé polynomials [13]; see also
[12, § 24.16(iii)] and the book [27] and the references therein.

As far as this paper is concerned, since the foundational article [15] a large
number of papers have been published extending the Fourier analysis to a more
general context. The ordinary derivative is replaced by a differential-difference
operator that depends on a constant α, and the Fourier transform is replaced by
the so-called Dunkl transform. In the same way, Appell sequences of polynomials
have been extended to the so called Appell-Dunkl sequences. This first happened
with the Hermite polynomials in the celebrated paper [26], and recently also
the Bernoulli and Euler polynomials have been defined in the Dunkl context,
see [5, 6].

The aim of this paper is to study the properties analogous to (1)–(4), and
the behaviour of the zeros of the polynomials, in the Dunkl context (on the
real line). We use Bernoulli-Dunkl and Euler-Dunkl polynomials instead of the
classical Bernoulli and Euler polynomials. To do this kind of extension, let us
start recalling that, for α > −1, the Bessel function of order α is

Jα(x) =
(x
2

)α ∞∑
n=0

(−1)n(x/2)2n

n! Γ(α+ n+ 1)
.

Throughout this paper, we will use Jα(z)
zα to denote the even function

1

2α

∞∑
n=0

(−1)n(z/2)2n

n! Γ(α+ n+ 1)
,

which is analytic in C.
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For the Dunkl context, instead of the exponential function ez, we consider
the following function for α > −1,

Eα(z) = Iα(z) +
z

2(α+ 1)
Iα+1(z), z ∈ C,

where Iα is given in terms of the Bessel function,

Iα(z) = 2αΓ(α+ 1)
Jα(iz)

(iz)α
= Γ(α+ 1)

∞∑
n=0

(z/2)2n

n! Γ(n+ α+ 1)
= 0F1(α+ 1, z2/4)

(the function Iα is a small variation of the so-called modified Bessel function of
the first kind and order α, usually denoted by Iα; see [19], [25] or [32]).

Following [15] for α ≥ −1/2 and [26] for α > −1, in the real line and with
the reflection group Z2, the Dunkl operator Λα is defined as

Λαf(x) =
d

dx
f(x) +

2α+ 1

2

(
f(x)− f(−x)

x

)
,

where f are suitable functions on R. It is easy to check that, for any λ ∈ C, we
have

ΛαEα(λx) = λEα(λx).

Let us note that, when α = −1/2, we have Λ−1/2 = d/dx and E−1/2(λx) = eλx.
From the definition, it is also easy to check that

Eα(z) =

∞∑
n=0

zn

γn,α

with

γn,α =

{
22kk! (α+ 1)k, if n = 2k,

22k+1k! (α+ 1)k+1, if n = 2k + 1,

and where (a)n denotes the Pochhammer symbol

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)

(where a is not a negative integer); of course, γn,−1/2 = n!. We also define(
n

j

)
α

=
γn,α

γj,αγn−j,α
,

which becomes the ordinary binomial numbers in the case α = −1/2.
As a generalization of the Bernoulli polynomials to the Dunkl context,

Bernoulli-Dunkl polynomials {Bn,α}n are defined in [5] by means of the gener-
ation function

Eα(xt)

Iα+1(t)
=

∞∑
n=0

Bn,α(x)

γn,α
tn.
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Similarly, Euler-Dunkl polynomials {En,α}n were introduced in [16] by means
of the generation function

Eα(xt)

Iα(t)
=

∞∑
n=0

En,α(x)

γn,α
tn.

For α = −1/2, the Bernoulli-Dunkl and the Euler-Dunkl polynomials become
the classical Bernoulli and Euler polynomials, except by a change of variable to
transform the interval (0, 1) in the interval (−1, 1), namely

(5) Bn,−1/2(2x− 1) = 2nBn(x), En,−1/2(2x− 1) = 2nEn(x).

Many other properties of the polynomials Bn,α and En,α have been studied
in [6]. Here, let us only mention that the derivatives of the Bernoulli and the
Euler polynomials satisfy B′

n(x) = nBn−1(x) and E′
n(x) = nEn−1(x); in the

case of the Bernoulli-Dunkl and the Euler-Dunkl polynomials, the role of the
derivative is played by the Dunkl operator Λα (see the item 1 in Lemmas 2.1
and 3.1), so this is the reason to say that Bn,α and En,α are generalizations to
the Dunkl context.

Euler’s formula relates the complex exponential function with the trigono-
metric functions by means of

eix = cosx+ i sinx.

If Eα(x) plays the role of the exponential, as

Eα(ix) = Iα(ix) + i
xIα+1(ix)

2(α+ 1)
= 2αΓ(α+ 1)

(
Jα(x)

xα
+ ix

Jα+1(x)

xα+1

)
,

the functions xJα+1(x)
xα+1 and Jα(x)

xα would correspond, in the Dunkl context, to
sinx and cosx, respectively (except for the constant 2αΓ(α+ 1)).

The goal of this paper is to obtain the asymptotic behavior of the Bernoulli-
Dunkl and the Euler-Dunkl polynomials, and, subsequently, to study their zeros.
In Theorems 1.1 and 1.2 we show the analogous formulas to (1), (2), (3) and
(4) in the Dunkl context.

Theorem 1.1. Let α > −1. The following sequences converge uniformly on
compact subsets of C:

lim
k→∞

(−1)k+1(α+ 1)s2k1
γ2k,α

Jα(s1)

sα1
B2k,α(z) =

Jα(s1z)

(s1z)α
,(6)

lim
k→∞

(−1)k+1(α+ 1)s2k+1
1

γ2k+1,α

Jα(s1)

sα1
B2k+1,α(z) = s1z

Jα+1(s1z)

(s1z)α+1
,(7)

where s1 is the first positive zero of Jα+1(z).
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Theorem 1.2. Let α > −1. The following sequences converge uniformly on
compact subsets of C:

lim
k→∞

(−1)kj2k+2
1

2γ2k,α

Jα+1(j1)

jα+1
1

E2k,α(z) =
Jα(j1z)

(j1z)α
,(8)

lim
k→∞

(−1)kj2k+3
1

2γ2k+1,α

Jα+1(j1)

jα+1
1

E2k+1,α(z) = j1z
Jα+1(j1z)

(j1z)α+1
,(9)

where j1 is the first positive zero of Jα(z).

Let us recall that

J1/2(x) =

√
2

πx
sin(x), J−1/2(x) =

√
2

πx
cos(x)

so, in the case α = −1/2, we have s1 = π and j1 = π/2. Then, taking into
account (5), it is easy to see that, indeed, the limits (6), (7), (8) and (9) be-
come (1), (2), (3) and (4).

Theorems 1.1 and 1.2 will help us locate the real zeros of Bernoulli-Dunkl and
Euler-Dunkl polynomials in a very direct way. With respect to complex zeros,
the zero attractors of the Euler and Bernoulli polynomials have been studied
in [3]; in our case, we have made some numerical experiments that show, in
a graphical way, how the complex zeros of Bernoulli-Dunkl and Euler-Dunkl
polynomials are distributed.

The content of the paper is organized as follows. Section 2 is devoted to
study Bernoulli-Dunkl polynomials and to prove Theorem 1.1. In Section 3,
we prove the results for Euler-Dunkl polynomials. In both sections we show
numerical experiments. Finally, the behavior of the zeros of the polynomials
are explained in Section 4.

2 Bernoulli-Dunkl polynomials

Let us start showing some basic properties, which were proved in [5].

Lemma 2.1. The Bernoulli-Dunkl polynomials satisfy the following properties:

1. Λα(Bn,α)(x) =
γn,α

γn−1,α
Bn−1,α(x) =

(
n+(α+1/2)(1− (−1)n)

)
Bn−1,α(x).

2. B2n,α(x) is an even polynomial, n ≥ 0, and B2n+1,α(x) is an odd polyno-
mial, n ≥ 0, which vanishes at 1 (and hence at −1) for n ≥ 1.

3. They can be written by

(10) Bn,α(x) =

n∑
j=0

(
n

j

)
α

Bj,α(0)x
k−j .
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As α > −1, the Bessel function Jα+1(x) has a strictly increasing sequence
of positive zeros {sj}j≥1, and the real function ImEα(ix) =

x
2(α+1)Iα+1(ix) is

odd and has an infinite sequence of zeros {sj}j∈Z with s−j = −sj and s0 = 0.
In [7], as a generalization of the traditional orthogonal system {eijx}j∈Z (which
corresponds to te case α = −1/2), an orthogonal system for the Dunkl context
is introduced. This system is given by

eα,j(x) =
2α/2Γ(α+ 1)1/2

|Iα(isj)|
Eα(isjx), j ∈ Z \ {0}, x ∈ [−1, 1],

and
eα,0(x) = 2(α+1)/2Γ(α+ 2)1/2,

and it is orthonormal and complete with respect to the measure |x|2α+1 dx
2α+1Γ(α+1) in

[−1, 1]. A property that we will use later in this paper is

(11) (−1)jeα,j(0) =
2α/2Γ(α+ 1)1/2

Iα(isj)
.

In a similar way to the classical Bernoulli polynomials, which have the Hur-
witz expansion

Bn(x) = − n!

(2πi)n

∑
j∈Z\{0}

e2πijx

jn
, x ∈ [0, 1],

the Bernoulli-Dunkl polynomials have a nice expansion on the system {eα,j(x)}j∈Z.
It was shown in [5] that this expansion is the following:

Theorem 2.2. Let −1 < α < n+ 1/2 and n ≥ 2. Then,

(12) Bn,α(x) =
−(−i)nγn,α

21+α/2(α+ 1)Γ(α+ 1)1/2

∑
j∈Z\{0}

(−1)j

snj
eα,j(x),

with pointwise convergence in [−1, 1].

As a consequence of Theorem 2.2, we can prove the following result:

Lemma 2.3. Let α > −1. Then, for all integer j0 ≥ 2,

B2k,α(0)

γ2k,α
=

(−1)k+1

α+ 1

j0−1∑
j=1

1

s2kj Iα(isj)
+O

(
1

s
2k−α−1/2
j0

)
, k → ∞.

Proof. From (12) and (11) we can write

B2k,α(0)

γ2k,α
=

(−1)k+1

2(α+ 1)

∑
j∈Z\{0}

1

s2kj Iα(isj)
=

(−1)k+1

α+ 1

∞∑
j=1

1

s2kj Iα(isj)
.
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Then, taking the tail

∞∑
j=j0

1

|s2kj Iα(isj)|
=

1

|s2kj0 |

∞∑
j=j0

1

|Iα(isj)|

∣∣∣∣sj0sj
∣∣∣∣2k ,

and using the estimate (see, for instance, [16])

1

|Iα(isj)|
≤ Cα|sj |α+1/2,

where Cα is a constant that depends only on α, we have that

∞∑
j=j0

1

|s2kj Iα(isj)|
≤ Cα

|sj0 |2k−α−1/2

∞∑
j=j0

∣∣∣∣sj0sj
∣∣∣∣2k−α−1/2

,

and the last series is absolutely convergent for 2k − α − 1/2 > 1 because the
asymptotic behavior sj = πj +O(1) (see [19, § 5.13], [25, § 10.21] or [32, Chap-
ter XV]).

We denote the section of the function 2αΓ(α+ 1)Jα(z)
zα as

T2k,α(z) =

k∑
j=0

(−1)j

γ2j,α
z2j ,

and the section of 2αΓ(α+ 1)z Jα+1(z)
zα+1 as

T2k+1,α(z) =

k∑
j=0

(−1)j

γ2j+1,α
z2j+1.

Note that, if α = −1/2, they are the partial sums of the functions cos z and
sin z, respectively.

Now, we prove the following result.

Theorem 2.4. Let α > −1. Then, for k big enough and for all z ∈ C,∣∣∣∣α+ 1

γ2k,α
B2k,α(z)−

(−1)k+1

s2k1 Iα(is1)
T2k,α(s1z)

∣∣∣∣ ≤ Cα

|s2|2k
Eα(|s2z|),(13) ∣∣∣∣ α+ 1

γ2k+1,α
B2k+1,α(z)−

(−1)k+1

s2k+1
1 Iα(is1)

T2k+1,α(s1z)

∣∣∣∣ ≤ Dα

|s2|2k+1
Eα(|s2z|),(14)

where Cα and Dα denote constants depending only on α.

Proof. From (10), B2k,α(z) can be expressed in terms of the coefficients Bj,α(0)
and, from item 2 of Lemma 2.1, B2j+1,α(0) = 0 for every j ≥ 0. So, we can
write

α+ 1

γ2k,α
B2k,α(z) =

α+ 1

γ2k,α

k∑
j=0

(
2k

2j

)
α

B2j,α(0)z
2k−2j = (α+1)

k∑
j=0

B2j,α(0)

γ2j,α

z2k−2j

γ2k−2j,α
.
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When k0 is big enough and k > k0, from Lemma 2.3 with j0 = 2 we have

(15)

α+ 1

γ2k,α
B2k,α(z) = (α+ 1)

k0∑
j=0

B2j,α(0)

γ2j,α

z2k−2j

γ2k−2j,α

+

k∑
j=k0+1

(
(−1)j+1

s2j1 Iα(is1)
+O

(
1

s
2j−α−1/2
2

))
z2k−2j

γ2k−2j,α
.

On the other hand,
(16)

1

s2k1 Iα(is1)
T2k,α(s1z) =

1

s2k1 Iα(is1)

k∑
j=0

(−1)j

γ2j,α
s2j1 z2j

=
1

s2k1 Iα(is1)

k0∑
j=0

(−1)k−j

γ2k−2j,α
s2k−2j
1 z2k−2j +

k∑
j=k0+1

(−1)k−j

s2j1 Iα(is1)
z2k−2j

γ2k−2j,α
.

Taking into account (15) and (16), we obtain∣∣∣∣α+ 1

γ2k,α
B2k,α(z)− (−1)k+1 1

s2k1 Iα(is1)
T2k,α(s1z)

∣∣∣∣
≤

k0∑
j=0

∣∣∣∣∣α+ 1

γ2j,α
B2j,α(0)−

(−1)j+1

s2j1 Iα(is1)

∣∣∣∣∣ |z|2k−2j

γ2k−2j,α
+Cα

k∑
j=k0+1

1

|s2|2j−α−1/2

|z|2k−2j

γ2k−2j,α

≤ 1

|s2|2k
k0∑
j=0

∣∣∣∣∣α+ 1

γ2j,α
B2j,α(0)−

(−1)j+1

s2j1 Iα(is1)

∣∣∣∣∣ |s2|2j |s2z|2k−2j

γ2k−2j,α

+
Cα

|s2|2k−α−1/2

k∑
j=k0+1

|s2z|2k−2j

γ2k−2j,α
≤ Cα

|s2|2k
Eα(|s2z|),

so we have proved (13). The proof of (14) is similar.

The partial sums T2k(s1z) converge uniformly on compact subsets of C to
the analytic function Iα(is1z), and T2k+1(s1z) do to s1z

2(α+1)Iα+1(is1z). Thus,

Theorem 1.1 is obtained as a consequence of Theorem 2.4, as follows.

Proof of Theorem 1.1. Multiplying (13) by |(−1)k+1s2k1 Iα(is1)|, the right part
converges to zero when k → ∞ because |s1/s2| < 1. Then, we have

lim
k→∞

∣∣∣∣ (−1)k+1s2k1 (α+ 1)Iα(is1)
γ2k,α

B2k,α(z)− T2k(s1z)

∣∣∣∣ = 0,

so (6) is obtained. The limit (7) can be deduced in the same way.

We can make some numerical experiments that show, in a graphical way,
the approximations given in Theorem 1.1. For convenience, let us set

B∗
2k,α(x) =

(−1)k+1(α+ 1)s2k1
γ2k,α

Jα(s1)

sα1
B2k,α(x)
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Figure 1: For α = 1, comparison of B∗
45,α(x) and s1x

Jα+1(s1x)
(s1x)α+1 (on the left), and

comparison of B∗
50,α(x) and

Jα(s1x)
(s1x)α

(on the right).

-4 -2 2 4

-0.00004

-0.00002

0.00002

0.00004

-4 -2 2 4

-0.00004

-0.00002

0.00002

0.00004

Figure 2: For α = 4, comparison of B∗
45,α(x) and s1x

Jα+1(s1x)
(s1x)α+1 (on the left), and

comparison of B∗
50,α(x) and

Jα(s1x)
(s1x)α

(on the right).

and

B∗
2k+1,α(x) =

(−1)k+1(α+ 1)s2k+1
1

γ2k+1,α

Jα(s1)

sα1
B2k+1,α(x).

In Figures 1 and 2, and for different values for α and n, the dashed lines corre-

spond to the polynomials B∗
n(x), and the solid line to the functions s1x

Jα+1(s1x)
(s1x)α+1

(for odd n) or Jα(s1x)
(s1x)α

(for even n).

3 Euler-Dunkl polynomials

We list some of the properties of these polynomials, as stated in [16]:

Lemma 3.1. The Euler-Dunkl polynomials satisfy the following properties:

1. Λα(En,α)(x) =
γn,α

γn−1,α
En−1,α(x) =

(
n+ (α+ 1/2)(1− (−1)n)

)
En−1,α(x).

2. E2n,α(x) is an even polynomial, n ≥ 0, which vanishes at 1 (and hence
at −1) for n ≥ 1, and E2n+1,α(x) is an odd polynomial, n ≥ 0.
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3. They can be written by

En,α(x) =

n∑
j=0

(
n

j

)
α

Ej,α(0)x
k−j .

The Fourier-Dunkl orthogonal system {eα,m}m∈Z introduced in [7] is very
useful to approximate Bernoulli-Dunkl polynomials (recall Theorem 2.2), but, to
approximate Euler-Dunkl polynomials, it is much better to use another orthog-
onal system. With this aim, the so-called Fourier-Dunkl system of the second
kind is introduced in [16]. Let {jm}m≥1 be the zeros of the Bessel function
Jα(x) with α > −1, and j−m = −jm, and set

fα,m(x) =
2α/2+1(α+ 1)Γ(α+ 1)1/2

|jmIα+1(ijm)|
Eα(ijmx), x ∈ [−1, 1], m ∈ Z \ {0}.

Then, {fα,m}m∈Z\{0} is a complete othonormal system with respect to the mea-

sure |x|2α+1 dx
2α+1Γ(α+1) in [−1, 1]. It is again useful to know the value of the orthogonal

functions at x = 0, that is,

(17) fα,m(0) =
2α/2+1(α+ 1)Γ(α+ 1)1/2

(−1)m+1|jm|Iα+1(ijm)
.

With this orthogonal system, an analogous formula to (12) is obtained for
Euler-Dunkl polynomials:

Theorem 3.2. Let −1 < α < n+ 1/2 and n ≥ 1. Then,

(18) En,α(z) =
(−1)n+1inγn,α
2α/2Γ(α+ 1)1/2

∑
m∈Z\{0}

(−1)m sgn(m)

jn+1
m

fα,m(z),

with pointwise convergence in [−1, 1].

Thus, using (18), (17) and Lemma 3.1, we can give a result that is analogous
to Lemma 2.3:

Lemma 3.3. Let α > −1. Then, for all integer m0 ≥ 2,

E2k,α(0)

γ2k,α
= (−1)k4(α+ 1)

m0−1∑
m=1

1

j2k+2
m Iα+1(ijm)

+O

(
1

j
2k−α+1/2
m0

)
, k → ∞.

Now, in the same way as in Theorem 3.4, we have the following:

Theorem 3.4. Let α > −1. Then, for k big enough and for all z ∈ C,∣∣∣∣ 1

4(α+ 1)

E2k,α(z)

γ2k,α
− (−1)k

j2k+2
1 Iα+1(ij1)

T2k,α(j1z)

∣∣∣∣ ≤ Cα

j2k2
Eα(|j2z|),∣∣∣∣ 1

4(α+ 1)

E2k+1,α(z)

γ2k+1,α
− (−1)k

j2k+3
1 Iα+1(ij1)

T2k+1,α(j1z)

∣∣∣∣ ≤ Dα

j2k+1
2

Eα(|j2z|),

where Cα and Dα denote constants depending only on α.
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Figure 3: For α = 1, comparison of E∗
45,α(x) and j1z

Jα+1(j1z)
(j1z)α+1 (on the left), and

comparison of E∗
50,α(x) and

Jα(j1z)
(j1z)α

(on the right).
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Figure 4: For α = 4, comparison of E∗
45,α(x) and j1z

Jα+1(j1z)
(j1z)α+1 (on the left), and

comparison of E∗
50,α(x) and

Jα(j1z)
(j1z)α

(on the right).

Using this theorem we obtain Theorem 1.2.
Again, let us make some numerical experiments to show the convergence

stated in the theorem. We set

E∗
2k,α(x) =

(−1)kj2k+2
1

2γ2k,α

Jα+1(j1)

jα+1
1

E2k,α(x),

and

E∗
2k+1,α(x) =

(−1)kj2k+3
1

2γ2k+1,α

Jα+1(j1)

jα+1
1

E2k+1,α(x).

In Figures 3 and 4, and for different values for α and n, the dashed lines corre-

spond to the polynomials E∗
n(x) and the solid line to the functions j1x

Jα+1(j1x)
(j1x)α+1

(for odd n) or Jα(j1x)
(j1x)α

(for even n).

4 Zeros of Bernoulli-Dunkl and Euler-Dunkl poly-
nomials

To study the zeros of the polynomials in question, we use the Hurwitz theorem,
that, under some conditions, associates the zeros of a convergent sequence of
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functions with that of their corresponding limit (see [8, Chapter VII, p. 152] or
[21, Chapter I, p. 4]). For the sake of completeness, we quote it here:

Theorem 4.1 (Hurwitz). Let {gn}n∈N be a sequence of functions which are
analytic in a region R and which converge uniformly to a function g(z) ̸≡ 0 in
every closed subregion of R. Let ξ be an interior point of R. If ξ is a limit point
of the zeros of the gn(z), then ξ is a zero of g(z). Conversely, if ξ is an m-fold
zero of g(z), every sufficiently small neighborhood K of ξ contains exactly m
zeros (counted with their multiplicities) of each gn(z), n > N(K).

The functions Jα(s1z)
(s1z)α

and s1z
Jα+1(s1z)
(s1z)α+1 have only simple real zeros so, from

Hurwitz’s theorem, every zero of these functions is the limit of a sequence of real
zeros of the Bernoulli-Dunkl polynomials. Moreover, the complex zeros of these
polynomials must converge to infinity, as n → ∞. (In principle, a portion of the
real zeros of the polynomials could escape to infinity similarly as the complex
zeros, although it is most likely not the case here.)

Analogously to the Bernoulli-Dunkl case, from Hurwitz’s theorem we obtain

that every zero of the functions Jα(j1z)
(j1z)α

and j1z
Jα+1(j1z)
(j1z)α+1 is the limit of a sequence

of real zeros of the Bernoulli-Euler polynomials. Again, the complex zeros of
these polynomials must converge to infinity.

As a consequence of Hurwitz’s theorem we have only obtained that the
complex zeros of Bn,α(z) and En,α(z) must move further away from the origin
as n goes to infinity, because the functions to which they converge only have real
zeros. Then, to study the manner in which they go to infinity, the usual way
is to normalize the variable by taking nz in the place of z. Historically, Szegő
showed in 1924 that, if we denote sn(z) =

∑n
j=0 z

j/j! to be the nth partial
sum of the exponential function ez, the zeros of the normalized partial sum
sn(nz) tend, as n → ∞, to the curve |ze1−z| = 1 in the complex plane, which is
now known as the Szegő curve. Similar behavior happens with the zeros of the
partial sums or cos(z) and sin(z), see [30].

In the classical case of Bernoulli and Euler polynomials Bn(nz) and En(nz),
Boyer and Goh [3] study the limit distribution of the zeros of Euler polynomials,
and they prove that their zero attractor is

A = {z ∈ C : e1+π Im z|z| = 1/π, Im z > 0}
∪ {z ∈ C : e1−π Im z|z| = 1/π, Im z < 0}
∪ {x+ 0 · i ∈ C : −1/(πe) ≤ x ≤ 1/(πe)};

some other families of Appell polynomials have similar behaviour (see [10, 20, 4,
28]). In the recent paper [2], new explicit expressions are obtained for rescaled
Appell polynomials which can be used to study the zero attractors and the
asymptotics of these polynomials.

However, it does not seem easy to adapt the proofs of these results to the
Dunkl context, because they depend strongly on properties of the exponential
function that we do not have for Eα(z) (in particular, because the Dunkl trans-
lation is a far from trivial operator, see [6, 26, 29], and the relation ex+y = exey

12
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Figure 5: On the top, zeros of T45,1(45s1z) (on the left) and zeros of B45,1(45z)
(on the right). On the bottom, zeros of T50,0(50s1z) (on the left) and zeros of
B50,0(50z) (on the right).

has a much more complicated version in the Dunkl context). Instead, we have
made some numerical experiments that allow us to conjecture the limit distri-
bution of the zeros of Bn,α(nz) and En,α(nz).

In our case we suspect that the zeros of Bn,α(nz) are inside the circle |z| =
1/s1 and have as their limit points the set

(19)

C = {z ∈ C : e1−s1 Im z|z| = 1/s1, Im z > 0}
∪ {z ∈ C : e1+s1 Im z|z| = 1/s1, Im z < 0}
∪ {x+ 0 · i ∈ C : −1/(s1e) ≤ x ≤ 1/(s1e)},

where s1 is the first positive zero of the function Jα+1(z). Actually, it has been
proved in [31] that the zeros of the sections Tn,α(ns1z) have the set C as their
set of limit points and thus our conjecture is that the zeros of Bn,α(nz) have
the same limit distribution. In Figure 5, we draw, for some values of α and
n, the circle of radius 1/s1, the curve described in (19), the complex zeros of
Tn,α(ns1z) and the complex zeros of Bn,α(nz).

Analogously, we can observe that the zeros of the Euler-Dunkl polynomials
En,α(nz) have as limit points the set

(20)

D = {z ∈ C : e1−j1 Im z|z| = 1/j1, Im z > 0}
∪ {z ∈ C : e1+j1 Im z|z| = 1/j1, Im z < 0}
∪ {x+ 0 · i ∈ C : −1/(j1e) ≤ x ≤ 1/(j1e)},
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Figure 6: On the top, zeros of T45,1/2(45j1z) (on the left) and zeros of
E45,1/2(45z) (on the right). On the bottom, zeros of T50,2(50j1z) (on the left)
and zeros of E50,2(50z) (on the right).

where j1 is the first positive zero of the function Jα(z). In Figure 6 we draw
the circle of radius 1/j1, the curve (20), the complex zeros of Tn,α(nj1z) and
the complex zeros of En,α(nz).
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