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Abstract: Solving equations of the form H(x) = 0 is one of the most faced problem in mathematics
and in other science fields such as chemistry or physics. This kind of equations cannot be solved
without the use of iterative methods. The Steffensen-type methods, defined using divided differences
are derivative free, are usually considered to solve these problems when H is a non-differentiable
operator due to its accuracy and efficiency. However, in general, the accessibility of these iterative
methods is small. The main interest of this paper is to improve the accessibility of Steffensen-type
methods, this is the set of starting points that converge to the roots applying those methods. So, by
means of using a predictor–corrector iterative process we can improve this accessibility. For this, we
use a predictor iterative process, using symmetric divided differences, with good accessibility and
then, as corrector method, we consider the Center-Steffensen method with quadratic convergence. In
addition, the dynamical studies presented show, in an experimental way, that this iterative process
also improves the region of accessibility of Steffensen-type methods. Moreover, we analyze the
semilocal convergence of the predictor–corrector iterative process proposed in two cases: when
H is differentiable and H is non-differentiable. Summing up, we present an effective alternative
for Newton’s method to non-differentiable operators, where this method cannot be applied. The
theoretical results are illustrated with numerical experiments.

Keywords: iterative method; local convergence; non-differentiable operator; dynamics; Steffensen’s method
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1. Introduction

One of the most studied problems in numerical mathematics is finding the solution of
nonlinear systems of equations

H(x) = 0, (1)

where H : Ω ⊂ Rm −→ Rm is a nonlinear operator, H ≡ (H1, H2, . . . , Hm) with Hi : Ω ⊆
Rm → R, 1 ≤ i ≤ m, and Ω is a non-empty open convex domain. In this context, iterative
methods are a powerful tool for solving these equations [1]. Many applied problems can be
reduced to solving systems of nonlinear equations, which is one of the most basic problems
in mathematics. These problems arise in all scientific areas. Both in mathematics, physics
and especially in a diverse range of engineering applications. This task has applications in
many scientific fields [2,3]. Applications in the geometric theory of the relativistic string
can be found [4], also when solcing nonlinear equations in porous media problems [5,6],
in solving nonlinear stochastic differential equations (by the first order finite difference
method) [7], in solving nonlinear Volterra integral equations [8], an many others.
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In general, there are two aspects that must be considered when we choose an iterative
process to approximate a solution of Equation (1). The first one is related to the compu-
tational efficiency of the iterative process [9]. The other one, with the same importance,
is known as the accessibility of the iterative process [10], which represents the possibility
to locate starting points that ensure the convergence of the sequence generated by the
iterative process to a solution of Equation (1). Newton’s method, due to its characteristics,
it is usually considered as a reference in the measure of these two aspects. However, this
method has a serious shortcoming: the derivative H′(x) has to be computed and evalu-
ated at each iteration. This makes it inapplicable when the equations involved presents
non-differentiable operators and in situations when the evaluation of the derivative is too
expensive in terms of computation and time. In these cases, one alternative commonly
used is to approximate the derivatives by divided differences using a numerical derivation
formula, where iterative processes free of derivatives are obtained. For this purpose, au-
thors use first order divided differences [9,11]. First, we denote by L(Rm,Rm) the space of
bounded linear operators from Rm toRm. An operator [x, y; D] ∈ L(Rm,Rm) is called first
order divided difference for the operator D : Ω ⊆ Rm → Rm on the points x and y (x 6= y)
if it is satisfied that

[x, y; D](x− y) = D(x)− D(y). (2)

In this paper, we consider derivative-free iterative processes using the previous ideas.
But these methods have also a serious shortcoming: they have a region of reduced accessi-
bility. In [10], the accessibility of an iterative process is increased by means of an analytical
procedure, which consists of modifying the convergence conditions. However, in this work,
we will increase accessibility by constructing an iterative predictor–corrector process. This
iterative process has a first prediction phase and then a second accurate approximation
phase. The first phase allows us, by applying the predictor method, to locate a starting
point for the corrector method to ensure convergence to a solution of the equation.

Kung and Traub presented in [12] a class of iterative processes without deriva-
tives. These iterative processes considered by Kung and Traub contain Steffensen-type
methods as a special case. In [13], a generalized Steffensen-type is considered with the
following algorithm: 

x0 ∈ Ω, α, β ∈ [0, 1],

yn = xn − αH(xn),

zn = xn + βH(xn), ,

xn+1 = xn − [yn, zn; H]−1H(xn), n > 0.

(3)

As special cases of the previous algorithm, the three most well-known Steffesen-type
methods: for α = 0 and β = 1 we obtain the original Steffensen method, the Backward-
Steffensen method is obtained for α = 1 and β = 0 and the Center-Steffensen method is
obtained for α = 1 and β = 1.

Notice that, if we consider the Newton’s method,

xn+1 = xn −
[
H′(xn)

]−1H(xn), n ≥ 0; x0 ∈ Ω is given, (4)

which is one of the most used iterative methods [14–18] to approximate a solution x∗ of
H(x) = 0, the Steffensen-type methods are obtained as a special case of this method, where
the evaluation of H′(x) in each step is approximated by the divided difference of first
order [x− αH(x), x + βH(x); H]. The Steffensen-type methods have been widely studied
by many recognized researchers such as Alarcón, Amat, Busquier and López ([19]) who
presented a study and applications of Steffensen method to boundary-value problems,
Argyros ([20]) who gave an improved convergence theorem related to Steffensen method
or Ezquerro, Hernández, Romero and Velasco ([21]) who studied the generalization of the
Steffensen method to Banach spaces.
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Symmetric divided differences generally perform better. This fact can be seen in the
dynamical behavior of the Center-Steffensen method, see Section 2, which is the best one,
in term of convergence, from the Steffensen-type methods given previously. Moreover,
this method maintains the quadratic convergence of Newton’s method, by approximating
the derivative through symmetric divided differences with respect to the xn, and the
Center-Steffensen method also has the same computational efficiency as Newton’s method.
However, to achieve the second order in practice, an iteration close enough to the solution is
needed to have a good approximation of the first derivative of H used in Newton’s method.
In other case, some extra iterations in comparison with Newton’s method are required.
Basically, when the norm of H(x) is big, the approximation of the divided difference to the
first derivative of H is bad. So, in general, the set of starting points of the Steffensen-type
methods is poor. This reality can be observed experimentally by means of the basins of
attraction shown in Section 2. This fact justifies that Steffensen-type methods are less used
than Newton’s method to approximate solutions of equations for differentiable operators.

Thus, two are our main objectives in this work: on the one hand, in the case of
differentiable operators, where Newton’s method can also be applied, our objective is to
construct a predictor–corrector iterative process with an accessibility and efficiency such as
Newton’s method. Secondly, the other objective is to ensure that this predictor–corrector
iterative process considered have a behavior such as Newton’s method but considering the
case of non-differentiable operators where Newton’s method cannot be applied.

Following this idea, in this paper we consider the derivative-free point-to-point itera-
tive process given by{

x0 given in Ω,

xn+1 = xn − [xn − Tol, xn + Tol; H]−1H(xn), n ≥ 0,
(5)

where Tol = (tol, tol, . . . , tol) ∈ Rm for a real number tol > 0. Thus, we use a symmetric
divided difference to approximate the derivative that appear in Newton’s method. Fur-
thermore, by varying the parameter tol, we can approach the value of H′(xn). Notice that,
in the differentiable case, for tol = 0 we obtain the Newton’s method. The dynamical
behavior of this simple iterative process is like Newton’s method, with one varying the
parameter tol.

However, although reducing the value of tol we can reach a speed of convergence
like Newton’s method, its order of convergence is linear. That is why we will consider
this method as a predictor, due to its good accessibility, and we will consider then the
Center-Steffensen method:

x0 ∈ Ω, α, β ∈ [0, 1],

yn = xn − H(xn),

zn = xn + H(xn), ,

xn+1 = xn − [yn, zn; H]−1H(xn), n > 0,

(6)

as a corrector method, whose order of convergence is quadratic.
The paper is organized as follows. Section 2 contains the motivation of the paper. In

Section 3, we present a semilocal convergence analysis of the new method when operator H
is both differentiable and non-differentiable cases. Moreover, some numerical experiments
are shown where the theoretical results are proven numerically. Next, Section 4 contains
the study of dynamical behavior for the predictor–corrector method. Finally, in Section 5,
we present the conclusions of the work carried out.

2. Motivation

When iterative processes defined by divided differences are applied to find the so-
lutions of nonlinear equations, it is important to note that the region of accessibility is
reduced with respect to Newton’s method. In practice, we can see this circumstance with
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the basins of attraction (the set of points of the plane such that initial conditions chosen in
the set dynamically evolve to a particular attractor ([22,23]) of iterative methods when they
are applied to solve a complex equation H(z) = 0, where H : C→ C and z ∈ C.

First, in the differential case, we compare the dynamical behavior of the Newton’s
method, the Steffensen-type methods (3) and the iterative process given in (5) for solving
the complex equation H1(z) = z3 − 1 = 0. In the non-differentiable case, we compare the
Steffensen-type methods (3) and the iterative process given in (5) for solving the complex
equation H2(z) = z(z2 + 2|z| − 5) = 0. Our objective is to justify that the accessibility
region of the iterative process (5) is comparable to the one associated to Newton’s method,
in the differentiable case, and notably greater compared to Steffensen-type methods (3) in
both cases, differentiable and non-differentiable. In each case, the favorable choice of the
iterative process (5) as a predictor method is proven.

We will show the fractal pictures that are generated to approximate the three solutions
of H1(z), z∗ = 1, z∗∗ = −0.5 − 0.866025i and z∗∗∗ = −0.5 + 0.866025i and the ones
generated to approximate the three solutions of H2(z), z∗ = 0, z∗∗ = 1−

√
6 and z∗∗∗ =

1 +
√

6. We are interested in identifying the attraction basins of the three solutions z∗,
z∗∗ and z∗∗∗ [23]. These basins also allow us to compare the regions of accessibility of
these methods.

In all the cases, the tolerance 10−3 and a maximum of 100 iterations are used. If we
have not obtained the desired tolerance after 100 iterations, we do not continue and decide
that the iterative method starting at z0 does not converge to any zero.

The regions of accessibility of the two iterative methods when they are applied to ap-
proximate the solutions z∗, z∗∗ and z∗∗∗ of H1(z) = z3− 1 = 0 are shown in Figures 1 and 2.
The strategy used is the following: A color is assigned to each solution of the equation and
if the iteration does not converge, color black is used. To obtain the pictures, red, yellow,
and blue colors have been assigned for the attraction basins of the three zeros. The basins
shown have been generated using Mathematica 10 [24].

If we observe the behavior of these methods, it is clear that methods (3) are stricter
with respect to the starting point than Newton’s method (see the black zone). However, if
we consider the iterative process (5), see in Figure 3, varying the parameter tol, a dynamical
behavior similar to Newton’s method can be obtained.

In Figures 1 and 2 are shown the dynamical behavior of Newton’s Method and
the Steffensen, Backwards-Steffensen and Center-Steffensen method, where the predictor
method (5) is better than the Steffensen-type methods (3).

-����� -����� ����� �����
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Figure 1. Newton’s Method applied to H1(z) = z3 − 1.
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Steffensen’s method
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Backward-Steffensen method
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Center-Steffensen method
Figure 2. Basins of attraction to polynomial H1(z) = z3 − 1.

Once the accessibility has been graphically analyzed, showing that method (5) is better
than the Steffensen-type methods (3) and, like Newton’s method in terms of convergence,
we want to prove it in a numerical way and, for that purpose, we compute the percentage
of points that converges. This information is presented in Table 1.
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Method (5) with tol = 0.002
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Method (5) with tol = 0.5
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Method (5) with tol = 0.75

Figure 3. Basins of attraction to polynomial H1(z) = z3 − 1.

Nevertheless, the use of derivative-free iterative methods is necessary when the
operator H is non-differentiable. For this reason, one aim of this work is, from the predictor
method (5), preserve, in some way, the good accessibility of Newton’s method.

Then, in non-differentiable case, if we use the Steffensen-type methods defined in
(3) to solve the equation H2(z) = z(z2 + 2|z| − 5) = 0, the predictor method (5) improve
the accessibility region of Steffensen-type methods (3), as we can see in Figures 4 and 5,
where the basins of attraction of the two solutions of this equation are drawn for the
mentioned methods.
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Center-Steffensen method
Figure 4. Basins of attraction to equation H2(z) = z(z2 + 2|z| − 5) = 0.

Once the accessibility has been graphically analyzed, showing that method (5) is better
than the other ones, we want to prove it in a numerical way and, for that purpose, we
compute the percentage of points which converges. We get this information in Table 2.

Table 1. Percentage of convergence points for H1(z) = z3 − 1.

Method Percentage of Convergent Points

Newton’s method 100%

Steffensen 4.35%

Backward-Steffensen 6.17%

Center-Steffensen 9.15%

Method (5) with tol = 0.002 100%

Method (5) with tol = 0.5 100%

Method (5) with tol = 0.75 100%
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Method (5) with tol = 0.5
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Method (5) with tol = 0.75

Figure 5. Basins of attraction to equation H2(z) = z(z2 + 2|z| − 5) = 0.

Table 2. Percentage of convergence points for H2(z) = z(z2 + 2|z| − 5) = 0.

Method Percentage of Convergent Points

Steffensen 5.37%

Backward-Steffensen 5.91%

Center-Steffensen 9.38%

Method (5) with tol = 0.002 100%

Method (5) with tol = 0.5 100%

Method (5) with tol = 0.75 100%

As we have just seen, the iterative process predictor (5) has a significantly better
dynamic behavior than the Steffensen-type methods, being like Newton’s method in the
differentiable case. Therefore, we can say that the iterative process predictor has a good
accessibility, improving the one of the Steffensen-type methods in both cases, differentiable
and non-differentiable. This leads us to construct an iterative process predictor–corrector,
using the Center-Steffensen method as the iterative correction process, which maintains its
quadratic convergence. Consequently, we consider the predictor–corrector method:
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{
Given an initial guess u0 ∈ Ω,

uj+1 = uj − [uj − Tol, uj + Tol; H]−1H(uj), j = 0, ..., N0 − 1,

x0 = uN0 ,

yn = xn − H(xn), n > 0,

zn = xn + H(xn), n > 0,

xn+1 = xn − [yn, zn; H]−1H(xn), n > 0,

(7)

where Tol = (tol, tol, . . . , tol) ∈ Rm for a real number tol > 0. Thus, this predictor–
corrector method will be a Steffensen-type method with good accessibility and quadratic
convergence from an iteration to be determined.

3. Semilocal Convergence

From the dynamic study carried out previously, it is evident that, if we denote by
DCorr = {x0 ∈ Ω : {xn}, given by (6) , converges} and DPred = {x0 ∈ Ω : {xn}, } given by
(5), converges the accessibility domains of iterative processes (6) and (5), it will be verified
that DCorr ⊆ DPred. That is, the set of starting points that ensure convergence for method
(6) is less than the corresponding set for method (5). In this section we show that, starting
from an element x0 ∈ DPred, we can locate a point xN0 such that xN0 ∈ DCorr. Therefore,
we obtain a starting point that ensures the convergence of method (6). Thus, doing some
iterations with the predictor method, we locate a point xN0 that ensures the convergence of
method (6). Therefore, we increase the accessibility of Center-Steffensen method.

The semilocal study of the convergence is based on demanding conditions to the initial
approximation u0, from certain conditions on the operator H , and provide conditions
required to the initial approximation that guarantee the convergence of sequence (7) to the
solution x∗. In order to analyze the semilocal convergence of iterative processes that do
not use derivatives in their algorithms, the conditions are usually required on the operator
divided difference. Although in the case that the operator H is Fréchet differentiable, the
divided difference operator can be defined from the Fréchet derivative of the operator H.

3.1. Differentiable Operators

Next, we establish the semilocal convergence of iterative process given in (7) for
differentiable operators. So, we consider H : Ω ⊂ Rm −→ Rm a Fréchet differentiable
operator and there exists

[v, w; H] =
∫ 1

0
H′(tv + (1− t)w) dt, (8)

for each pair of distinct points v, w ∈ Ω. Notice that, as H is Fréchet differentiable
[x, x; H] = H′(x).

Now, we suppose the following initial conditions:

(D1) Let u0 ∈ Ω such that exists Γ0 = [H′(u0)]
−1 with ‖Γ0‖ ≤ β and ‖H(u0)‖ ≤ δ0.

(D2) ‖H′(x)− H′(y)‖ ≤ K‖x− y‖, x, y ∈ Ω, K ∈ R+.

Firstly, we obtain some technical results.

Lemma 1. The following items are verified.

(i) Let R > 0 with B(u0, R + ‖Tol‖) ⊆ Ω. If βK(R + ‖Tol‖) < 1 then, for each pair of
distinct points y, z ∈ B(u0, R + ‖Tol‖), there exists [y, z; H]−1 such that

‖[y, z; H]−1‖ ≤ β

1− βK(R + ‖Tol‖) . (9)
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(ii) If uj, uj−1 ∈ Ω, for j = 0, 1, . . . , N0, then

‖H(uj)‖ ≤
K
2
(‖Tol‖+ ‖uj − uj−1‖)‖uj − uj−1‖. (10)

(iii) If xj, xj−1 ∈ Ω, , for j > 1, then

‖H(xj)‖ ≤
K
2
(‖H(xj−1‖+ ‖xj − xj−1‖)‖xj − xj−1‖. (11)

Proof. To prove the item (i), from (D1), we can write

‖I − Γ0[y, z; H]‖ ≤ ‖Γ0‖‖H′(u0)− [y, z; H]‖

≤ ‖
∫ 1

0 (H′(ty + (1− t)z)− H′(u0)) dt‖

≤ βK
∫ 1

0 ‖ty + (1− t)z− u0‖ dt

≤ βK
∫ 1

0 ‖t(y− u0) + (1− t)(z− u0)‖ dt

≤ βK(R + ‖Tol‖).

Then, by the Banach Lemma for inverse operators [25] the item (i) is proved.
Regarding item (ii), from the Taylor expansion for the operator H and (7), we can obtain

H(uj) = H(uj−1) + H′(uj−1)(uj − uj−1) +
∫ 1

0
(H′(uj−1 + t(uj − uj−1))− H′(uj−1))dt(uj − uj−1)

= (H′(uj−1)− [uj−1 − Tol, uj−1 + Tol; H])(uj − uj−1)+∫ 1

0
(H′(uj−1 + t(uj − uj−1)− H′(uj−1))dt(uj − uj−1).

Taking norms in the last equality obtained previously and, considering (8), the proof
of item (ii) is evident.

Item (iii) is proved analogously to item (ii), just considering the algorithm of the
iterative process predictor–corrector (7).

To simplify the notation, from now on, we denote

Aj = [uj − Tol, uj + Tol; H], Bj = [xj − H(xj), xj + H(xj); H],

and the parameters a0 = β2Kδ0 and b0 = βKtol. Other parameters which will be used are:

M =
L
2
(b0 + La0), where L =

1
1− b0 − βKR

.

Moreover, notice that the polynomial equation p(t) = 0, where

p(t) = 2a0(1− b0)− (2 + a0 − 5b0 + 3b2
0)βKt + (4− 5b0)β2K2t2 − 2β3K3t3,

has at least a positive real root since that p(0) > 0 and p(t) → −∞ as t → ∞. Then, we
denote by R the smallest positive root of the polynomial equation p(t) = 0.
Finally, we denote by [x] the integer part of the real number x.
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Theorem 2. Let H : Ω ⊂ Rm −→ Rm a Fréchet differentiable operator defined on a nonempty
open convex domain Ω. Suppose that conditions (D1) and (D2) are satisfied and there exists

tol > 0 such that M < 1, R <
1− b0

βK
and B(u0, R + ‖Tol‖) ⊆ Ω. If we consider

N0 >

 1 +
[

log(‖Tol‖/δ0)

log(M)

]
if ‖Tol‖ < δ0,

1 if ‖Tol‖ > δ0,
(12)

then the iterative process predictor–corrector (7), starting at u0, converges to x∗ a solution of
H(x) = 0. Moreover, uj, xn, x∗ ∈ B(u0, R) for j = 1, . . . , N0 and n > 0.

Proof. First, notice that it is easy to check that R =
Lβδ0

1−M
.

Then, from the item (i), in the previous Lemma, u0 ∈ B(u0, R + ‖Tol‖), there exists

A−1
0 such that ‖A−1

0 ‖ ≤
β

1− βK(R + ‖Tol‖) = Lβ. Then, u1 is well defined and ‖u1 −

u0‖ ≤ ‖A−1
0 ‖‖H(u0)‖ ≤ Lβδ0 < R, with what we get that u1 ∈ B(u0, R). Now, obviously,

u1 ± Tol ∈ B(u0, R + ‖Tol‖) and, again from the item (i) in the previous Lemma, there
exists A−1

1 such that ‖A−1
1 ‖ ≤ Lβ, Then, u2 is well defined and, from (10), we have that

‖H(u1)‖ ≤
K
2
(‖Tol‖+ ‖u1 − u0‖)‖u1 − u0‖ ≤

K
2
(‖Tol‖+ Lβδ0)‖u1 − u0‖. (13)

Moreover, from (13), we get

‖H(u1)‖ ≤
K
2
(‖Tol‖+ Lβδ0)Lβδ0 = Mδ0.

Therefore, we obtain that

‖u2 − u1‖ ≤ ‖A−1
1 ‖‖H(u1)‖ ≤

LβK
2

(‖Tol‖+ Lβδ0)‖u1 − u0‖ ≤ M‖u1 − u0‖.

And ‖u2 − u1‖ < ‖u1 − u0‖, since M < 1.
Consequently, it is easy to check that u2 ∈ B(u0, R) since that

‖u2 − u0‖ ≤ ‖u2 − u1‖+ ‖u1 − u0‖ ≤ (1 + M)‖u1 − u0‖ <
1

1−M
Lβδ0 = R.

Following a recursive procedure, it is easy to check the following relationships for
j = 1, 2, . . . , N0.

(a) There exists A−1
j−1 such that ‖A−1

j−1‖ ≤ Lβ,

(b) ‖H(uj−1)‖ ≤
K
2
(‖Tol‖+ Lβδ0)‖uj−1 − uj−2‖,

(c) ‖H(uj−1)‖ ≤ Mj−1δ0,
(d) ‖uj − uj−1‖ ≤ M‖uj−1 − uj−2‖ < ‖uj−1 − uj−2‖,
(e) ‖uj − u0‖ ≤ (1 + M + ... + Mj−1)‖u1 − u0‖ < 1

1−M Lβδ0 = R.

Now, from the algorithm of the iterative process predictor–corrector (7), we consider
x0 = uN0 ∈ B(u0, R). Then, from the hypothesis required to the parameter N0 in (12), we
have that ‖x0 ± H(x0)− u0‖ = ‖uN0 ± H(uN0)− u0‖ ≤ ‖uN0 − u0‖+ MN0 δ0 ≤ ‖uN0 −
u0‖+ ‖Tol‖. Then x0 ± H(x0) ∈ B(u0, R + ‖Tol‖). So, from item (i) of Lemma 1, there
exists B−1

0 with ‖B−1
0 ‖ ≤ Lβ.

On the other hand, from item (ii) of Lemma 1, we obtain

‖H(x0)‖ = ‖H(uN0)‖ ≤
K
2
(‖Tol‖+ ‖uN0 − uN0−1‖)‖uN0 − uN0−1‖
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≤ K
2
(‖Tol‖+ ‖u1 − u0‖)‖uN0 − uN0−1‖ ≤

K
2
(‖Tol‖+ Lβδ0)‖uN0 − uN0−1‖.

Then,

‖x1 − x0‖ ≤ ‖B−1
0 ‖‖H(x0)‖ ≤

LβK
2

(‖Tol‖+ Lβδ0)‖x0 − uN0−1‖ ≤ M‖uN0 − uN0−1‖.

And, as a direct consequence, we get that

‖x1 − x0‖ < ‖uN0 − uN0−1‖ ≤ MN0‖u1 − u0‖,

and
‖x1 − u0‖ ≤ [1 + M + · · ·+ MN0 ]‖u1 − u0‖ <

1
1−M

Lβδ0 = R.

Therefore, x1 ∈ B(u0, R), and, from item (iii) of Lemma 1, we have

‖H(x1)‖ ≤
K
2
(‖H(x0‖+ ‖x1 − x0‖)‖x1 − x0‖ ≤

K
2
(‖Tol‖+ ‖u1 − u0‖)‖x1 − x0‖ ≤ MN0+1δ0.

So, we have that ‖x1 ± H(x1)− u0‖ ≤ ‖x1 − u0‖+ MN0+1δ0 ≤ ‖x1 − u0‖+ ‖Tol‖.
Then x1± H(x1) ∈ B(u0, R + ‖Tol‖). Now, from item (i) of Lemma 1, there exists B−1

1
with ‖B−1

1 ‖ ≤ Lβ.
Moreover, we get

‖x2 − x1‖ ≤ ‖B−1
1 ‖‖H(x1)‖ ≤

LβK
2

(‖Tol‖+ Lβδ0)‖x1 − x0‖ = M‖x1 − x0‖ < ‖x1 − x0‖,

and
‖x2 − u0‖ ≤ [1 + M + · · ·+ MN0+1]‖u1 − u0‖ <

1
1−M

Lβδ0 = R.

Now, following an inductive procedure, it is easy to check the recurrence relations
defined for j > 1 as:

(a′) There exists B−1
j−1 such that ‖B−1

j−1‖ ≤ Lβ,

(b′) ‖H(xj−1)‖ ≤
K
2
(‖Tol‖+ Lβδ0)‖xj−1 − xj−2‖,

(c′) ‖H(xj−1)‖ ≤ MN0+j−1δ0,
(d′) ‖xj − xj−1‖ ≤ M‖xj−1 − xj−2‖ < ‖xj−1 − xj−2‖,

(e′) ‖xj − u0‖ ≤ (1 + M + ... + MN0+j−1)‖u1 − u0‖ <
1

1−M
Lβδ0 = R.

Now, using M < 1, for n > N0, we have

‖xn+j − xn‖ ≤
j

∑
i=1
‖xn+i − xn+i−1‖ ≤

j

∑
i=1

MN0+n+i−1‖u1 − u0‖ <
MN0+n

1−M
‖u1 − u0‖. (14)

Hence, {xn} is a Cauchy sequence which converges to x∗. Since

‖H(xn)‖ ≤ MN0+n+1δ0,

thus, H(x∗) = 0 by using the continuity of H.

Next, we present a uniqueness result for the iterative process predictor–corrector (7).

Theorem 3. Under conditions of the previous Theorem, the solution x∗ of the equation H(x) = 0
is unique in B(u0, R).

Proof. To prove the uniqueness part, suppose y∗ is another solution of (1) in B(u0, R). If
Q = [x∗, y∗; H] is invertible, then x∗ = y∗ since Q(x∗ − y∗) = H(x∗)− H(y∗). But
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‖I − Γ−1
0 Q‖ ≤ ‖Γ−1

0 ‖‖H′(u0)−Q‖ ≤ ‖Γ−1
0 ‖‖

∫ 1

0
‖H′(ty∗ + (1− t)x∗)− H′(u0)‖ dt ≤ βKR < 1.

Therefore, by the Banach Lemma of inverse operators, there exists Q−1 and then
x∗ = y∗.

3.2. Non-Differentiable Operators

In this section, we want to obtain a result of semilocal convergence for iterative process
(7) when H is a non-differentiable operator. In order to obtain it, we must suppose that for
each pair of distinct points x, y ∈ Ω, there exists a first-order divided difference of H at these
points. As we consider Ω an open convex domain of Rm, this condition is satisfied ([9,26]).
Moreover, it is also necessary to impose a condition on the first-order divided difference
of the operator H. As it appears in [27,28], a Lipschitz-continuous condition or a Hölder-
continuous can be considered, but in the above cases, it is known [29], that the Fréchet
derivative of H exists in Ω. Therefore, these conditions cannot be verified if the operator H
is non-differentiable. Then, to establish the semilocal convergence of iterative process given
in (7) for non-differentiable operator H, we suppose that the following conditions hold:

1. [(ND1)] Let u0 ∈ Ω such that A−1
0 exists with ||A−1

0 || ≤ β0 and ||H(u0)|| ≤ δ0.
2. [(ND2)] ||[x, y; H]− [u, v; H]|| ≤ P+K(||x− u||+ ||y− v||), P, K ≥ 0, with x, y, u, v ∈

Ω, x 6= y, u 6= v.

To simplify the notation, from now on, we denote

M̃ = β0(P + K(β0δ0 + 2‖Tol‖)) and S =
M̃

1− β0(P + 2K(R + ‖Tol‖))

In these conditions, we start our study obtaining a technical result, the proof of which
is evident from algorithm given in (7).

Lemma 4. The following items can be easily verified.

(i) If uj, uj−1 ∈ Ω, for j = 0, 1, . . . , N0, then

H(uj) =
(
[uj, uj−1; H]− Aj−1)(uj − uj−1

)
. (15)

(ii) If xj, xj−1 ∈ Ω, for j > 1, then

H(xj) =
(
[xj, xj−1; H]− Bj−1

)
(xj − xj−1). (16)

Theorem 5. Under the conditions (ND1)-(ND2) if the real equation

t =
β0δ0(1− β0(P + 2K(t− ‖Tol‖)))
1− β0(P + 2K(t + ‖Tol‖))− M̃

, (17)

has at least one positive root, the smallest positive root is denoted by R, and there exists tol > 0
such that satisfies

M̃ + β0(P + 2K(R + ‖Tol‖)) < 1, (18)

and B(u0, R + ‖Tol‖) ⊂ Ω. If we consider

N0 >


2 +

[
log(‖Tol‖/M̃δ0)

log(S)

]
if ‖Tol‖ < β0δ0(P + β0δ0K)

1− 2β0δ0
,

1 if ‖Tol‖ > β0δ0(P + β0δ0K)
1− 2β0δ0

,
(19)
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then the iterative process predictor–corrector (7), starting at u0, converges to x∗ a solution of
H(x) = 0. Moreover, uj, xn, x∗ ∈ B(u0, R), for j = 1, . . . , N0 and n > 0, and x∗ is unique
solution of H(x) = 0 in B(u0, R) ⊂ Ω.

Proof. First, notice that ‖Tol‖ < β0δ0(P + β0δ0K)
1− 2β0δ0

if and only if ‖Tol‖ < M̃δ0. Moreover,

the smallest positive real root R of (17) satisfies

R =
β0δ0

1− S
. (20)

Second, we prove that uj is well defined and uj ∈ B(u0, R) for j = 0, 1, 2, ..., N0. From
condition (ND1), u1 is well defined and

‖u1 − u0‖ ≤ ‖A−1
0 ‖‖H(u0)‖ ≤ β0δ0 < R.

Thus, u1 ∈ B(u0, R) and u1 ± Tol ∈ B(u0, R + ‖Tol‖). Using Lemma 4, we get

‖H(u1)‖ = ‖[u1, u0; H]− [u0 − Tol, u0 + Tol, H]‖‖u1 − u0‖
≤
(

P + K(‖u1 − u0‖+ 2‖Tol‖)
)
‖u1 − u0‖

≤ β0
(

P + K(β0δ0 + 2‖Tol‖)
)
δ0 = M̃δ0.

Now,

‖I − A−1
0 A1‖ ≤ ‖A−1

0 ‖‖A1 − A0‖
≤ β0‖[u1 − Tol, u1 + Tol; H]− [u0 − Tol, u0 + Tol; H]||
≤ β0

(
P + K(‖u1 − u0‖+ ‖u1 − u0‖)

)
≤ β0(P + 2KR) < 1.

Hence, by using Banach Lemma for inverse operators, A−1
1 exists and

‖A−1
1 ‖ ≤

β0

1− β0(P + 2KR)
. (21)

Thus, u2 is well defined. Moreover,

‖u2 − u1‖ ≤ ‖A−1
1 ‖‖H(u1)‖

≤ M̃
1− β0(P + 2KR)

‖u1 − u0‖

≤ M̃
1− β0(P + 2K(R + ‖Tol‖))‖u1 − u0‖

= S‖u1 − u0‖ < ‖u1 − u0‖ < R,

and u2 ∈ B(u0, R) as

‖u2 − u0‖ ≤ ‖u2 − u1‖+ ‖u1 − u0‖ ≤ (S + 1)‖u1 − u0‖ <
β0δ0

1− S
< R.

In a similar way, by using the principle of mathematical induction, we can establish
the following recurrence relations. For j = 1, 2, . . . , N0,

(A1) ‖A−1
j ‖ ≤

β0

1− β0(P + 2KR)
,

(A2) ‖H(uj)‖ ≤
(

P + K(β0δ0 + 2‖Tol‖)
)
‖uj − uj−1‖ ≤ M̃Sj−1δ0,

(A3) ‖uj − uj−1‖ ≤ S‖uj−1 − uj−2‖ ≤ Sj−1||u1 − u0‖ < β0δ0 < R,
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(A4) ‖uj − u0‖ ≤
β0δ0

1− S
< R.

To study the convergence of the predictor of (7), we consider x0 = uN0 ∈ B(u0, R).
Using Lemma 4, we get

‖H(uN0)‖ ≤
(

P + K(‖uN0 − uN0−1‖+ 2‖Tol‖)
)
‖uN0 − uN0−1‖

≤
(

P + K(β0δ0 + 2‖Tol‖)
)
SN0−1‖u1 − u0‖

≤ β0
(

P + K(β0δ0 + 2‖Tol‖)
)
SN0−1δ0 = M̃SN0−1δ0, (22)

and, by the hypothesis required to the parameter N0 in (19), we have

‖x0 ± H(x0)− u0‖ ≤ ‖x0 − u0‖+ ‖H(x0)‖ ≤ ‖uN0 − u0‖+ M̃SN0−1δ0 < R + ‖Tol‖,

so, B0 = [x0 − H(x0), x0 + H(x0); H] is well defined. Now, we consider

‖I − A−1
0 B0‖ ≤ ‖A−1

0 ‖‖B0 − A0‖
≤ β0‖[x0 − H(x0), x0 + H(x0); H]− [u0 − Tol, u0 + Tol; H]‖
≤ β0

(
P + 2K(‖x0 ± H(x0)− u0‖+ ‖Tol‖)

)
≤ β0

(
P + 2K(R + ‖Tol‖)

)
< 1.

Hence, B−1
0 exists and

‖B−1
0 ‖ ≤

β0

1− β0(P + 2K(R + ‖Tol‖)) . (23)

Using (22) and (23), we get

‖x1 − x0‖ ≤ ‖B−1
0 ‖‖H(x0)‖

≤ β0(P + K(β0δ0 + 2‖Tol‖))
1− β0(P + 2K(R + ‖Tol‖)‖uN0 − uN0−1‖

≤ S‖uN0 − uN0−1‖ ≤ SN0‖u1 − u0‖ < ‖u1 − u0‖ < R,

and

‖x1 − u0‖ ≤ ‖x1 − x0‖+ ‖uN0 − uN0−1‖+ ... + ‖u1 − u0‖
≤ (SN0 + SN0−1 + ... + S + 1)‖u1 − u0‖

<
β0δ0

1− S
= R.

Hence, x1 ∈ B(u0, R). Again, using Lemma 4 and condition (ND2), we have

‖H(x1)‖ ≤ ‖[x1, x0; H]− [x0 − H(x0), x0 + H(x0); H]‖‖x1 − x0‖
≤
(

P + K(‖x1 − x0‖+ 2‖H(x0)‖)
)
SN0‖u1 − u0‖

≤ β0
(

P + K(β0δ0 + 2M̃δ0SN0−1)
)
SN0 δ0

≤ β0
(

P + K(β0δ0 + 2‖Tol‖)
)
δ0SN0 = M̃δ0SN0 , (24)

and then

‖x1 ± H(x1)− u0‖ ≤ ‖x1 − u0‖+ ‖H(x1)‖ ≤
β0δ0

1− S
+ M̃δ0SN0 = R + ‖Tol‖.
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Then B1 is well defined, therefore

‖I − A−1
0 B1‖ ≤ ‖A−1

0 ‖‖B1 − A0‖
≤ β0

(
P + 2K(‖x1 ± H(x1)− u0‖+ ‖Tol‖)

)
≤ β0

(
P + 2K(R + ‖Tol‖)

)
< 1.

Hence, B−1
1 exists and

‖B−1
1 ‖ ≤

β0

1− β0
(

P + 2K(R + ‖Tol‖)
) . (25)

Using (24) and (25), we get

‖x2 − x1‖ ≤ ‖B−1
1 ‖‖H(x1)‖

≤
β0
(

P + K(β0δ0 + 2‖Tol‖)
)

1− β0
(

P + 2K(R + ‖Tol‖)
)‖x1 − x0‖

= S‖x1 − x0‖ < SN0+1‖u1 − u0‖ < β0δ0.

and

‖x2 − u0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖+ ...‖u1 − u0‖
≤ (SN0+1 + SN0 + ... + 1)‖u1 − u0‖

≤ β0δ0

1− S
= R.

Hence, x2 ∈ B(u0, R).
Using mathematical induction, we can establish the following recurrence relation for

j ≥ 1:

(B1) ‖B−1
j ‖ ≤

β0

1− β0
(

P + 2K(R + ‖Tol‖)
) .

(B2) ‖H(xj)‖ ≤
(

P + K(β0δ0 + 2‖Tol‖))‖xj − xj−1‖ ≤ M̃δ0SN0+j−1 < M̃δ0.

(B3) ‖xj+1 − xj‖ ≤ SN0‖xj − xj−1‖ ≤ SN0+j‖u1 − u0‖ < β0δ0 < R.

(B4) ‖xj+1 − u0‖ <
β0δ0

1− S
= R.

Now, using S < 1, for n ≥ N0

‖xn+j − xn‖ ≤
j

∑
i=1
‖xn+i − xn+i−1‖ ≤ SN0

j

∑
i=1

Sn+i−1‖u1 − u0‖ ≤
SN0+n

1− S
‖u1 − u0‖. (26)

Hence, {xn} is a Cauchy sequence which converges to x∗. Since,

‖H(xn)‖ ≤
(

P + K(β0δ0 + 2‖Tol‖)
)
‖xn − xn−1‖,

and ‖xn − xn−1‖ → 0 as n→ ∞, thus H(x∗) = 0 by using the continuity of H.

Theorem 6. Under conditions of the previous Theorem, the solution x∗ of the equation H(x) = 0
is unique in B(u0, R).

Proof. To prove the uniqueness of x∗, let y∗ be another solution of H(x) = 0 in B(u0, R). If
Q = [y∗, x∗; H] is invertible , then y∗ = x∗. Since, Q(y∗ − x∗) = H(y∗)− H(x∗) = 0.
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But, ‖I−A−1
0 Q‖ ≤ ‖A−1

0 ‖‖Q−A0‖ ≤ β0
(

P+K(‖y∗−u0‖+ ‖x∗−u0‖+ 2‖Tol‖)
)
≤

β0(P+ 2K(R+ ‖Tol‖)) < 1. Hence, by the Banach Lemma for inverse operators, Q−1 exists.
Therefore, y∗ = x∗.

3.3. Numerical Experiments

Now, we perform a numerical experience to show the applicability of the theoreti-
cal results previously obtained. So, we deal with nonlinear integral equations that are
used in a great variety of applied problems in electrostatic, low frequency electromag-
netic problems, electromagnetic scattering problems and propagation of acoustical and
elastic waves ([30,31]). We focus on the nonlinear integral equation of Hammerstein type
expressed as follows

[H(x)](s) = x(s)− w(s)−
∫ b

a
G(s, t)M(t, x(t)) dt, s ∈ [a, b]. (27)

where −∞ < a < b < +∞, G is the Green’s function, w, and M are known functions and x
is the solution to be obtained.

We solve the equationH(x) = 0, whereH : Ω ⊂ C[a, b]→ C[a, b] by transforming the
problem into a nonlinear system. First, we approximate the given integral by a quadrature
formula with the corresponding weighs qj and nodes tj, j = 1, 2, ..., n. The discretization of
the problem by using these nodes gives us the following nonlinear system:

xj = wj +
n

∑
i=1

eji M(ti, xi), j = 1, 2, . . . , n, (28)

where

eji = qiG(tj, ti) =

 qi
(b−tj)(ti−a)

b−a , i ≤ j,

qi
(b−ti)(tj−a)

b−a , i > j.

We can formulate the system from Rn into Rn, by using the following functions
and matrices,

H(x) = x−w− E M(t, x) = 0, (29)

with
x = (x1, x2, . . . , xn)

T , w = (w1, w2, . . . , wn)
T , E = (eji)

n
j,i=1.

To illustrate the theoretical results in both differentiable and non-differentiable cases,
we take wj = 1/5 for j = 1, ..., n,

M(t, x) = (λx(t)3 + σ|x(t)|)T ,

with λ, σ ∈ R, and [a, b] = [0, 1]. Specifically, we solve the following nonlinear system,

H(x) ≡ x− 1
5
− E(λax + σbx) = 0, H : R8 −→ R8, (30)

where x = (x1, x2, . . . , x8)
T ,

1
5
=

(
1
5

,
1
5

, . . . ,
1
5

)T
, ax =

(
x3

1, x3
2, . . . , x3

8
)T ,

bx = (|x1|, |x2|, . . . , |x8|)T and E = (eij)
8
i,j=1.

So, we are now in conditions of applying the theoretical development for both cases
the differentiable and non-differentiable one.

3.3.1. H a Differentiable Operator

We consider in the above described nonlinear integral the following values λ = 1
and σ = 0 so we have a differentiable problem. Moreover, we work in the domain
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Ω = B(0, 1) ⊆ R8 defined with the infinity norm. In these terms, for the associated
operator H it is easy to characterize the Fréchet derivative H′ so we have

H(x) ≡ x− 1
5
− λ E ax, (31)

H′(x) = I − 3λ E diag(x2).

Then, by applying the theoretical results obtained in previous sections we take as
starting point u0 = (1/3, 1/3, ..., 1/3) and different values of Tol = (tol, tol, ..., tol). The
values for the parameters than appear in the semilocal convergence study are β = 1.0435,
δ0 = 0.1380, K = 0.75 and a0 = 0.1127. Other results such as N0 and the value for the radii
of the domains of existence and uniqueness for the solution can be find in Table 3. As can
be seen in the results of this table when tol decreases also does the semilocal convergence
radii, being the value of N0 similar.

Table 3. Radii of the semilocal convergence balls for different values of tol.

Tol R N0

0.13 0.253051 1

0.05 0.201863 1

0.01 0.185348 2

0.001 0.182101 2

Finally, we obtain the approximated solution of the nonlinear integral Equation (31)
by applying Newton’s method (4) and the new predictor–corrector Steffensen-type method,
In (7). We run the corresponding algorithms with Matlab20 working in variable precision
arithmetic with 100 digits, using as stopping criteria ||xn+1 − xn|| < 10−30 and with the
starting point and values of tol used and obtained in the semilocal convergence study. The
results in Table 4 show that the behavior of the new predictor–corrector Steffensen method
is as good as Newton’s method. The approximated solution gives us following values if we
round to 6 digits:

x̃ = [0.20008, 0.200378, 0.200749, 0.201001, 0.201001, 0.200749, 0.200378, 0.20008].

Table 4. Numerical results with starting guess u0 =
(

1
3 , 1

3 , . . . , 1
3

)T
.

Method Newton
(7) (7) (7) (7)

tol = 0.13 tol = 0.05 tol = 0.01 tol = 0.001

k 5 6 6 5 5

||xn+1 − xn|| 7.46581e-31 1.60297e-61 1.60297e-61 7.52955e-31 7.38325e-31

||H(xn+1)|| 7.56107e-31 1.58277e-61 1.58277e-61 7.43468e-31 7.47747e-31

3.3.2. H a Non-Differentiable Operator

If, in (29) we work again in Ω = B(0, 1) by considering m = 8, λ = 1 and σ = 1/2, we
obtain the non-differentiable system of nonlinear equations

H(x) ≡ x− 1
5
− E(ax +

1
2

bx). (32)

In these terms, we characterize the divided difference operator by using the follow-
ing formula:

[x, y; H]ij =
1

xj − yj
(Hi(x1, ..., xj, yj+1, ..., ym)− Hi(x1, ..., xj−1, yj, ..., ym)
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having that
[u, v; H] = I − (λC + σD),

where C = (cji)
8
j,i=1 with cji = 0 if i 6= j but cii = eii(u2

i + v2
i + uivi) while D = (dji)

8
j,i=1

with dji = 0 and dii = eii
|ui |−|vi |

ui−vi
. Furthermore, if we work in the domain Ω = B(0, 1) we

have the following bounds,

‖[x, y; H]− [u, v; H]‖ ≤ P + K(‖x− u‖+ ‖y− v‖)with P = 2 ‖E‖|σ| and K = 3|λ| ‖E‖.

Now, by taking starting point u0 = (1/3, 1/3, ..., 1/3) and different values of Tol =
(tol, tol, ..., tol) we have the following bounds for the parameters involved in the semilocal
convergence Theorem 5, β0 = 1.1163, δ0 = 0.1588, K = 0.375, P = 0.125 and a0 = 0.0742.
Other results such as N0 and the value for the radii of the domains of existence and
uniqueness for the solution can be find in Table 5. We can corroborate a similar behavior
than in the differentiable case, that is, for smaller values of tol the radii increases.

Table 5. Radii of the semilocal convergence balls for different values of tol.

tol R N0

0.035 0.307562 2

0.03 0.299809 2

0.02 0.286741 2

0.01 0.275946 3

Finally, we obtain the approximated solution of the nonlinear integral equation (32)
by applying center Steffesen method (3) and the new Steffesen method (7). We run the
corresponding algorithms in Matlab20 working in variable precision arithmetic with 100
digits, using as stopping criteria ||xn+1 − xn|| < 10−30 and with the starting point and
values of tol obtained in the semilocal convergence study. The results in Table 6 show
that the behavior of the new predictor–corrector Steffensen method improves the Center-
Steffensen method. The approximated solution gives us following values if we round to
6 digits:

x̃ = [0.201133, 0.205354, 0.210668, 0.214297, 0.214297, 0.210668, 0.205354, 0.201133]

Table 6. Numerical results with starting guess x0 =
(

1
3 , 1

3 , . . . , 1
3

)T
.

Method
(3) (7) (7) (7) (7)

α = β = 1 tol = 0.035 tol = 0.03 tol = 0.02 tol = 0.01

k 6 5 5 5 5

||xn+1 − xn|| 1.09662e-61 7.7866e-31 7.7866e-31 7.31874e-31 4.74014e-31

||H(xn+1)|| 1.02405e-61 7.27131e-31 7.27131e-31 6.83442e-31 4.42645e-31

4. Dynamical Behavior of Predictor–Corrector Method

In this section, we compare the behavior of predictor–corrector method (7) for func-
tions H1 and H2 used in the motivation section for different values of tol and N0. In this
case, we will have a greater demand to obtain the attraction basins. So, in all the cases,
the tolerance 10−6 and a maximum of 100 iterations are used. If we have not obtained the
desired tolerance with 100 iterations, do not continue and decide that the iterative method
starting at z0 does not converge to any zero.

For the differentiable case, as we can see in Figures 6–8, by increasing the value of N0
we can achieve an accessibility such as that of Newton’s method. Once the accessibility
has been graphically analyzed, showing that method (7) is better than the Steffensen-type
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methods (see Figure 2), we want to see its behavior in a numerical way and, for that
purpose, we compute the percentage of points which converges. We get this information
in Table 7.
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Method (7) with tol = 0.002 and N0 = 3
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Method (7) with tol = 0.5 and N0 = 3
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Method (7) with tol = 0.75 and N0 = 3

Figure 6. Basins of attraction to polynomial H1(z) = z3 − 1.
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Method (7) with tol = 0.002 and N0 = 5
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Method (7) with tol = 0.5 and N0 = 5
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Method (7) with tol = 0.75 and N0 = 5

Figure 7. Basins of attraction to polynomial H1(z) = z3 − 1.

Table 7. Percentage of convergence points for H1(z) = z3 − 1.

Method (7) Percentage of Convergent Points

tol = 0.002 and N0 = 3 69.34 %

tol = 0.5 and N0 = 3 69.51%

tol = 0.75 and N0 = 3 70.04%

tol = 0.002 and N0 = 5 93.03%

tol = 0.5 and N0 = 5 93.27%

tol = 0.75 and N0 = 5 94.56%

tol = 0.002 and N0 = 10 97.13%

tol = 0.5 and N0 = 10 98.89%

tol = 0.75 and N0 = 10 99.36%
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Figure 8. Basins of attraction to polynomial H1(z) = z3 − 1.

Similarly, in the non-differentiable case, as it can be seen in Figures 9–11, we verify that
by increasing the value of N0, we can achieve an accessibility as presented by Newton’s
method in the differentiable case.

Once the accessibility has been graphically analyzed, showing that method (7) is better
than the Steffensen-type methods (see Figure 4), we want to see its behavior in a numerical
way and, for that purpose, we compute the percentage of points which converges. We get
this information in Table 8.
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Table 8. Percentage of convergence points for H2(z) = z(z2 + 2|z| − 5).

Method Percentage of Convergent Points

tol = 0.002 and N0 = 3 58.44%

tol = 0.5 and N0 = 3 58.58%

tol = 0.75 and N0 = 3 58.66%

tol = 0.002 and N0 = 5 97.60%

tol = 0.5 and N0 = 5 97.54%

tol = 0.75 and N0 = 5 97.35%

tol = 0.002 and N0 = 10 99.58%

tol = 0.5 and N0 = 10 99.62%

tol = 0.75 and N0 = 10 99.57%
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Method (7) with tol = 0.002 and N0 = 3
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Method (7) with tol = 0.5 and N0 = 3
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Method (7) with tol = 0.75 and N0 = 3

Figure 9. Basins of attraction to equation H2(z) = z(z2 + 2|z| − 5).
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Method (7) with tol = 0.002 and N0 = 5
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Figure 10. Basins of attraction to equation H2(z) = z(z2 + 2|z| − 5).
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Figure 11. Basins of attraction to equation H2(z) = z(z2 + 2|z| − 5).

5. Concluding Remarks

Due to the inconvenience of applying Steffensen-type iterative processes in terms
of their accessibility, we have built a predictor–corrector iterative process that, while
maintaining the efficiency of Steffensen-type methods, improves the accessibility of these
methods. Thus, it can be used as an efficient alternative to Newton’s method when applied
to nonlinear systems of non-differentiable equations.
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