
Journal of

Personalized 

Medicine

Article

Predictive Biomarkers of Age-Related Macular Degeneration
Response to Anti-VEGF Treatment

Ana I. Oca 1,†, Álvaro Pérez-Sala 1,†, Ana Pariente 1, Rodrigo Ochoa 1, Sara Velilla 1, Rafael Peláez 1

and Ignacio M. Larráyoz 1,2,*

����������
�������

Citation: Oca, A.I.; Pérez-Sala, Á.;

Pariente, A.; Ochoa, R.; Velilla, S.;

Peláez, R.; Larráyoz, I.M. Predictive

Biomarkers of Age-Related Macular

Degeneration Response to Anti-VEGF

Treatment. J. Pers. Med. 2021, 11, 1329.

https://doi.org/10.3390/jpm11121329

Academic Editor: Chiara Villa

Received: 22 October 2021

Accepted: 6 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR),
Foundation Rioja Salud, 26006 Logroño, La Rioja, Spain; aioca@riojasalud.es (A.I.O.);
aperez@riojaslud.es (Á.P.-S.); apariente@riojaslud.es (A.P.); rochoaf@riojasalud.es (R.O.);
svelillaoses@gmail.com (S.V.); rpelaez@riojasalud.es (R.P.)

2 Unidad Predepartamental de Enfermería, Universidad de La Rioja (UR), 26006 Logroño, La Rioja, Spain
* Correspondence: ilarrayoz@riojasalud.es; Tel.: +34-941278770
† These authors contributed equally to this work.

Abstract: Age-related macular degeneration (AMD) is an incurable disease associated with aging
that destroys sharp and central vision. Increasing evidence implicates both systemic and local
inflammation in the pathogenesis of AMD. Intravitreal injection of anti-vascular endothelial growth
factor (VEGF) agents is currently the first-line therapy for choroidal neovascularization in AMD
patients. However, a high number of patients do not show satisfactory responses to anti-VEGF
treatment after three injections. Predictive treatment response models are one of the most powerful
tools for personalized medicine. Therefore, the application of these models is very helpful to predict
the optimal treatment for an early application on each patient. We analyzed the transcriptome
of peripheral blood mononuclear cells (PBMCs) from AMD patients before treatment to identify
biomarkers of response to ranibizumab. A classification model comprised of four mRNAs and one
miRNA isolated from PBMCs was able to predict the response to ranibizumab with high accuracy
(Area Under the Curve of the Receiver Operating Characteristic curve = 0.968), before treatment. We
consider that our classification model, based on mRNA and miRNA from PBMCs allows a robust
prediction of patients with insufficient response to anti-VEGF treatment. In addition, it could be used
in combination with other methods, such as specific baseline characteristics, to identify patients with
poor response to anti-VEGF treatment to establish patient-specific treatment plans at the first visit.

Keywords: RNA-Seq; PBMC; retina; ranibizumab; machine learning

1. Introduction

Age-related macular degeneration (AMD) is an incurable disease associated with
aging that destroys sharp and central vision, and therefore, it is a highly disabling dis-
ease. AMD affects the macula, a light-sensitive region at the back center of the retina,
responsible for seeing objects in fine detail. There are two main types of AMD: dry and
wet AMD. Both forms can occur in one or both eyes, neither of them produces pain, so
they can go undetected until they produce marked changes in vision. Dry AMD, the
more common form of macular degeneration (90% of total cases), is proposed to be a
vascular-metabolic-inflammatory disease characterized by the accumulation of drusen
(small yellowish deposits) [1,2]. Dry AMD does not usually cause total loss of central vision
due to its slow progress. Wet AMD, however, is the more serious form of the disease and it
represents 90% of the cases that progress to legal blindness. It is characterized by choroidal
neovascularization (CNV) as a result of abnormally choroidal blood vessels growth through
Bruch’s membrane into the macula, pushing aside the retinal pigment epithelium (RPE)
and distorting its structure [1]. Moreover, 10 to 15 percent of adults with dry AMD will
go on to develop wet AMD as a consequence of CNV [1]. This process eventually leads to
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blood and fluid leakage that can scar the macula and retina, which leads to a rapid and
permanent loss of central vision [1].

CNV is stimulated by the induction of angiogenic growth factors, including VEGF and
several interleukins (IL-6, IL-8, IL-18 . . . ). Clinical trials and laser-induced CNV in animal
models have shown that antiangiogenic therapy targeting VEGF, such as bevacizumab,
aflibercept or ranibizumab, can decrease disease progression [3]. However, there are a
number of problems with current therapy options. The high rate of retreatment, for one,
places a remarkable burden on both patients and retinal specialists, while the high cost of
therapy is creating economic challenges for national healthcare systems that are already
under strain. In addition, the optimal treatment regimen for specific subsets of patients
has yet to be defined in clinical trials. Finally, gains in visual acuity do have a limit, and
an important subset of patients with wet AMD does not appear to respond, whether
functionally or anatomically, to current anti-VEGF therapy [4].

Increasing evidence implicates both systemic and local inflammation in the patho-
genesis of AMD. For instance, the presence of inflammatory mediators of the complement
cascade in drusen, macrophages in the choroid of eyes with AMD [5], or anti-retinal au-
toantibodies and inflammatory markers detected in the sera of patients with AMD [6].
Involvement of systemic inflammation in the disease is reflected by the association of single
nucleotide polymorphisms (SNPs) in complement components [7–10], chemokine recep-
tors [11,12], VEGF isoforms [13,14] and Toll-like receptor-3 [15]. Furthermore, perturbed
macrophage function is thought to lead to the development of features resembling AMD in
mice strains deficient in chemokine receptors or their ligands [16]. Thus, plasmatic solutes
and PBMCs seem to have an important role in AMD physiopathology [17–20] and have
been widely used to study biomarkers related to AMD [21–25].

Although knowledge of the genetic history and DNA sequences of an individual
patient may be helpful for the studies of ancestry or a diagnosis of pre-existing adversities
to certain drugs, it has relatively little effectiveness for molecular medicine in AMD [26–30]
when compared to analyzing transcriptomes. To our knowledge, no direct transcriptome-
wide analysis of white blood cells in relation to AMD response to ranibizumab treatment
has been reported.

Predictive treatment response models are one of the most powerful tools for per-
sonalized medicine as they can predict which treatment would fit better on each patient,
probability of success, etc. Therefore, the application of these models is very helpful to
predict the optimal treatment for an early application on each patient [23].

In the present work, we have analyzed the transcriptome of PBMCs from 59 wet
AMD patients, before undergoing ranibizumab treatment. Using correlation-based feature
selection algorithms, we have identified a set of mRNAs and miRNAs to build classification
models for the prediction of ranibizumab response, with high accuracy. This set of RNAs
could help clinicians to identify patients with poor response to anti-VEGF treatment, at the
first visit, and to establish improved patient-specific treatment plans.

2. Materials and Methods
2.1. Population and Group Characteristics

Patients were recruited, evaluated and the progression was followed by Ophthalmolo-
gists from the Service of the Hospital San Pedro, La Rioja, Spain. Signed informed consent
forms were obtained from 59 untreated wet AMD patients older than 60 years. They were
evaluated based on ophthalmoscopy, fluorescein angiography and optical coherence tomog-
raphy (OCT) in the Department of Ophthalmology of Hospital San Pedro. Patients with
severe systemic diseases, such as malignancies, active ischemic heart disease, uncontrolled
diabetes or pulmonary disease, or autoimmune diseases were excluded from the study.
Classification of patient response was based on Amoaku and collaborators [31]. Briefly,
patients were considered good responders (good or partial morphological and/functional
response) when the examination showed resolution of intraretinal fluid (IRF), subretinal
fluid (SRF), retinal thickening and/or improvement of at least five ETDRS letters. Poor
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responders (poor or no response) were defined as patients showing less than 25% reduction
in OCT CRT from the baseline, with persistent or new IRF, SRF, or minimal or no change in
visual acuity (less than five letters) after VEGF therapy [31,32].

2.2. PBMCs Isolation

Blood samples were drawn and PBMCs were isolated using a standard protocol for
RNA extraction and purification. Briefly, blood was placed in BD Vacutainer CPT tubes
containing Sodium Citrate and Ficoll™ Hypaque™ Solution (BD-Bioscience, Madrid, Spain).
PBMCs were collected by centrifugation at 1800× g for 10 min at room temperature. Then,
PBMCs were washed in a PBS -/- solution, centrifuged at 300× g for 10 min and quantified.
Finally, PBMCs were stored at −80 ◦C after their resuspension in TRIzol reagent (Invitrogen,
Madrid, Spain).

2.3. RNA Purification

Total RNA was extracted and purified according to published protocols [33]. Briefly,
we isolated mRNA and miRNA using TRIzol (Invitrogen, Madrid, Spain) and the RNeasy
mini-kit (Qiagen, Valencia, CA, USA). Samples were treated DNase I (Qiagen, Valencia,
CA, USA) following the manufacturer’s instructions. Nucleic acid content was quantified
with a Nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
subjected to next-generation sequencing.

2.4. Next Generation Sequencing

Whole transcriptome sequencing was performed according to the manufacturer’s pro-
tocols and using their reagents (Illumina, San Diego, CA, USA) as described previously [33].
Briefly, an automated electrophoresis system (Experion; Bio-Rad, Hercules, CA, USA) was
used to check the integrity and quality of the total. One µg mRNA was fragmented into ap-
proximately 200 base pair (bp) pieces by using divalent cations under elevated temperature.
Cleaved RNA fragments were treated with reverse transcriptase and random primers to
generate first strand cDNA. The second strand was obtained using DNA polymerase I and
RNase H. cDNA fragments were end-repaired by Klenow DNA polymerase and T4 DNA
polymerase. Then, cDNA was phosphorylated by T4 polynucleotide kinase and ligated
indexing adapters (Illumina, Madrid, Spain). Adapter-tagged libraries were amplified
by using PCR with DNA polymerase (Phusion; Finnzymes Reagents, Vantaa, Finland)
and validated and quantified by electrophoresis and qPCR. Pools of 4–6 indexed libraries
were mixed at equimolar ratios to yield a total oligonucleotide mixture concentration of
10 nM. Final libraries were sequenced in a HiSeq 1500 platform (Illumina, Madrid, Spain)
to generate 2 × 125-bp paired-end reads.

2.5. Transcriptomic Analysis and Bioinformatics

For transcriptomic analyses, we used paired end raw reads data obtained from Il-
lumina sequencing workflows. Firstly, data were cleaned of adapters and low-quality
sequences based on reported quality scores. Mapping was performed using the Spliced
Transcripts Alignment to a Reference (STAR) aligner (https://github.com/alexdobin/STAR
accessed date 1 April 2021) [34]. Mapped reads were counted using FeatureCounts
(http://subread.sourceforge.net/ accessed date 1 April 2021) over gene feature discarding
multimapping reads [35]. The statistical analyses were performed on R using two different
differential expression analysis packages: edgeR and DESeq2. Results were cross-checked
between both methods to obtain a differential expressed gene set.

All sequenced samples were classified in the two defined patient groups (Good
responders and Poor responders) to perform model contrasts. Gender classification was
included in the statistical model as a confounding variable, not being used for contrast.
RAW counts were normalized using the default methodology for each package, and zeros
were excluded were less than 25% of samples had at least one count. Statistical results
from model contrast were listed and filtered by p-value (<0.01) to study the most relevant
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alterations between groups. In addition, a wider filter was applied to analyze pathway
enrichment by most altered genes (p-value < 0.05) using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway database [36–38].

Micro RNA reads were obtained following Illumina sequencing protocols similarly to
mRNA sequencing. Firstly, data were cleaned of adapters and low-quality sequences based
on reported quality scores. After that, the miRDeep2 tool (https://github.com/rajewsky-
lab/mirdeep2 accessed date 1 April 2021) was used for mapping, quantification and en-
richment analysis over human described miRNAs in miRBase (https://www.mirbase.org
accessed date 1 April 2021) and their precursors [39]. Differential miRNA expression
analyses were performed over miRDeep2 normalized counts using the edgeR statistical
package. The analysis setup was based on the same groups and criteria as mRNA differen-
tial expression analysis. Results were also filtered by p-value to identify the most relevant
miRNAs altered between groups.

2.6. Data Mining and Feature Selection

All data mining and deep learning experiments were performed using open-source
data mining tools (available from Weka Machine Learning 3, https://www.cs.waikato.
ac.nz/ml/weka accessed date 1 April 2021). Firstly, an attribute evaluation algorithm
was used to reduce gene sets used for classification modeling. That process was applied
for both datasets (miRNA and mRNA) using two different approaches: model entropy
minimization score for each attribute, and correlation-based feature selection algorithm.
The resulting set reported by the correlation-based feature selection algorithm fulfills the
condition of being the minimal attribute set without compromising model classification
performance. For this study, we chose the area under the curve (AUC) of the receiver
operating characteristic (ROC) to measure model classification performance. AUC was also
used as a performance parameter in the data mining step. Signatures and their models were
independently tested using 10-fold cross-validation techniques ensuring that no patient
was present in both the training set and the test set.

3. Results
3.1. Cohort Description

Baseline characteristics of the AMD patients included in this study are presented
in Table 1 and Supplementary Table S1. Fifty-nine patients were classified as “good
responders”, or “poor responders” based on the morphological and functional criteria
described in the “Methods” section. Prior to treatment, there were no differences between
those groups in relation to age, sex, diabetes, hypertension, dyslipidemia, coronary disease,
diet, tobacco or alcohol consumption, exposure to the sun, affected eye, intraocular pressure
(IOP), central retinal thickness, macular cube volume, retinal pigment epithelial detachment,
intra-retinal fluid, sub-retinal fluid, intra-retinal cysts, hemorrhage, exudation or fibrosis
(Table 1). However, “poor responders” showed a higher proportion of RPE atrophy than
“good responders” (p = 0.011) (Table 1), i.e., only 23% of the patients with RPE atrophy
responded to treatment, while 64% of patients without atrophy showed improvements
with ranibizumab.

Table 1. Demographics and baseline characteristics.

All Poor Responders Good Responders p-Value

Age (years, mean ± SD) 78.03 ± 1.055 80.04 ± 1.379 76.45 ± 1.504 0.092

Sex (Male/Female) 24/35 8/18 16/17 0.193

Tobacco (yes/no) 23/36 8/18 15/18 0.292

ETDRS (letters) 63.61 ± 1.131 62.73 ± 1.791 64.30 ± 1.464 0.495

https://github.com/rajewsky-lab/mirdeep2
https://github.com/rajewsky-lab/mirdeep2
https://www.mirbase.org
https://www.cs.waikato.ac.nz/ml/weka
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Table 1. Cont.

All Poor Responders Good Responders p-Value

OCT

Central Retinal Thickness,
mean ± SD (µm) 329.18 ± 15.495 325.2 ± 28.09 332.4 ± 17.7 0.820

Macular cube volume (µm3) 10.333 ± 0.176 10.37 ± 0.3137 10.30 ± 0.2004 0.839

Retinal pigment epithelial
detachment (yes/no) 43/16 20/6 23/10 0.571

Intra-retinal fluid (yes/no) 48/11 22/4 26/7 0.740

Sub-retinal fluid (yes/no) 43/16 17/9 26/7 0.377

Intra-retinal cysts (yes/no) 35/24 16/10 19/14 0.795

Fundoscopy

Hemorrhage (yes/no) 28/31 15/11 13/20 0.196

Exudation (yes/no) 8/51 2/24 6/27 0.446

Atrophy (yes/no) 13/46 10/16 3/30 0.011

Fibrosis (yes/no) 4/55 2/24 2/31 1.000

AGF

Location
(Sub-/Yuxta-/Extra-Foveal) 16/35/5 9/16/0 7/19/5 0.085

Size (mm) 1.03 ± 0.130 1.193 ± 0.2181 0.9150 ± 0.1585 0.297

Pattern (O/PC/MC) 26/22/8 14/9/3 12/13/5 0.577

p values were calculated using Fisher’s exact test. AGF pattern: O = Occult; PC = predominantly classic; MC: Minimally classic.

3.2. Messenger RNA Expression Differences between Good Responders and Poor Responders

We performed RNA-Seq differential expression analysis on mRNA extracted from
PBMCs of a patient with good or poor response to ranibizumab before treatment initiation.

The results of the comparison between those groups are shown in Table 2. Despite
not reaching statistical significance when corrected for multiple testing, TOP25 genes
were analyzed to construct a predictive classification model. Using a Random Forest
classifier optimized by the meta classifier Random Committee the classifier shows a ROC
curve with an AUC = 0.886. In addition, we performed pathway enrichment analysis
using the KEGG database for exploratory purposes with sequences showing unadjusted
p < 0.05. Interestingly, we found pathways related to inflammatory cytokines and NF-κB
signaling (Supplementary Figure S1 and Supplementary Table S2), which supports the
involvement of the immune system not only with the pathogenesis but also with the
response to treatment.

Table 2. Differentially expressed mRNAs in PBMCs from Good responders and Poor responders.

Ensembl_ID BaseMean Log2FC p Value Symbol Name

ENSG00000273727 3.8 −1.65 4.10 × 10−5 U1 U1 spliceosomal RNA

ENSG00000235621 9.8 0.82 1.16 × 10−4 LINC00494 long intergenic non-protein coding RNA 494

ENSG00000158106 25.0 0.54 1.67 × 10−4 RHPN1 rhophilin Rho GTPase binding protein 1

ENSG00000215012 75.3 0.25 2.13 × 10−4 RTL10 retrotransposon Gag like 10

ENSG00000249572 1.8 −1.31 2.41 × 10−4 N/A novel transcript

ENSG00000233913 23.6 −1.95 3.18 × 10−4 RPL10P9 ribosomal protein L10 pseudogene 9
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Table 2. Cont.

Ensembl_ID BaseMean Log2FC p Value Symbol Name

ENSG00000260766 12.5 0.49 3.98 × 10−4 N/A N/A

ENSG00000160307 18.5 −1.57 4.40 × 10−4 S100B S100 calcium binding protein B

ENSG00000226581 1.1 1.62 5.17 × 10−4 LINC02848 long intergenic non-protein coding RNA 2848

ENSG00000204345 1.3 −1.40 5.83 × 10−4 CD300LD CD300 molecule like family member d

ENSG00000174473 1.7 1.56 7.12 × 10−4 GALNTL6 polypeptide N-acetylgalactosaminyltransferase
like 6

ENSG00000211789 14.2 0.77 7.23 × 10−4 TRAV12-2 T cell receptor alpha variable 12-2

ENSG00000205710 11.6 −0.80 7.28 × 10−4 C17orf107 chromosome 17 open reading frame 107

ENSG00000227309 3.3 −0.95 7.79 × 10−4 RPL31P19 ribosomal protein L31 (RPL31) pseudogene

ENSG00000154723 43.8 −0.26 7.79 × 10−4 ATP5PF ATP synthase peripheral stalk subunit F6

ENSG00000107968 221.6 −0.29 7.81 × 10−4 MAP3K8 mitogen-activated protein kinase kinase kinase 8

ENSG00000211880 6.4 0.70 7.90 × 10−4 TRAJ9 T cell receptor alpha joining 9

ENSG00000258511 2.1 1.13 7.95 × 10−4 LINC02295 long intergenic non-protein coding RNA 2295

ENSG00000235361 0.8 −1.67 9.34 × 10−4 N/A novel transcript, antisense to ABR

ENSG00000226430 1.7 1.29 1.03 × 10−3 USP17L7 ubiquitin specific peptidase 17 like family
member 7

ENSG00000197353 6.9 −0.94 1.04 × 10−3 LYPD2 LY6/PLAUR domain containing 2

ENSG00000180758 18.7 0.39 1.06 × 10−3 GPR157 G protein-coupled receptor 157

ENSG00000211575 0.9 −1.60 1.19 × 10−3 MIR760 microRNA 760

ENSG00000272666 12.3 −0.75 1.26 × 10−3 KLHDC7B-
DT KLHDC7B divergent transcript

ENSG00000156510 15.3 0.55 1.29 × 10−3 HKDC1 hexokinase domain containing 1

ENSG00000007038 5.5 0.88 1.32 × 10−3 PRSS21 serine protease 21

ENSG00000254088 5.4 0.61 1.33 × 10−3 SLC2A3P4 solute carrier family 2 member 3 pseudogene 4

ENSG00000281106 23.3 0.71 1.58 × 10−3 TMEM272 transmembrane protein 272

ENSG00000180822 67.2 0.28 1.58 × 10−3 PSMG4 proteasome assembly chaperone 4

ENSG00000236709 7.6 −1.10 1.61 × 10−3 DAPK1-IT1 DAPK1 intronic transcript 1

3.3. Micro RNA Expression Differences between Good Responders and Poor Responders

We performed additional RNA-Seq differential expression analysis on micro RNA
extracted from PBMCs of the same patients. The results of the comparison between good
and poor responders are shown in Table 3.

Using mirPathv3.0-assisted data analysis [40] with the TOP25 miRNAs, we identified
numerous pathways regulated by this set of miRNAs, including thyroid hormone signaling,
TGF-β signaling, Hippo and adherent signaling, endocytosis and others. Noteworthy, this
miRNA set also regulates important AMD-related genes such VEGF-A, PDGFA and PDGFRA
involved in VEGF-signaling pathway, ECM-receptor interaction, cytokine-receptor interaction
and cell cycle (Supplementary Figures S2–S6 and Supplementary Table S3). These results
also support the involvement of relevant pathways, common to the immune system and
the retina, with the response to treatment. Following the same strategy as with the mRNA
data, we selected the TOP25 miRNAs to construct a predictive classification model based
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on Differential Expression (DE)-based classifiers. Using a Sequential Minimal Optimization
(SMO)-based classifier we obtained a ROC curve with an AUC = 0.826.

Table 3. Differentially expressed miRNAs in PBMCs from Good responders and Poor responders.

miRNA BaseMean Log2FC p Value

hsa-miR-3614-5p 11.3 3.49 1.42 × 10−3

hsa-miR-423-5p 1779.1 10.80 2.37 × 10−3

hsa-miR-20a-5p 865.9 9.76 3.16 × 10−3

hsa-miR-30c-1-3p 24.6 4.62 5.19 × 10−3

hsa-miR-1249-5p 3.0 1.58 5.32 × 10−3

hsa-miR-3605-3p 7.5 2.91 6.96 × 10−3

hsa-miR-320b 22.2 4.48 7.55 × 10−3

hsa-miR-320b-2 22.7 4.51 8.09 × 10−3

hsa-miR-25-5p 11.8 3.56 9.93 × 10−3

hsa-miR-34c-5p 4.7 2.22 1.36 × 10−2

hsa-miR-6813-5p 2.8 1.48 1.67 × 10−2

hsa-miR-30a-5p 225.9 7.82 1.73 × 10−2

hsa-miR-132-3p 25.0 4.64 1.76 × 10−2

hsa-miR-642a-5p 4.3 2.10 1.77 × 10−2

hsa-miR-212-3p 6.9 2.78 1.97 × 10−2

hsa-miR-181b-5p 1721.2 10.75 1.98 × 10−2

hsa-miR-3127-5p 2.8 1.47 2.00 × 10−2

hsa-miR-1273h-5p 6.4 2.68 2.11 × 10−2

hsa-miR-181b-5p-2 1795.9 10.81 2.19 × 10−2

hsa-miR-652-5p 24.7 4.63 2.51 × 10−2

hsa-let-7i-5p 5009.0 12.29 2.51 × 10−2

hsa-miR-369-3p 20.0 4.32 2.59 × 10−2

hsa-miR-6511a-3p 4.7 2.24 2.62 × 10−2

hsa-miR-6511a-3p-2 4.7 2.24 2.62 × 10−2

hsa-miR-6511a-3p-3 4.7 2.24 2.62 × 10−2

hsa-miR-6511a-3p-4 4.7 2.24 2.62 × 10−2

hsa-miR-223-5p 93.8 6.55 2.69 × 10−2

hsa-miR-2110 14.5 3.85 2.84 × 10−2

hsa-miR-190a-5p 32.2 5.01 2.91 × 10−2

hsa-miR-487a-3p 9.7 3.28 3.27 × 10−2

3.4. Classification Model from mRNA Data

The whole transcriptome analysis (RNA-Seq) method allows measuring the expression
levels of all the transcripts simultaneously. With that information, it is possible to develop
different classification algorithms. Thus, there are several types of classifiers described in
the literature. DE-based classifiers take into account the difference in the expression level
of genes and they are often useful to discover disease biomarkers. For RNA-Seq data, this
is typically done by fitting the distribution of the genes to negative binomial linear models
and applying a likelihood ratio statistical test.

In general, the first step for a classification process is a feature selection step by pre-
processing the data. This is done to reduce the computational complexity associated with
the amount of data obtained by RNA-Seq. In addition, not all expressed genes may be
relevant for a specific classification task. In fact, using uninformative features may even
decrease the accuracy of the classifier by model overfitting.
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However, since we did not observe any differentially expressed gene, between Good
responders and Poor responders, after multiple testing corrections, we decided to investi-
gate other classifiers based on entropy reduction.

To reduce the number of features to use, we performed a feature selection proce-
dure (see Methods), using the Weka suite [41], on mRNA sequencing data from PBMCs
obtained from the studied cohort. This process resulted in a significant reduction of fea-
tures (>1000-fold). We then selected the 10 most informative mRNAs (ENSG00000249572,
ENSG00000176531, ENSG00000240350, ENSG00000161298, ENSG00000049239,
ENSG00000226479, ENSG00000198056, ENSG00000104450, ENSG00000156510, and
ENSG00000158106) to obtain a predictive classification model for treatment response,
using a Random Forest classifier optimized by the meta classifier Random Committee. The
performance of the classifier is represented with a ROC curve (AUC = 0.950) in Figure 1.
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Figure 1. Classification model performance from informative mRNA data. A ROC was constructed
with expression data from 10 mRNAs (ENSG00000249572, ENSG00000176531, ENSG00000240350,
ENSG00000161298, ENSG00000049239, ENSG00000226479, ENSG00000198056, ENSG00000104450,
ENSG00000156510, and ENSG00000158106) from the 59 patients. The classification model was built
using a Random Forest classifier optimized by the meta classifier Random Committee, included in
the WEKA suite. AUC = Area under the curve.

3.5. Classification Model from miRNA Data

We performed feature selection (see Methods) on miRNA sequencing data from
PBMCs obtained from the studied cohort. We selected the 18 most informative miRNAs
(hsa-miR-1284, hsa-miR-185-5p, hsa-miR-20a-5p, hsa-miR-210-5p, hsa-miR-3127-5p, hsa-
miR-3149, hsa-miR-34c-5p, hsa-miR-511-5p, hsa-miR-548ah-3p, hsa-miR-551b-5p, hsa-miR-
579-3p, hsa-miR-615-5p, hsa-miR-6786-3p, hsa-miR-6798-3p, hsa-miR-6813-5p, hsa-miR-
6850-3p, hsa-miR-6875-5p and hsa-miR-6889-5p) to obtain a predictive classification model
for treatment response, using a Sequential Minimal Optimization (SMO)-based classifier. The
performance of the classifier is represented with a ROC curve (AUC = 0.914) in Figure 2.
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Figure 2. Classification model performance from informative miRNA data. A ROC was constructed
with expression data from 18 miRNAs (hsa-miR-1284, hsa-miR-185-5p, hsa-miR-20a-5p, hsa-miR-210-5p,
hsa-miR-3127-5p, hsa-miR-3149, hsa-miR-34c-5p, hsa-miR-511-5p, hsa-miR-548ah-3p, hsa-miR-551b-5p,
hsa-miR-579-3p, hsa-miR-615-5p, hsa-miR-6786-3p, hsa-miR-6798-3p, hsa-miR-6813-5p, hsa-miR-6850-
3p, hsa-miR-6875-5p and hsa-miR-6889-5p) from the 59 patients. The classification model was built
using a SMO-based classifier, included in the WEKA suite. AUC = Area under the curve.

3.6. Classification Model from Combined mRNA and miRNA Data

In order to obtain an optimal classification model, we combined the most discriminative
mRNAs (ENSG00000249572, ENSG00000161298, ENSG00000226479 and ENSG00000198056)
with the most discriminative miRNA (hsa-miR-20a-5p) using an adjusted naïve Bayes
classifier. The performance of the classifier for treatment response is represented with a
ROC curve (AUC = 0.968) in Figure 3, which improved the mRNA model (AUC = 0.950,
Figure 1) and the miRNA model (AUC = 0.914, Figure 2).
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and ENSG00000198056) and 1 miRNAs (hsa-miR-20a-5p) from the 59 patients. The classification model
was built using a Naïve Bayes classifier, included in the WEKA suite. AUC = Area under the curve.
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4. Discussion

Age-related macular degeneration (AMD) is a multifactorial disease comprising many
risk factors. The main risk factors commonly associated with AMD are age, family his-
tory and cigarette smoke. Other risk factors include body mass index, ethnicity, gender,
cardiovascular-related diseases, or dietary habits [42].

Anti-VEGF drugs are effective inhibitors of laser-induced CNV in animal models and
they are the first line of therapy for wet AMD in humans [2,43]. There is no universal
definition of treatment failure. Some professionals consider that the treatment has failed
when fluid persists in the retina while others focus more on vision loss. In addition,
treatment protocol, which can be altered by physicians for a variety of reasons, may also
affect response. Furthermore, the “treat-and-observe” approach, often applied, may be
related to some treatment failures.

In our study, 44% of the patients did not show satisfactory response to ranibizumab
treatment after three months, based on our established criteria. This result, although ele-
vated, is comparable with other real-world studies data [26,32,44,45]. When we compared
the baseline characteristics of our cohort, based on the response to ranibizumab, we did not
find any difference in systemic factors such age, sex, tobacco consumption, hypertension,
etc., or baseline ocular measurements, such as intraocular pressure (IOP), central retinal
thickness, macular cube volume, retinal pigment epithelial detachment, presence of fluids
or fibrosis (Table 1). This is in agreement with previous studies where they did not find an
association of these parameters with response to ranibizumab treatment [46,47], although
some reports found an association of smoking history and hypertension with response to
ranibizumab in exudative AMD [48].

Interestingly, although RPE atrophy was higher in the group with a poorer response,
as it is seen regularly in the clinic [49–51], it did not show discriminatory power between
groups (AUC = 0.64, p = 0.0544) in the present study.

In the past, we have used RNA-Seq technology successfully to elucidate the involve-
ment of relevant pathways to the response to pharmacological treatment, in a complex
ocular disease, through integrative pathway enrichment [33,52]. Other groups have ana-
lyzed monocytes using microarray-based transcriptomics, to reveal altered immune-related
genes differences between AMD patients and age-matched controls [53].

In our cohort, due to the number of samples included, as well as the intrinsic variabil-
ity associated with human samples, multiple comparisons correction failed to identify any
significant differences in expression of mRNA or miRNA between good or poor respon-
ders. However, the exploratory analysis identified relevant genes/pathways that may be
associated with the response to ranibizumab and warrant further research. Of note, poor
responders showed an increase in angiogenic and pro-inflammatory cytokines mediated
by nuclear factor kappa-B (NF-kB) signaling activation, which may be of relevance because
systemic inflammatory factors have been associated with AMD pathogenesis [54,55]. How-
ever, the role in AMD onset, or ranibizumab response, of the four mRNAs and one miRNA
comprising the best classification model remains unclear because the information in the
literature is scarce. ENSG00000249572 (lnc-ADAMTS12-6) is a novel transcript affiliated
with the long noncoding RNA (lncRNA) class, located in chromosome 5 of the human
genome. Although functional characterization is still lacking for most lncRNAs, they have
been implicated in several human diseases through diverse mechanisms. Thus, lncRNAs
can bind to genomic DNA, regulating local chromatin structure in the nucleus. They can
also regulate gene expression post-transcriptionally by interacting with mRNA translation
proteins and miRNAs [56]. This transcript has been associated with lncRNA deregulation
occurring in PBMCs from Juvenile myelomonocytic leukemia patients carrying a mutation
in the NF1 gene [57] suggesting a role in immune regulation. ENSG00000161298 (ZNF382)
belongs to the KRAB domain zinc finger transcription factor (KZNF) family which has been
shown to regulate differentiation, proliferation and apoptosis processes by interacting with
activating protein 1 (AP-1), Fos proto-oncogene (FOS), Jun proto-oncogen (JUN) and NF-kB
signaling [58]. These interactions result in inhibition of these inflammatory pathways
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which is in agreement with the notion that poor responders, showing reduced levels of this
anti-inflammatory transcription factor, may be displaying a pro-inflammatory profile in
PBMCs gene expression. In addition, ZNF382 upregulation reduces the expression of met-
alloproteinases, such as MMP1 [58], that are dysregulated in AMD [59]. ENSG00000226479
(TMEM185B) is a widely expressed protein coding gene belonging to the TMEM family
which gathers proteins of mostly unknown functions. They usually have roles related to
proliferation and some of them have been defined as potential prognostic biomarkers for
lung cancer [60]. Interestingly, this member has been associated with Bare Lymphocyte
Syndrome, type II, an immune system disease categorized as a form of combined immun-
odeficiency. Lastly, ENSG00000198056 encodes a small subunit of the Primase protein
(PRIM1) involved in the replication of the DNA and cellular proliferation. This primase
regulates critical processes in the retina since mutations on this primase promote apoptosis
of retinal neurons through the activation of p53 and DNA damage checkpoints [61] and
its function has been associated with the development of inherited retinal degenerations,
such as recessive Retinitis Pigmentosa [62]. The fifth member of the best classification
model is a miRNA (hsa-miR-20a-5p) expressed in the retina [63], able to regulate a high
number of genes (Supplementary Table S4), including genes related to the regulation of cell
proliferation [64], immune system [65] and apoptosis [66,67]. Interestingly, hsa-miR-20a-5p
represses endothelial cell migration, in response to VEGF, regulating MKK3 and p38 MAP
kinase activation [68,69].

In the present year, a machine-learning method for the classification of patients, at
the first visit, requiring high or low treatment demand was presented showing promising
results (AUCs ranging 0.76–0.79, 10-fold cross-validated) using morphological features
from OCT [70]. Recently, a method to predict, retrospectively, the response to 2-year
treatment of ranibizumab in AMD patients was reported [71]. This method relayed in a
model-based meta-marker defined by a composite score of 7 baseline characteristics to
categorize the response to ranibizumab. These seven characteristics were comprised of:
age, central retinal lesion thickness, visual acuity, presence of cysts, type of CNV and PED
and leakage sizes. In our cohort, we measured the response after 3 monthly injections,
and we were not capable of predicting that response accurately based on any of the seven
characteristics reported. The only statistically significant characteristic between Good
responders and Poor responders in our cohort was the presence of RPE atrophy, which did
not result as discriminatory among groups.

The multifactorial nature of the disease, the recent advances in molecular measurements
(RNA-Seq) and computational techniques (machine learning-based) lead us to hypothesize
that PBMC global transcriptomic analysis may provide further insights into the response to
ranibizumab in AMD patients. In recent years, transcriptomics of peripheral blood mononu-
clear cells has been also used to capture the variability of the immune system in autoimmune
or liver diseases, among others [72–74]. In our study, we obtained moderate results using
differential expression-based methods (AUC = 0.886 with a 25-member signature for mRNA
data and AUC = 0.826 with a 25-member signature for miRNA data). These results were
somehow expected due to the high variability usually obtained when working with human
samples [75]. For that reason, we decided to perform feature selection with entropy reduction-
based which resulted in better models (AUC > 0.9 for mRNA and miRNA data) using fewer
features, especially when we combined mRNA and miRNA data.

We acknowledge, however, that our study has some limitations. First, we analyzed the
response of the patients after three months of treatment. Our reasoning was that, although
ranibizumab may be effective after longer periods, it is often after these three months that
the physicians decide whether to continue or modify the treatment or the regimen. Second,
a similar study with a larger cohort in terms of the number of patients would be beneficial
to validate the results. In order to reduce the possibility of overfitting, we performed
10-fold cross-validation to our feature selection and model construction. In addition, even
though the cohort size is large enough to reach significant conclusions with the machine
learning techniques we used, we believe that these results would need to be replicated in
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other cohorts in the future. Given the disparity of regimens found in the literature [76,77],
it is difficult to find comparable studies with available sequencing data. For these reasons,
we plan to replicate a similar study in the future to include data, not only from mRNA and
miRNA but also from DNA methylome, from a new study we are currently conducting.

In summary, here we describe a signature comprised of four mRNAs and one miRNA
in PBMCs from AMD patients that allowed us to predict, retrospectively, a successful
response to ranibizumab before the start of the treatment, with good accuracy. Furthermore,
we consider that machine learning classifiers based on mRNA and miRNA from PBMCs,
especially in combination with other methods, such as specific baseline characteristics,
may improve the prediction of patients with insufficient response to ranibizumab and help
establish patient-specific treatment plans at the first visit.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11121329/s1, Figure S1: NF-κB/cytokine signaling pathway members regulated by TOP25
differentially expressed mRNAs: TOP25 miRNAs (from Table 2) were analyzed for exploratory
KEGG pathway enrichment. Green: Genes downregulated in good responders vs poor responders.
Red: Genes upregulated in good responders vs poor responders. Figure S2: Endocytosis regulation
by TOP25 differentially expressed miRNAs: TOP25 miRNAs (from Table 3) were analyzed with
DIANA-miRPath v3.0 for exploratory KEGG pathway enrichment. Yellow: Genes regulated by
1 miRNA. Orange: Genes regulated by 2 or more miRNAs. Figure S3: Gap junction members
regulated by TOP25 differentially expressed miRNAs: TOP25 miRNAs (from Table 3) were analyzed
with DIANA-miRPath v3.0 for exploratory KEGG pathway enrichment. Yellow: Genes regulated
by 1 miRNA. Orange: Genes regulated by 2 or more miRNAs. Figure S4:Hippo signaling pathway
members regulated by TOP25 differentially expressed miRNAs: TOP25 miRNAs (from Table 3)
were analyzed with DIANA-miRPath v3.0 for exploratory KEGG pathway enrichment. Yellow:
Genes regulated by 1 miRNA. Orange: Genes regulated by 2 or more miRNAs. Figure S5: Thyroid
hormone signaling pathway members regulated by TOP25 differentially expressed miRNAs: TOP25
miRNAs (from Table 3) were analyzed with DIANA-miRPath v3.0 for exploratory KEGG pathway
enrichment. Yellow: Genes regulated by 1 miRNA. Orange: Genes regulated by 2 or more miRNAs.
Figure S6:Pathways-in-Cancer KEGG members regulated by TOP25 differentially expressed miRNAs:
TOP25 miRNAs (from Table 3) were analyzed with DIANA-miRPath v3.0 for exploratory KEGG
pathway enrichment. Yellow: Genes regulated by 1 miRNA. Orange: Genes regulated by 2 or more
miRNAs., Table S1: Altered KEGG pathways by TOP25 mRNAs. TOP25 mRNAs differentially
expressed were subjected to exploratory analysis. Table S2: Altered KEGG pathways by TOP25
miRNAs. TOP25 miRNAs differentially expressed were subjected to exploratory analysis. Table S3:
List of putative genes regulated by hsa-miR-20a-5p according to TargetScan v7.2 database.
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