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Abstract. For µ, ν > −1, we consider the Bessel series

Ua
µ,ν(x) =

2µΓ(µ+ 1)

xµ

∑
m≥1

am

j
µ+1/2
m,ν

Jµ(jm,νx),

where (jm,ν)m≥1 are the positive zeros of Jν and a = (am)m≥1 is a sequence

of real numbers satisfying
∑

m≥1 |am|/jµ+1/2
m,ν < +∞. We propose a method

for computing in a closed form the sum of the Bessel series Ua
µ,ν assuming

that for a particular value η of the parameter µ a closed expression for Ua
η,ν

as a power series of x (not necessarily with integer exponents) is known. We

illustrate the method with some examples. One of them is related to the sine

coefficients of the function 1− xs, s > −1. The closed form of the sum is then
given in terms of a generalization of the Bernoulli numbers.

1. Introduction

Let Jν be the Bessel function of order ν. For ν > −1, the zeros jm,ν (m =
1, 2, . . . ) of Jν are positive and can be ordered so that 0 < jm,ν < jm+1,ν , m ≥ 1
(see, for instance, [26, § 15.27, p. 483]).

For µ, ν > −1 and a sequence a = (am)m≥1 of real numbers satisfying

(1)
∑
m≥1

|am|
j
µ+1/2
m,ν

< +∞,

we define the function

(2) Ua
µ,ν(x) =

2µΓ(µ+ 1)

xµ

∑
m≥1

am
jµm,ν

Jµ(jm,νx), x ∈ (0,∞).

The functions Ua
µ,ν were considered in [15], where we prove some properties about

their real zeros and pose some conjectures on their distribution.
The problem of the explicit summation of the series (2) and other analogous

ones has a somehow classical flavour and goes back to the turn of the 19th to the
20th century. Active research is still being done on the problem which reached a
peak in the 1980’s with the classical Integrals and Series by A. P. Prudnikov, Y. A.
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Brychkov and O. I. Marichev [22, § 5] and more recently in 2008 with the Handbook
of special functions by Y. A. Brychkov [4, § 6.8].

The purpose of this paper is to propose a method for computing in a closed form
the functions Ua

µ,ν(x) assuming that for a particular value η of the parameter µ a
closed expression as a power series of x (not necessarily with integer exponents) is
known (see Lemma 1).

We illustrate our method with a couple of examples.
The first example (Section 2) is actually a family of examples: they have in

common that generalize some of the identities in [22, §§ 5.7.19, 5.7.20, 5.7.33] or [4,
§§ 6.8.7, 6.8.8, 6.8.9]. For instance, starting from the identity

(3)
∑
m≥1

J0(jm,0x)

j2m,0J
2
1 (jm,0)

= − log x

2
, x ∈ (0, 1),

which is [22, § 5.7.33, (2), p. 690], using our method we get, for µ > −1 and
x ∈ (0, 1),

(4)
∑
m≥1

Jµ(jm,0x)

jµ+2
m,0 J

2
1 (jm,0)

= − xµ

2µ+1Γ(µ+ 1)

(
log x− 1

2µ

(
1 + µγ +

µΓ′(µ)

Γ(µ)

))
where γ is the Euler constant; as far as we know, this identity is new.

The second example (Section 3) corresponds to the series (2) for ν = 1/2 and

(5) a =

(
bsm

(mπ)2l

)
m≥1

,

where l is a nonnegative integer, s > −1, and 2bsm/(mπ), m ≥ 1, are the Fourier
sine coefficients of the function 1− xs:

(6) 1− xs = 2
∑
m≥1

bsm
πm

sin(πmx), x ∈ (0, 1).

The sequence (bsm)m≥1 has the following explicit series expansion:

(7) bsm = (1− (−1)m)−
∞∑
j=0

(−1)j(m2π2)j+1

(2j + 1)! (2j + s+ 2)
.

In order to sum explicitly the series (2), we introduce the weighted-Bernoulli
numbers and polynomials (w-Bernoulli for short): for a real number s > −1, the
w-Bernoulli numbers Bs

n, n ≥ 0, are defined as a weighted sum of the Bernoulli
numbers Bn, n ≥ 0: Bs

0 = 1, Bs
1 = − 1

2 , B
s
2l+1 = 0, l ≥ 1, and

(8) Bs
2l+2 =

2l+2∑
k=1

2−k

(
2l + 2

k

)
kB2l+2−k

k + s
+ 2(1− 2−2l−2)B2l+2.

Then, we define the w-Bernoulli polynomials as

(9) Bs
n(x) =

n∑
k=0

(
n

k

)
Bs

n−kx
k.

Although it is far from being evident, the Bernoulli numbers and polynomials
are the case s = 1 of the w-Bernoulli numbers and polynomials, respectively (see
Theorem 4). The w-Bernoulli numbers Bs

2l+2, l ≥ 0, are related to the sequence

(bsm/(mπ)2l+2)m≥1 in the same way as the Bernoulli numbers B2l+2 are related to
the sequence (1/(mπ)2l+2)m≥1 (see Theorem 5). Using the w-Bernoulli numbers
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and the method explained above, we explicitly sum in Theorem 7 the series (2) for
the sequence (5) and ν = 1/2.

In our opinion, the w-Bernoulli numbers and polynomials have interest by their
own. In the literature, we find many generalizations of the Bernoulli numbers and
polynomials, but in most of the cases they are constructed by introducing one or
more parameters in the generating function for the Bernoulli polynomials (general-
ized Bernoulli polynomials or Nørlund polynomials [19], Apostol-Bernoulli polyno-
mials [1, 2], hypergeometric Bernoulli polynomials [14], Bernoulli-Padé polynomials
[13]; see also [12, § 24.16, (iii)] and the book [24] with many recent references) or
in the operator (umbral calculus [6], Bernoulli-Dunkl polynomials [7, 8]). Our
approach is quite different: the w-Bernoulli numbers and polynomials have been
introduced with the purpose of summing the series (2) for the sequence (5). We
complete the paper studying the asymptotic behaviour of the w-Bernoulli polyno-
mials and with some results about their zeros (Section 4).

2. The method and the first illustrative example

For each µ > −1, there exists a constant Cµ > 0 such that

|Jµ(x)| ≤ Cµ|x|−1/2, if |x| ≥ 1

(see [26, 7.21(1), p. 199] or [20, 10.7.8]). Since jm ∼ m as m → ∞ (see [26, § 15.53,
p. 506]), the series in (2) converges uniformly on every compact set in (0,+∞)
under the condition (1), so that Ua

µ,ν(x) is well defined and continuous on (0,+∞).
The Bessel functions satisfy the identity

(xµ+1Jµ+1(x))
′ = xµ+1Jµ(x),

which directly gives the following one for the functions Ua
µ,ν :

(10) (x2µ+2Ua
µ+1,ν(x))

′ = 2(µ+ 1)x2µ+1Ua
µ,ν(x).

Our method is a consequence of Sonine’s formula for the Bessel functions

(11) Jµ+ν+1(z) =
zν+1

2νΓ(ν + 1)

∫ 1

0

Jµ(zs)s
µ+1(1− s2)ν ds,

valid for µ, ν ∈ C, Reµ > −1, Re ν > −1 ([26, 12.11(1), p. 373]).
In [15, § 2], we extended Sonine’s formula (11) to the functions Ua

µ,ν : for µ >
η > −1 and ν > −1, and provided that∑

m≥1

|am|
j
η+1/2
m,ν

< +∞

(which is the condition required to define Ua
η,ν and implies (1)), we have

(12) Ua
µ,ν(x) = 2(µ− η)

(
µ

η

)∫ 1

0

Ua
η,ν(xs)s

2η+1(1− s2)µ−η−1 ds,

with the usual notation
(
a
b

)
= Γ(a+ 1)/(Γ(b+ 1)Γ(a− b+ 1)).

Our method is based in the following lemma.

Lemma 1. Let ν, η and rj, j = 0, . . . ,∞, be real numbers satisfying ν, η > −1 and
rj > −2η − 2. Assume that

(13) Ua
η,ν(x) =

∞∑
j=0

ujx
rj , x ∈ (0, ω),
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where ω ≥ 1 (possibly infinite) and the series converges absolutely. Then for any
µ ≥ η we have

(14) Ua
µ,ν(x) =

Γ(µ+ 1)

Γ(η + 1)

∞∑
j=0

ujΓ(η + rj/2 + 1)xrj

Γ(µ+ rj/2 + 1)
, x ∈ (0, ω).

Moreover, if for some µ satisfying −1 < µ < η and µ+inf{rj}/2+1 > 0 the series
in the right hand side of (14) converges absolutely for x ∈ (0, ω), then the identity
(14) also holds for µ.

Proof. We first assume µ > η. Using the identity∫ 1

0

sa(1− s2)b ds =
1

2(b+ 1)
(
b+a/2+1/2

b+1

) , a, b > −1,

for a = 2η + rj + 1 and b = µ− η − 1, we get from (13) and (12) that

Ua
µ,ν(x) = 2(µ− η)

(
µ

η

) ∞∑
j=0

ujx
rj

∫ 1

0

s2η+rj+1(1− s2)µ−η−1 ds

= 2(µ− η)

(
µ

η

) ∞∑
j=0

ujx
rj

2(µ− η)
(
µ+rj/2
µ−η

) =
Γ(µ+ 1)

Γ(η + 1)

∞∑
j=0

ujΓ(η + rj/2 + 1)xrj

Γ(µ+ rj/2 + 1)
,

for x ∈ (0, ω) (the interchange of the series and the integral follows from the absolute
convergence of the series (13) and Lebesgue’s dominated convergence theorem).
This proves the lemma for µ ≥ η.

For µ > −1, write now k = 0 if µ ≥ η and k = −⌊µ − η⌋ otherwise. We now
prove the lemma by induction on k. The case k = 0 has already been proved. Since
⌊µ+ 1⌋ = k, we have using the induction hypotheses

x2µ+2Ua
µ+1,ν(x) =

Γ(µ+ 2)

Γ(η + 1)

∞∑
j=0

ujΓ(η + rj/2 + 1)xrj+2µ+2

Γ(µ+ rj/2 + 2)
, x ∈ (0, ω).

Using the identity (10) and deriving the series term by term (which the absolute
convergence and the condition µ+ inf{rj}/2 + 1 > 0 allow), we get (14). □

The lemma can be restated as follows: if ν, η > −1, rj > −η − 2, µ ≥ η, and a
real sequence (λm)m≥1 is such that∑

m≥1

|λm|
j
1/2
m,ν

< +∞ and
∑
m≥1

λmJη(jm,νx) =

+∞∑
j=0

ujx
rj , x ∈ (0, ω),

then ∑
m≥1

λm

jµ−η
m,ν

Jµ(jm,νx) =

+∞∑
j=0

ujΓ(
η
2 +

rj
2 + 1)

2µ−ηΓ(µ− η
2 +

rj
2 + 1)

xrj+µ−η, x ∈ (0, ω).

This identity holds also if −1 < µ < η, µ− η/2 + inf{rj/2}+ 1 > 0, and the right
hand side converges absolutely for x ∈ (0, ω).

Using this lemma, we can extend most of the identities in [22, § 5.7.33]. For
instance, consider the identity (4) of [22, p. 690]:∑

m≥1

jm,νJν(jm,νx)

(j2m,ν − a2)Jν+1(jm,ν)
=

Jν(ax)

2Jν(a)
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where ν > −1, x ∈ (0, 1) and a ∈ C \ {jm,ν ,m ≥ 1}. Since

Jν(ax)

2Jν(a)
=

1

2Jν(a)

(
1
2ax

)ν ∞∑
j=0

(−1)j
( 14a

2x2)
j

j! Γ(ν + j + 1)
,

Lemma 1 gives, for µ ≥ ν,∑
m≥1

jν−µ+1
m,ν Jν(jm,νx)

(j2m,ν − a2)Jν+1(jm,ν)
=

1

2Jν(a)

(
1
2ax

)ν ∞∑
j=0

(−1)j
( 14a

2x2)
j

2µ−νj! Γ(µ+ j + 1)
xµ−ν ,

from where we get ∑
m≥1

jν−µ+1
m,ν Jµ(jm,νx)

(j2m,ν − a2)Jν+1(jm,ν)
=

aν−µJµ(ax)

2Jν(a)
,

where µ ≥ ν > −1, x ∈ (0, 1) and a ∈ C \ {±jm,ν ,m ≥ 1}. The cases µ = ν, ν + 1
are the identities (4) and (6) of [22, p. 690], respectively. As far as we know, the
other cases are new (compare with the identity (34) of [23, p. 293]).

Something similar can be done for most of the identities in [22, § 5.7.33]. For
instance, for τ, µ, ν > −1 and x ∈ [0, 1],∑

m≥1

jν−µ−1
m,ν Jµ(jm,νx)

(j2m,ν − a2)Jν+1(jm,ν)
=

1

2a2

(
Jµ(ax)

aµ−νJν(a)
− Γ(ν + 1)xµ

2µ−νΓ(µ+ 1)

)
,

∑
m≥1

Jτ+ν+1(jm,ν)Jµ(jm,νx)

jτ−ν+µ+1
m,ν J2

ν+1(jm,ν)
=

2ν−τ−µ−1Γ(ν + 1)xµ

Γ(τ + 1)Γ(µ+ 1)
2F1

(
−τ, ν + 1

µ+ 1
;x2

)
,

where we assume in addition µ > ν − 2 in the first series and τ > ν − µ in the
second one. For µ = ν, these identities are (5) and (9) in [22, p. 690], respectively

(notice that for µ = ν, we have in the second identity 2F1

(
−τ,ν+1
ν+1 ;x2

)
= (1−x2)τ ;

this is how it appears in the identity (9) in [22, p. 690]).
The identity (4) in the introduction can be proved by modifying slightly the proof

of Lemma 1. Indeed, for ν = η = 0, if we insert in (12) the function Ua
0,0(xs) =

− log(xs)/2 (that is, the formula (3)), we get for µ > 0 and x ∈ (0, 1) that

Ua
µ,0(x) = −µ log x

∫ 1

0

s(1− s2)µ−1 ds− µ

∫ 1

0

(log s)s(1− s2)µ−1 ds,

from where we find (4) after some computations using the well-known integral

representation Γ′(x)/Γ(x) = −γ+
∫ 1

0
(1− tx−1)(1− t)−1 dt, x > 0. For −1 < µ < 0,

the proof follows by using (10).
Many of the identities in [22, §§ 5.7.19, 5.7.20] can also be extended using our

method. These are a couple of examples: for x ∈ (0, 1),∑
m≥1

(−1)m+1(πm)2n+2−µJµ(πmx)

(πm)2 − a2
=

a2n+1−µJµ(ax)

2 sin a
,

∑
m≥1

(−1)m+1 (π(2m− 1)/2)2n+1−µJµ(π(2m− 1)x/2)

(π(2m− 1)/2)2 − a2
=

a2n−µJµ(ax)

2 cos a
,

where µ > 2n − 1, a ̸= ±mπ, m ≥ 1, in the first series, and µ > 2n − 2, a ̸=
±(2m− 1)π/2, m ≥ 1, in the second one. For µ = 2n+ 1, these identities are (19)
and (15) in pages 679 and 681 of [22], respectively.
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The proof of Lemma 1 works also in a multivariate version. To this end, we
consider sets Ω ⊆ (0,+∞)k with the property that

(15) (x1, x2, . . . , xk) ∈ Ω =⇒
k∏

i=1

(0, xi] ⊆ Ω.

Lemma 2. Let νi, ηi and ri,j, i = 1, . . . , k, j = 0, . . . ,∞, be real numbers satisfying
νi, ηi > −1 and ri,j > −ηi − 2. Assume that a real sequence (λm)m≥1 is such that∑

m≥1

|λm|∏k
i=1 j

1/2
m,νi

< +∞

and∑
m≥1

λm

k∏
i=1

Jηi(jm,νixi) =

∞∑
j1,...,jk=0

uj1,...,jk

k∏
i=1

x
ri,ji
i , if (x1, x2, . . . , xk) ∈ Ω,

for some set Ω with the property (15), where the series in the right-hand side con-
verges absolutely. Then, for µi ≥ ηi and (x1, x2, . . . , xk) ∈ Ω we have
(16)∑

m≥1

λm

k∏
i=1

Jµi(jm,νixi)

jµi−ηi
m,νi

=

∞∑
j1,...,jk=0

uj1,...,jk

k∏
i=1

2ηiΓ
(
ηi

2 +
ri,ji
2 + 1

)
x
ri,ji+µi−ηi

i

2µiΓ
(
µi − ηi

2 +
ri,ji
2 + 1

) .

Moreover, if for µi, i = 1, . . . , k, satisfying −1 < µi < ηi and µi − ηi/2 +
infj{ri,j}/2 + 1 > 0, the series in the right hand side of (16) converges absolutely
for (x1, x2, . . . , xk) ∈ Ω, then the identity (16) also holds for µi, i = 1, . . . , k.

Using this lemma, some of the identities in Section 5.7.29 of [22] or Sections
6.8.7, 6.8.8 and 6.8.9 of [4] can be extended. For instance, the basic identity∑

m≥1

(−1)m+1

(πm)k

k∏
i=1

sin(πmxi) =
1

2

k∏
i=1

xi,

holds for |x1| + · · · + |xk| < 1 (see [21, § 5.4.15, (20), p. 744]; it can be proved for
k = 1, 2 as a Fourier sine or cosine series and then recursively by differentiation).
The lemma then gives∑

m≥1

(−1)m+1
k∏

i=1

Jµi
(πmxi)

(πm)µi
=

1

2

k∏
i=1

xµi

i

2µiΓ(µi + 1)

for xi ∈ (0, 1), i = 1, . . . , k,
∑k

i=1 xi < 1 and µi > −1. For k = 2 and µ1 = µ2, this
identity is [22, § 5.7.24, (8), p. 683]; for k = 2 it is the case m = 0 of [4, § 6.8.8, (1),
p. 470]; for k = 3, x2 = x3, µ1 = 1/2 or µ1 = −1/2, it is [4, § 6.8.9, (1) and (2),
p. 471].

3. Weighted-Bernoulli numbers and polynomials

We start recalling some basic facts about the Bernoulli polynomials Bn(x), n ≥ 0,
see [12]. They are defined by the generating function

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
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or, equivalently,

(17) Bn(x) =

n∑
k=0

(
n

k

)
Bn−kx

k,

where Bk = Bk(0), k ≥ 0, are the Bernoulli numbers. We also need the Fourier
sine expansion for the Bernoulli polynomials,

(18) B2n+1(x) = (−1)n+1 2(2n+ 1)!

(2π)2n+1

∞∑
m=1

sin(2πmx)

m2n+1
, x ∈ [0, 1].

From the definition (8), the generating function

ϕ(z) =

∞∑
l=0

Bs
l

l!
zl

for the w-Bernoulli numbers can be checked without difficulty:

ϕ(z) =
z2

4(2 + s)

(
z

2
+

z

ez − 1

)
1F2

(
1 + s/2

3/2, 2 + s/2
; z2/16

)
− z2

4(1 + s)
1F2

(
1/2 + s/2

1/2, 3/2 + s/2
; z2/16

)
+

2z

ez − 1
− z

ez/2 − 1
+ 1.

This gives for the w-Bernoulli polynomials the generating function

ϕ(z)ezx =

∞∑
n=0

Bs
n(x)

zn

n!
.

As a consequence, we conclude that the polynomials Bs
n(x), n ≥ 0, are an Ap-

pell sequence. In particular, Bs
n(x) is a polynomial of degree n, and they satisfy

d
dxB

s
n(x) = nBs

n−1(x) (this follows also from (9)).

The two first polynomials are Bs
0(x) = 1 and Bs

1(x) = x− 1
2 . The remaining w-

Bernoulli polynomials are related to the ordinary Bernoulli polynomials by means of

Bs
l+2(x) =

⌊l/2⌋∑
j=0

1

4j+1

(
l + 2

2j + 2

)
2j + 2

2j + s+ 2
Bl−2j(x)

+

l∑
j=0

(
l + 2

j + 2

)
(−1)j+1(j + 1)(j + 2)

(j + s+ 1)2j+2
xl−j

+ 2Bl+2(x)−
1

2l+1
Bl+2(2x) + xl+2, l ≥ 0.

Our starting point is the sine expansion

xs = 2
∑
m≥1

mπcsm sin(πmx), x ∈ (0, 1), s > −1,

where the coefficients csm are given by

csm =
1

mπ

∫ 1

0

xs sin(πmx) dx =

∞∑
j=0

(−m2π2)j

(2j + 1)! (2j + s+ 2)

or, in terms of a hypergeometric function,

csm =
1

2 + s
1F2

(
1 + s/2

3/2, 2 + s/2
;−m2π2/4

)
.
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This and (7) give for the sequence bsm, m ≥ 1, defined in (6) the identity

(19)

bsm = (1− (−1)m)−m2π2csm

= (1− (−1)m)− m2π2

2 + s
1F2

(
1 + s/2

3/2, 2 + s/2
;−m2π2/4

)
.

It is easy to see that b1m = 1, m ≥ 1.
Let us define now

(20) qsn(x) =


2(−1)l

∑
m≥1

bsm
(πm)n

cos(πmx), n = 2l,

2(−1)l
∑
m≥1

bsm
(πm)n

sin(πmx), n = 2l + 1,

for n ≥ 1, x ∈ [0, 1] (x ∈ (0, 1) for n = 1, as we see next). Considering (6) and the

cosine expansion of x− xs+1

s+1 gives qs1(x) = 1− xs for x ∈ (0, 1) and

qs2(x) = x− 1

2
+

1

(s+ 1)(s+ 2)
− xs+1

s+ 1

for x ∈ [0, 1]. This and termwise differentiation in (20) for n ≥ 3 prove that
(qsn)

′(x) = qsn−1(x) for x ∈ [0, 1] and n ≥ 2. Therefore,

(21) qsn(x) = psn−1(x)−
Γ(s+ 1)xs+n−1

Γ(s+ n)
, n ≥ 1,

where psn, n ≥ 0, is a sequence of Appell polynomials in the sense that psn has degree
n and (psn)

′(x) = psn−1(x) (with ps0 = 1). Observe also that

ps1(x) = x− 1

2
+

1

(s+ 1)(s+ 2)
.

The key ingredient for our study of the w-Bernoulli numbers and polynomials is
the following relation between psn(0) and the w-Bernoulli numbers:

Lemma 3. For s > −1 and n ≥ 0, we have

(22) psn(0) = −
2n+1Bs

n+1

(n+ 1)!
.

Proof. First of all, we have ps0 = 1. For n ≥ 1, (20) and (21) give

(23) psn(0) =


2(−1)l+1

∑
m≥1

bsm
(πm)n+1

, n = 2l + 1,

0, n = 2l.

Using (19), we deduce

(24) ps2l+1(0) = 2(−1)l+1

(∑
m≥1

1− (−1)m

(πm)2l+2
−
∑
m≥1

csm
(πm)2l

)
.

On the one hand,

(25)
∑
m≥1

1− (−1)m

(πm)2l+2
= 2

∑
m≥0

1

(π(2m+ 1))2l+2
=

(−1)l(22l+2 − 1)

(2l + 2)!
B2l+2.
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On the other hand, for l ≥ 1 the uniform convergence of (18), together with (17),
gives ∑

m≥1

csm
(mπ)2l

=
∑
m≥1

∫ 1

0

xs sin(mπx)

(mπ)2l+1
dx =

∫ 1

0

xs
∑
m≥1

sin(mπx)

(mπ)2l+1
dx

=
(−1)l+122l

(2l + 1)!

∫ 1

0

xsB2l+1(x/2) dx

=
(−1)l+122l

(2l + 1)!

∫ 1

0

2l+1∑
j=0

(
2l + 1

j

)
B2l+1−j

xj+s

2j
dx

=
(−1)l+122l

(2l + 1)!

2l+1∑
j=0

(
2l + 1

j

)
B2l+1−j

1

2j(j + s+ 1)
.

Taking this and (25) into (24) gives

ps2l+1(0) = −2(22l+2 − 1)

(2l + 2)!
B2l+2 −

22l+1

(2l + 1)!

2l+1∑
j=0

(
2l + 1

j

)
B2l+1−j

1

2j(j + s+ 1)

= −2(22l+2 − 1)

(2l + 2)!
B2l+2 −

1

(2l + 2)!

2l+2∑
k=1

22l+2−k

(
2l + 2

k

)
B2l+2−k

k

s+ k

for l ≥ 1. From the definition (8) we deduce that

ps2l+1(0) = −
22l+2Bs

2l+2

(2l + 2)!

for l ≥ 1. Since ps0 = 1, ps1(x) = x− 1
2 +

1
(s+1)(s+2) , p

s
2l(0) = 0, l ≥ 1, and Bs

1 = − 1
2 ,

Bs
2 = 1

4 − 1
2(s+1)(s+2) , B

s
2l+1 = 0, l ≥ 1, we finally get (22) for every n ≥ 0. □

We next prove that the Bernoulli numbers and polynomials are the case s = 1
of the w-Bernoulli numbers and polynomials, respectively.

Theorem 4. For s = 1, the identities

B1
n = Bn, B1

n(x) = Bn(x)

hold for n ≥ 0.

Proof. The first identity is obviously true for n odd and n = 0.
For s = 1, we have b1m = 1, m ≥ 1, and then (23) and the Euler sums∑

m≥1

1

(πm)2k
=

(−1)k−122k−1

(2k)!
B2k, k ≥ 1,

give, for n = 2l + 1,

p12l+1(0) = 2(−1)l+1
∑
m≥1

1

(πm)2l+2
= − 22l+2

(2l + 2)!
B2l+2.

Thus, (22) completes the proof of the first identity.
The second identity B1

n(x) = Bn(x) is then clear from the definition (9) of the
w-Bernoulli polynomials. □
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The first identity in Theorem 4 implies the following identity for the Bernoulli
numbers

(22l+2 − 2)B2l+2 = −22l
l∑

j=0

1

4j

(
2l + 2

2j + 2

)
(2j + 2)B2l−2j

(2j + 3)
+ (2l + 1),

which can be deduced also from (17) and the identity Bn(1/2) = −(1− 21−n)Bn.
As we wrote in the introduction, the w-Bernoulli numbers Bs

2l+2, l ≥ 0, are re-

lated to the sequence (bsm/(mπ)2l+2)m≥1 in the same way as the Bernoulli numbers
B2l+2 are related to the sequence (1/(mπ)2l+2)m≥1:

Theorem 5. For s > −1, let (bsm)m≥1 be the sequence (7). Then,∑
m≥1

bsm
(πm)2l+2

=
(−1)l22l+2

2(2l + 2)!
Bs

2l+2.

Proof. It follows from (23) and (22). □

The case s = 1 are the celebrated Euler sums for the inverse of the even powers
of the positive integers.

For the w-Bernoulli polynomials Bs
n(x), we have cosine and sine expansions

similar to those of the Bernoulli polynomials:

Theorem 6. For s > −1, n ≥ 1, and x ∈ (0, 1), we have

xn

n!
− Γ(s+ 1)xs+n−1

Γ(s+ n)
− 2nBs

n(x/2)

n!
=


2(−1)l

∑
m≥1

bsm
(πm)n

cos(πmx), n = 2l,

2(−1)l
∑
m≥1

bsm
(πm)n

sin(πmx), n = 2l + 1.

Proof. Since (psn)
′(x) = psn−1(x), we deduce that

psn(x) =

n∑
k=0

psn−k(0)
xk

k!
.

Using (22), we get (after easy computations)

psn(x) =
1

(n+ 1)!

(
xn+1 − 2n+1Bs

n+1(x/2)
)
.

It is then enough to use (20) and (21). □

Using the w-Bernoulli numbers and the method explained in Section 2, we ex-
plicitly sum the series (2) for the sequence (5) and ν = 1/2.

Theorem 7. For µ > −1 (µ > −1/2 if l = 0), s > −1, and the sequence a defined
in (5), we have

Ua
µ,1/2(x) =

(−1)l
(µ

1
2

)
2(2l + 1)!

(
x2l( µ+l
µ− 1

2

) − (2l + 1)xs+2l−1(
s+2l
2l

)(µ+ s
2+l− 1

2

µ− 1
2

) − 2l+1∑
k=0

(
2l+1
k

)
Bs

2l+1−kx
k−1

2k−2l−1
(µ+ k

2−
1
2

µ− 1
2

)
)

for x ∈ (0, 1).

Proof. It is a direct consequence of the sine expansion in Theorem 6 for n = 2l+1
and Lemma 1. □
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4. Asymptotic behavior of the polynomials Bs
n(x)

It is well known that the Bernoulli polynomials satisfy

lim
n→∞

(−1)n+1(2π)2n

2(2n)!
B2n(x) = cos(2πx),

lim
n→∞

(−1)n+1(2π)2n+1

2(2n+ 1)!
B2n+1(x) = sin(2πx)

(see [10] or [17]). In this section we prove that the w-Bernoulli polynomials behave
analogously. More precisely,

lim
n→∞

(−1)n+1(2π)2n

2(2n)!
Bs

2n(x) = bs1 cos(2πx),(26)

lim
n→∞

(−1)n+1(2π)2n+1

2(2n+ 1)!
Bs

2n+1(x) = bs1 sin(2πx)(27)

(recall that B1
n(x) = Bn(x), see Theorem 4).

For s = 0, we get b0m = 0, m ≥ 0, and B0
0 = 1, B0

1 = − 1
2 , and B0

n = 0, n ≥ 2.
Hence the limits (26) and (27) are simply the known case if s = 0. So let us now
assume s > −1, s ̸= 0.

We start by estimating the coefficients bsm given in (19), for s > −1 and s ̸= 0.
We use that, for z → +∞, the hypergeometric function 1F2 satisfies

(28)

1F2

(
a

b1, b2
;−z2

)
=

Γ(b1)Γ(b2)

2
√
π Γ(a)

z2κ
(
e−i(κπ+2z)

(
1 +O(|z|−1)

)
+ ei(κπ+2z)

(
1 +O(|z|−1)

))
+

Γ(b1)Γ(b2)

Γ(b1 − a)Γ(b2 − a)
z−2a

(
1 +O(|z|−2)

)
with κ = 1

2 (a− b1 − b2 +
1
2 ); see [3, 16.11.8] or [18, (2.5) and (2.8)].

From this formula, we have the following:

Lemma 8. For s > −1 with s ̸= 0, we have

bsm = 1 +O(m−1)− 21+sπ1/2−sΓ(2 + s/2)

(2 + s)Γ(1/2− s/2)

1

ms

(
1 +O(m−2)

)
, m → ∞.

Proof. If we take z = mπ/2 in (28), we have

1F2

(
1 + s/2

3/2, 2 + s/2
;−m2π2/4

)
=

2 + s

π2m2

(
(−1)m+1 +O(m−1)

)
+

21+sΓ(2 + s/2)

π3/2+sΓ(1/2− s/2)

1

m2+s

(
1 +O(m−2)

)
,

and then the estimate for bsm follows easily using (19). □

We next estimate the w-Bernoulli numbers Bs
n for n even (recall that Bs

n = 0 if
n ≥ 3 is odd).

Theorem 9. For s > −1, s ̸= 0, we have

(29)
(−1)n+1(2π)2n

2(2n)!
Bs

2n = bs1 +O

(
1

22n

)
, n → ∞,

where the constant implicit in the order term depends only on s.
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Proof. From Theorem 5,

(−1)n+1(2π)2n

2(2n)!
Bs

2n =
∑
m≥1

bsm
m2n

= bs1 +
1

22n

∑
m≥2

bsm
(m/2)2n

= bs1 +O

(
1

22n

)
.

Note that this is true in both cases: for s > 0 (when bsm ∼ 1) and for −1 < s < 0
(when bsm ∼ −m−s). □

In order to estimate Bs
n(z), z ∈ C, we will use Theorem 9, which is the case

z = 0, and the “binomial formula”

(30) Bs
n(x+ y) =

n∑
k=0

(
n

k

)
Bs

n−k(x) y
k.

This kind of identity holds for every Appell sequence and can be proved directly
from the generating function or from the differential relation d

dxB
s
n(x) = nBs

n−1(x).
We actually prove an stronger result than (26) and (27). To do that, we need

the truncated cosine and sine functions, namely

T2n(z) =

n∑
k=0

(−1)k

(2k)!
z2k, T2n+1(z) =

n∑
k=0

(−1)k

(2k + 1)!
z2k+1.

With this notation we have the following:

Theorem 10. For s > −1, s ̸= 0 and for n big enough, we have∣∣∣∣ (−1)n+1(2π)2n

2(2n)!
Bs

2n(z)− bs1T2n(2πz)

∣∣∣∣ ≤ Cs

22n
e4π|z|,(31) ∣∣∣∣ (−1)n+1(2π)2n+1

2(2n+ 1)!
Bs

2n+1(z)− bs1T2n+1(2πz)

∣∣∣∣ ≤ Cs

22n+1
e4π|z|,(32)

uniformly for z in any compact subset K of C, where Cs denotes a constant de-
pending only on s and K.

Proof. To prove (31), we use (30) and (29) to get

(−1)n+1(2π)2n

2(2n)!
Bs

2n(z) =
(−1)n+1(2π)2n

2

2n∑
k=0

Bs
2n−k

(2n− k)!

zk

k!

=
(−1)n+1(2π)2n

2
Bs

1

z2n−1

(2n− 1)!
+

(−1)n+1(2π)2n

2

n∑
k=0

Bs
2n−2k

(2n− 2k)!

z2k

(2k)!

= (−1)n
(2π)2nz2n−1

4(2n− 1)!
+

n∑
k=0

(−1)k(−1)n−k+1 (2π)2n−2kBs
2n−2k

2(2n− 2k)!

(2πz)2k

(2k)!

= (−1)n
(2π)2nz2n−1

4(2n− 1)!
+

n∑
k=0

(−1)k
(
bs1 +O(2−2n+2k)

) (2πz)2k
(2k)!

= bs1T2n(2πz) +

n∑
k=0

O(2−2n+2k)
(2πz)2k

(2k)!
+ (−1)n

(2π)2nz2n−1

4(2n− 1)!
,
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where the implicit constant c in O(·) is independent of k and n. Hence,∣∣∣∣∣
n∑

k=0

O(2−2n+2k)
(2πz)2k

(2k)!
+ (−1)n

(2π)2nz2n−1

4(2n− 1)!

∣∣∣∣∣
≤ c

n∑
k=0

2−2n+2k (2π|z|)2k

(2k)!
+

π

2

(2π|z|)2n−1

(2n− 1)!

≤ 2−2nc

n∑
k=0

(4π|z|)2k

(2k)!
+ 2−2nc′

(4π|z|)2n−1

(2n− 1)!

≤ 2−2nc′′
∞∑
k=0

(4π|z|)k

k!
= 2−2nc′′e4π|z| = O

(
e4π|z|

22n

)
,

again with the constants c′, c′′ independent of k and n. This proves (31). The proof
of (32) is similar. □

As a direct consequence, we have the following.

Corollary 11. For s > −1, s ̸= 0, and any compact subset K ⊂ C, the w-Bernoulli
polynomials satisfy

(−1)n+1(2π)2n

2(2n)!
Bs

2n(z) = bs1 cos(2πz) +O

(
e4π|z|

22n

)
,

(−1)n+1(2π)2n+1

2(2n+ 1)!
Bs

2n+1(z) = bs1 sin(2πz) +O

(
e4π|z|

22n+1

)
,

uniformly on K, where the implicit constant only depends on s and K.

Proof. The tail of the Taylor expansion can be estimated by

|cos(z)− T2n(z)| ≤
∞∑

k=2n+1

|z|k

k!
≤ 1

22n+1

∞∑
k=2n+1

|2z|k

k!
≤ 1

22n+1
e2|z|

(and similarly with | sin(z)−T2n+1(z)|). Then, it is enough to use Theorem 10. □

Since all the zeros of the functions cos(2πz) and sin(2πz) are real, it follows from
Hurwitz’s theorem [9, Chapter VII, p. 152], that the real zeros of the w-Bernoulli
polynomials Bs

n(z), for n even or odd, converge, when n → ∞, to the real zeros of
the corresponding cosine or sine functions, respectively. In addition, the complex
zeros of these polynomials must converge to infinity, as n → ∞. Therefore, as
usual, one can be interested in the behavior of the zeros of the polynomials Bs

n(nz).
Szegő showed in 1924 that, if we denote by sn(z) =

∑n
j=0 z

j/j! the nth partial

sum of the exponential function ez, the zeros of the normalized partial sum sn(nz)
tend, as n → ∞, to the curve |ze1−z| = 1 in the complex plane, which is now known
as Szegő curve. Similar behavior happens with the zeros of the partial sums or cos(z)
and sin(z), see [25]. And, due to the convergence of Bernoulli polynomials to the
trigonometric functions, again Bernoulli polynomials have this kind of behavior.
In particular, the complex zeros of the Bernoulli polynomials Bn(nz) tend to the
curve e2π| Im(z)| = 2πe|z| (see [11, 16, 5]).

The zero behavior of the normalized w-Bernoulli polynomials Bs
n(nz) remains as

a challenge. On the one hand, one can expect that the complex zeros tend to the
curve e2π| Im(z)| = 2πe|z|, and the numerical experiments show that such behaviour
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Figure 1. The zeros of Bs
100(100z) for s = 4 (left) and s = −1/2

(right). Each dot represents a zero. The pictures show also the
circle of radius 1/(2π) and the curve e2π| Im(z)| = 2πe|z|.

seems to happen. But on the other hand, a couple of spurious zeros seem to run
away from the attraction of the curve, see Figure 1. In the case s > 1, these are
a couple of conjugate zeros, that seem to have a limit (outside the curve) which
depends on s. In the case s ∈ (−1, 0)∪ (0, 1), they are a couple of real zeros whose
sum is, approximately, 1/2.
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