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Abstract: Hyperspectral imaging offers enormous potential for measuring grape composition with a
high degree of representativity, allowing all exposed grapes from the cluster to be examined non-
destructively. On-the-go hyperspectral images were acquired using a push broom hyperspectral
camera (400–100 nm) that was mounted in the front part of a motorized platform moving at 5 km/h
in a commercial Tempranillo vineyard in La Rioja, Spain. Measurements were collected on three
dates during grape ripening in 2018 on the east side of the canopy, which was defoliated in the
basal fruiting zone. A total of 144 grape clusters were measured for Total soluble solids (TSS),
Titratable acidity (TA), pH, Tartaric and Malic acid, Anthocyanins and Total polyphenols, using
standard wet chemistry reference methods, throughout the entire experiment. Partial Least Squares
(PLS) regression was used to build calibration, cross validation and prediction models for the
grape composition parameters. The best performances returned determination coefficients values
of external validation (R2

p) of 0.82 for TSS, 0.81 for Titratable acidity, 0.61 for pH, 0.62 for Tartaric
acid, 0.84 for Malic acid, 0.88 for Anthocyanins and 0.55 for Total polyphenols. The promising results
exposed in this work disclosed a notable methodology on-the-go for the non-destructive, in-field
assessment of grape quality composition parameters along the ripening period.

Keywords: grape cluster; precision viticulture; partial least squares; non-destructive technology;
berry maturity; berry composition

1. Introduction

Grape ripening is usually monitored to track the accumulation and/or catabolism of
primary and secondary metabolites in the pulp, seeds and skins of the berries, in order to
identify maturity advancements or delays, and to determine the optimal composition of
the fruit towards the designation of harvest time. Among the main berry compositional
parameters, total soluble solids (TSS), berry acidity, often expressed as pH and Titratable
acidity (TA), and concentrations of the main organic acids in the berry, such as tartaric and
malic acid, as well as the anthocyanin and total phenol concentrations (these in red varieties
only) are usually analysed using wet chemistry procedures on periodically sampled fruit
during five to six weeks before harvest [1]. These analytical methods are destructive,
require time-consuming berry sampling, as well as sample preparation in most instances.

Grape composition is found to be spatially variable (to a shorter or larger extent) in
most vineyards. As a result, many of the currently used berry sampling procedures [2,3]
take this spatial variation into account when defining the trajectories and manual sampling
protocols within a plot. These procedures recommend the manual picking of either 100
to 200 berries per sample, or 20 to 40 clusters, regardless of the size of the plot, in the
majority of cases. Moreover, berry composition changes within and between clusters, and
the magnitude of this variation may vary as fruit ripens [4,5]. These facts highlight the
relevance of the design, definition and representativeness of fruit monitoring if the aim is
an accurate and robust estimation of its compositional evolution along ripening.
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In the last two decades, several optical sensors and technologies have been tested,
mostly using manual devices, for in-field grape composition monitoring [6–11]. Many
of these works have used portable spectrophotometers, usually in the visible and short
wave near infrared range (400–1100 nm) to successfully estimate the TSS content [9] and
additional main compositional parameters [11], or to classify berries according to their
degree of maturity [7]. Furthermore, other non-destructive devices operating in wider
VIS-NIR ranges (380–1700 nm [12]) or NIR (1600–2500 nm [10]) or based on chlorophyll-
fluorescence [6] have also succeeded in estimating some grapevine berry compounds
directly in the vineyard. As a simpler spectral approach, Giovenzana et al. [13] developed
and tested a prototype of a simplified optical VIS/NIR device, based on LED technology
(630, 690, 750 and 850 nm), for a rapid estimation of TSS and TA in clusters of Chardonnay
directly in the field. Although these portable sensors enable non-invasive monitoring of
most relevant berry compositional variables, manual acquisition is still a limitation towards
the measurement of a large number of samples within a plot.

In the last few years, some attempts of adapting VIS-NIR spectroscopy to contactless
measurement from a moving vehicle to monitor grape composition have been carried
out. Fernández-Novales et al. installed a spectrophotometer operating in the Visible-Short
Wave Near Infrared (VIS + SW − NIR, 570–990 nm) in an all-terrain-vehicle to successfully
estimate the TSS, anthocyanins and polyphenols in Tempranillo berries, and to characterize
the variability of these compounds in the fruit within the vineyard [14]. While conventional
spectroscopy usually records the response of a small ‘spot’ size to a continuous spectrum,
hyperspectral imaging (HSI) collects information as a set of ‘images’, where each image
represents a narrow wavelength range of the electromagnetic spectrum [15]. One of the
main advantages of HSI is its potential to yield a huge amount of relevant information, but
this fact has been seen as well as one of its main drawbacks, as difficulties in analysing such
a large amount of data have arisen in the past. Recently, innovation in artificial intelligence
(AI) and increased capabilities of hardware systems have leveraged some of these pitfalls.

In the context of precision agriculture, a few works have attempted to use HSI un-
der field conditions towards the achievement of various agricultural challenges, from
yield estimation [16] and fruit maturity assessment [17,18] in mango fruit using an un-
manned ground vehicle, to grapevine varietal classification [19]. Regarding grape berry
composition, to date only two recent studies have employed HSI in the VIS-NIR range
(400–1000 nm) from a platform moving along the vineyard to estimate some ripeness pa-
rameters. Likewise, total soluble solids (TSS) in grape berries of Sangiovese were assessed
using a manually pushed garden cart [20] while TSS and total anthocyanins were also
estimated in Tempranillo berries using an ATV [21].

However, regarding grape quality, the acidity features are as important as the TSS.
Generally speaking, malic, citric and tartaric acids are the primary acids in grape berries,
and they contribute the highest proportion of acidity, known as Titratable acidity [22].
Organic acids and total acidity are key factors in wine tasting, as they directly influence
the overall organoleptic perception of wines [23]. Of these, tartaric and malic acids are
commonly monitored during grape ripening. Tartaric acid is the main contributor to grape
and wine acidity. Its content is maximal at veraison and, after some reduction, remains
relatively constant throughout the ripening process [24] since, unlike malic acid, it is not
metabolised by grape berry cells via respiration [25]. Malic acid is commonly found in
many fruits, including grape berries. As tartaric acid, its maximum concentration occurs
just before veraison (when it can reach up to 25 g/L), but it declines up to 2 to 6.5 g/L by
harvest time [26].

As mentioned, so far, there is very limited research aimed at using HSI in outdoor, real
agricultural environments. This is partly because the existing HSI instrumentation is still
expensive, but also because of the experimental and technical challenges that the use of HSI
poses in natural scenarios. Among these, the changing illumination conditions, fluctuations
in the distance to the target (as the camera is separated from the canopies), vibrations of
the camera caused by the irregularities in the ground (e.g., presence of stones, that are very
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common in agricultural soils, particularly in vineyards) and the difficulties in keeping a
constant speed when using ground moving vehicles, have been summarized [21]. Despite
all these difficulties, inherent to on-the-go in-field monitoring, further research has to be
conducted in real scenarios to advance in the future adoption and effective implementation
of HSI in commercial exploitations subjected to precision viticulture. For this reason, and
with the aim of making progress in this direction, the goal of the present work was to
develop a grape ripening monitoring system, based on contactless HSI from a moving
vehicle, capable of assessing the main grape composition parameters used to track berry
ripening, including TSS, acidity features, as well as concentrations of Tartaric and Malic
acids, total Anthocyanins and Phenols. In addition to providing further experience about
the use of on-the-go HIS in commercial vineyards, this is the first work, to the best of
our knowledge, that aims at estimating relevant grape acidity parameters, in addition to
the TSS and Phenolic contents, in order to provide a complete monitoring of all grape
composition variables usually determined to track the progress of berry ripening prior
to harvest.

2. Materials and Methods
2.1. Experimental Layout

The trial was carried out in a commercial vineyard of Tempranillo (red) variety (Vitis
vinifera L.) located in Tudelilla, La Rioja, Spain (Lat. 42◦18′ 18.26”, Long. −2◦7′ 14.15”,
Alt. 515 m), along three different dates (21/08, 17/09 and 25/9) from August to September
2018. The vineyard was planted in 2002 (north-south orientation), grafted on rootstock
R-110 with vine spacing of 2.60 m between rows and 1.20 m between vines, and trained to
a vertically shoot-positioned trellis system on a double-cordon Royat.

In order to ensure an adequate variability of grape composition, three different blocks
subjected to moderate irrigation or no irrigation were selected. Each block was comprised
of 25 plants. Of these, four plants belonging to the 15 middle vines of the block were chosen
and marked. In each selected grapevine, four grape clusters (mostly exposed) were labelled
using a different colour tape (red, blue, green and yellow) to be clearly identified in the
hyperspectral images. These labelled clusters were then used for the hyperspectral and
wet chemistry analyses. At each date, 48 clusters were labelled and monitored, making a
total number of 144 in the whole experiment.

2.2. On-the-Go Hyperspectral Imaging

Hyperspectral images were acquired on-the-go using a push broom Resonon Pika L
VIS-NIR hyperspectral imaging camera (Resonon, Bozeman, MA, USA) that was mounted
in the front part of an all-terrain-vehicle (ATV) (Trail Boss 330, Polaris Industries, Minneapo-
lis, Minnesota, USA) (Figure 1), and connected to an industrial computer also mounted on
the ATV. Hyperspectral images were acquired on the east side of the canopy, which was
partially defoliated in the basal fruiting zone. Partial defoliation is a common viticultural
practice carried out in many wine regions (particularly in cool areas) to promote fruit sun
exposure and air circulation.

The spectral resolution of the camera was 2.1 nm (300 bands from 400 to 1000 nm),
the amount of information captured by the sensor on each spatial line (column) of the
hyperspectral image is 300 pixels. An 8.0 mm focal length lens (field of view of 36.5◦) was
pointed to the canopy on a lateral point of view at 1.50 m of distance, casting a vertical
recording line upon the plants of approximately 0.95 m. The scanning line covered the
whole vine canopy, including the fruiting zone (Figure 1).

Each day, a total of 12 hyperspectral images (one for each labelled vine) were acquired
on the east side of the canopy, under uncontrolled, natural sun illumination (between
11:00 and 13:00 h). It is necessary to point out, that camera configuration parameters
[integration time and frames per second (FPS)] were adapted for each grapevine imaging,
depending on the environmental light intensity, in order to find the best trade-off between
acceptable image composition, adequate signal to noise ratio, and avoidance of saturation.
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Frames per second ranged from 100 (taking one frame each 9.8 ms) to 80 (one frame each
12.25 ms) during the experimental trials. Prior to hyperspectral imaging, a Spectralon
(Labsphere, Sutton, NH, USA) white reference (a surface with a reflectance over 95%) was
manually presented to the camera simulating the same position and distance to the canopy
of the grape clusters. The dark current (that corresponds to inherent electronic noise) was
measured with the camera lens covered. After this, the grapevine was imaged on-the-go at
a constant speed of 5 km/h, composing a hyperspectral image by push broom scanning
(Figure 1) with an average number of scanlines of 1.295, with 900 pixels each one. On
average, a total of 1.165.000 pixels (i.e., spectra) per plant were acquired.
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Figure 1. Hyperspectral imaging acquired on-the-go with a push-broom camera mounted on an
all-terrain vehicle (ATV) at 5 km/h.

All the raw information from the camera (acquired as light intensity) was translated
into reflectance, using the following equation:

R(λ) =
G(λ)− D(λ)

W(λ)− D(λ)
(1)

where G is the intensity of the light reflected by the grapevine, W is the intensity of the light
coming from the white reference, and D is the dark reference. Afterwards, the reflectance
was converted into absorbance [log(1/R)].

2.3. Analysis of Grape Clusters Composition

After on-the-go hyperspectral imaging, a total of 144 clusters (48 clusters per date)
were collected and transported to the laboratory of the University of La Rioja in portable re-
frigerators. Upon arrival to the laboratory, each cluster was weighed, manually destemmed
and its berries split into two groups of 100 berries each. The weight of 100 berries was also
recorded. When clusters were small (less than 200 berries in total), 50 berries were allocated
to each group instead, being sufficient to analyse the composition parameters. The first
group of berries was crushed and the must analysed for TSS, pH, Titratable acidity, as well
as tartaric and malic acid concentrations. The second set of berries was put in a labelled
plastic bag and stored in a freezer at −20 ◦C until chemical analysis of anthocyanins and
total phenols. TSS concentration was determined using a temperature compensating digital
refractometer Quick-Brix 60 (Mettler Toledo, LLC, Columbus, OH, USA), expressed as
◦Brix. Titratable acidity, pH, Tartaric acid and Malic acid were determined following the
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OIV methods [27]. For the analysis of anthocyanins and total phenols, the berry samples
stored at −20 ◦C were allowed to thaw at 4 ◦C overnight in a cold room. Samples were
taken out of the cold room at least one hour prior to being processed at a temperature
between 10–15 ◦C. Berries were then homogenized using a high-performance disperser T25
Ultra-Turrax (IKA, Staufen, Germany) at high speed (14,000 rpm for 60 s). Subsequently,
anthocyanin and total polyphenols were analysed following the Iland method [28]. Antho-
cyanin concentrations were expressed as mg/fresh berry mass, whereas total polyphenols
were expressed as absorbance units (AU) at 280 nm/fresh berry mass.

2.4. Processing of Hyperspectral Images

For each hyperspectral image (corresponding to a single grapevine) (Figure 2a) the
following process was followed. From the n × m image (where “m” is the number of
columns and “n” the number of pixels in each column), four manually selected regions
of interest (ROI) corresponding to the four tagged grape clusters were extracted and used
to calculate the average spectrum of each grape cluster. Each ROI was created using the
“floodfill” tool from the SpectrononPro software (version 5.3, Resonon Inc., Bozeman, MA,
USA). This tool allows us to select an adjacent region of pixels with spectral similarity.
The “floodfill” tool calculates the Euclidean distance between the clicked pixel and all
contiguous pixels and expands the selection to the point at which the selected area contains
all of the contiguous pixels for which the spectral distance to the clicked pixel is less than a
given tolerance value (Figure 2b). Decreasing the tolerance value, the selected regions were
smaller with a greater spectral similarity. In this work, the tolerance value was set to 0.6 as
this value was proven to better adjust to the perimeter of the clusters in the images. The
mean and standard deviation of the pixels comprised in the ROI were plotted to ensure
that the spectral variability remained very similar to the defined grape cluster spectrum
(Figure 2c). Finally, the averaged reflectance spectrum for each image was transformed into
the corresponding absorbance spectrum (Figure 2d).
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(d) Average reflectance spectrum of a grape cluster transformed into the absorbance spectrum.
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2.5. Development of Calibration and Prediction Models

The average spectra of grape clusters were preprocessed to remove the effects of light
scattering and to compensate for baseline offset and bias. Several combinations of spectral
pre-processing filters were tested and those yielding the best prediction outputs were
finally chosen. These filters involved the use of standard normal variate (SNV), detrending
(DT) to remove the effects of scattering [29,30], and the application of the Savitzky–Golay
smoothing and derivative procedures, selecting distinct values for the window size and
degree of the derivative. Derivatives are used to accentuate small bands and to resolve
overlapping peaks [31]. Principal component analysis (PCA) was used to explore the
data structure, to visualize the presence of spectra outliers and also to identify the main
sources of variability in the spectra [32,33]. Spectral data processing and statistical analysis
were performed using MATLAB (version 8.5.0, The Mathworks Inc., Natick, MA, USA).
PLS-toolbox version 8.1 (Eigenvector Research, Inc., Manson, WA, USA) was used for PCA
and PLS regression. This latter algorithm is a widely used chemometric method [34], which
has proved to be accurate, robust, and reliable to analyse spectral data, as it is capable of
dealing with a vast amount of data, especially when the number of attributes (wavelengths
in this case) largely surpasses the number of samples. The input independent variables X
were the 300 wavelengths within the spectral range of 400–1000 nm, while TSS, TA, pH,
tartaric acid, malic acid, anthocyanins and total polyphenol concentrations were used as
dependent variables Y, each one for the training of seven different models. No spectral
outliers were detected.

With the aim of building robust models capable of predicting totally unknown samples,
the original dataset of 144 samples was split into two independent datasets: a calibration
one (comprising 80% or the samples) and a prediction set (with the remaining 20% of
the samples), (Table 1). The distribution of the samples into the calibration or prediction
subgroup was carried out using the Hotelling’s T2 statistic. This is a measure of the
variation in each sample within the PCA model, namely the distance of each sample to
the centre of the population. All samples were sorted in reverse order according to the
Hotelling’s T2 value. One of every five samples of the original data set was then selected
to be part of the prediction set (also called external validation set), which comprised
29 samples. The remaining samples were part of the training set (115 samples). Each
set included samples that were appropriately distributed and covered the entire range
of each grape composition parameter (Table 1). Once the calibration models were built,
cross validation using a 10-fold venetian blind was carried out. In this method, the set of
calibration samples was divided into ten subgroups, using one of them to check the results
(external validation) and the remaining (nine groups) to build the calibration model. This
was repeated as many times as the number of groups (ten in total), in such a way that all
the samples were used in both the calibration and external validation subgroups.
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Table 1. Descriptive statistics of grape composition parameters.

Data Set Calibration Set External Validation (Prediction) Set

Compound N Minimum Maximum Mean SD N Minimum Maximum Mean SD N Minimum Maximum Mean SD

Total soluble solids (◦Brix) 144 11.10 24.50 18.33 3.35 115 11.10 24.50 18.38 3.47 29 12.70 22.70 18.11 2.79

Titratable acidity (g/L tartaric acid) 144 2.20 13.40 4.81 2.53 115 2.20 13.40 4.83 2.57 29 2.20 13.00 4.73 2.39

pH 144 2.69 4.50 3.39 0.36 115 2.69 4.50 3.40 0.38 29 2.74 3.75 3.36 0.25

Tartaric acid (g/L tartaric acid) 144 4.55 12.47 8.09 1.93 115 4.55 12.47 8.12 1.93 29 4.99 11.52 7.96 1.93

Malic acid (g/L malic acid) 144 0.84 11.10 3.34 2.27 115 0.84 11.10 3.40 2.25 29 0.90 10.61 3.10 2.31

Anthocyanins (mg/g berry) 144 0.10 2.28 1.11 0.60 115 0.10 2.28 1.11 0.62 29 0.20 2.00 1.11 0.56

Total polyphenols (Au/g berry) 144 0.35 2.24 1.46 0.48 115 0.35 2.24 1.44 0.49 29 0.47 2.12 1.51 0.44

N: Number of samples; SD: standard deviation.
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For each model, the optimal number of latent variables (LVs) was selected as the one
yielding the minimum root mean square error of cross-validation (RMSECV). To appraise
the quality of the models, the coefficient of determination (R2) and the root mean square
error (RMSE) of calibration (R2c, RMSEC), cross-validation (R2cv, RMSECV), and prediction
(R2p, RMSEP) were computed. Additionally, the residual predictive deviation (RPDCV),
calculated as the ratio between the standard deviation of the reference data for the training
set and the RMSECV was also considered.

The Variable Importance in the Projection (VIP) method [35] was used to identify and
evaluate the relative importance of each wavelength in the best grape composition PLS
models. VIP score values were computed as the explained sum of squares by the PLS
dimension, summed for all dimensions related to the total explained sum of squares by
the PLS model and for the total number of wavelengths. Since the average of squared
VIP scores is equal to one, influential wavelengths can be considered to be those with VIP
scores greater than one [35].

3. Results and Discussion
3.1. Grape Clusters Composition

Table 1 summarizes the descriptive statistics of each grape composition parameter
for the whole set of samples (N = 144) as well as for the calibration (N = 115) and external
validation (N = 29) sets. Since hyperspectral measurements in the vineyard and corre-
sponding sample collection started early after veraison, and continued until a week before
harvest, the value ranges for all compositional variables were wide and representative of
berries that were immature to well ripened. Likewise, TSS ranged between 11.10 ◦Brix to
24.5 ◦Brix, pH varied between 2.69 and 4.50, TA ranged from 2.20 to 13.40 g/L tartaric acid,
malic acid varied from 0.84 to 11.1 g/L, tartaric acid concentration ranged from 4.55 to
12.47 g/L, while anthocyanins and total polyphenols ranged from 0.10 mg/g berry and
0.35 AU/g berry to 2.28 mg/g berry and 2.24 AU/g berry, respectively. It should also be
stressed that the structured selection based on the Hotelling’s T2 statistic for the definition
of calibration and prediction sets, using only spectral information, displayed similar values
for mean, range and standard deviation for all studied grape composition parameters
(Table 1), ensuring the suitability of both subsets.

The boxplots of the different grape composition parameters exhibited a normal distri-
bution of data throughout the three days of the study (Figure 3). These boxplots represent
the variability of data along the ripening period, with the following statistical metrics: min-
imum, maximum, median, first and third quartile, and also the mean value of each grape
composition parameter for each sampling date. The average TSS and pH (Figure 3a,b)
values increased progressively in the studied period, while anthocyanins and total polyphe-
nols (Figure 3f,g) concentrations stabilised in the last two dates.

In terms of the acidity-related parameters, Figure 3c–e illustrates a progressive decline
in grape acidity during ripening, as a result of the consumption of malic acid during fruit
respiration [36], while the concentration of tartaric acid remains mainly stable, as this
organic acid does not catabolize [37]. Malic acid is synthesized following the combustion
of sugars in chlorophyll-containing tissues. Unlike tartaric acid, the malic acid is unstable,
falling steadily throughout the ripening period (Figure 3f).
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3.2. Regression Models for Grape Composition Prediction

Mathematical models were constructed using a PLS algorithm for the predictions of
TSS, Titratable acidity, pH, Tartaric acid, Malic acid, Anthocyanins and Total polyphenols’
concentrations. Table 2 lists the performance of the best regression model of calibration,
cross-validation, and external validation (prediction) for the quality parameters analysed
under field conditions from on-the-go hyperspectral imaging.
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Table 2. Calibration, cross-validation, and external validation (prediction) of the best models obtained to predict the grape composition parameters under field conditions from on-the-go
Hyperspectral imaging.

Calibration Cross-Validation External Validation

Parameters Spectral
Treatment N SD Range PLS Factor RMSEC R2

c RMSECV R2
cv RPD RMSEP R2

p

Total soluble solids (◦Brix) D1W15 115 3.471 11.10–24.50 2 1.073 0.90 1.118 0.90 3.00 1.218 0.82

Titratable acidity (g/L tartaric acid) D1W15 114 2.570 2.20–13.40 6 0.796 0.90 0.931 0.87 2.72 1.085 0.81

pH SNV + DT D1W15 115 0.378 2.69–4.50 4 0.180 0.77 0.199 0.73 1.81 0.176 0.61

Tartaric acid (g/L tartaric acid) D2W15 115 1.934 4.55–12.47 5 1.108 0.67 1.290 0.56 1.50 1.245 0.62

Malic acid (g/L malic acid) D1W15 115 2.253 0.84–11.10 5 0.784 0.88 0.895 0.84 2.55 0.956 0.84

Anthocyanins (mg/g berry) SNV + DT D1W15 115 0.615 0.10–2.28 3 0.275 0.80 0.291 0.78 2.06 0.204 0.88

Total polyphenols (Au/g berry) D1W15 115 0.485 0.35–2.24 2 0.343 0.50 0.363 0.44 1.32 0.310 0.55

DnWm: Savitzky–Golay filter with n-degree derivative, window size of m. SNV + DT: standard normal variate plus detrending. N: number of samples used for calibration and cross-validation models after
outlier detection. SD: standard deviation. RMSEC: root mean square error of calibration. R2

c: determination coefficient of calibration. RMSECV: root mean square error of cross-validation. R2
cv: determination

coefficient of cross-validation. RPD: residual predictive deviation. RMSEP: root mean square error of prediction. R2
p: determination coefficient of prediction.
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Regarding the spectral preprocessing filters, the best PLS models were yielded only
with the application of Savitzky–Golay first derivative and window size of 15. TSS, Titrat-
able acidity and Malic acid returned determination coefficients values of cross (R2

cv) and
external validation (R2

P) close to or above the 0.80 mark for TSS, Titratable acidity, Malic
acid and Anthocyanins, respectively (Table 2). Likewise, the RMSECV and RMSEP values
were lower or equal to 1.218 ◦Brix for TSS, 1.085 g/L tartaric acid for Titratable acidity,
0.956 g/L for Malic acid and 0.291 mg/g berry for Anthocyanins. The ratio of performance
to deviation values for these four quality attributes analysed were higher than 2.0. The
greater the RPD the more accurate is the developed model, and the value of 3 is often
assumed as the RPD threshold for screening purposes [33].

However, there are recent works that call for a less categorical use of the RPD, as the
information provided by this statistic and that of the determination coefficient (R2) can be
similar [38]. Tartaric acid concentration and pH models exhibited more modest values of
R2

P, above 0.60 and RMSEP, while Total Polyphenols reached R2
P of 0.55 and a RMSEP of

0.310 AU/g berry (Table 2). The low number of PLS factors used to build the prediction
models (from two factors, for TSS and Total polyphenols, to six factors, such as that of
Titratable acidity) ensures that potential overfitting events are minimized and strengthens
the robustness and generalization capability of the predictive models.

Figure 4a–g displays the best prediction models for grape composition parameters
under field conditions from on-the-go hyperspectral imaging. The samples gathered in the
regression plots for TSS (Figure 4a), Titratable acidity (Figure 4c), Malic acid (Figure 4e)
and Total Anthocyanins (Figure 4f) show a really good fit along the correlation lines and
mostly fitted between the 95% confidence bands. A large data range was covered by the
samples from the seven regression models. Figure 4c,e show a better adjustment of the
1:1 line over regression lines (Titratable acidity and Malic acid) than those corresponding
to Tartaric acid and total polyphenols regression lines (Figure 4d,g).

Nowadays, most of the studies developed with hyperspectral images to quantify
grape composition parameters are performed under controlled conditions (indoor environ-
ments) using individual grape berries samples or samples composed of reduced number
of grape berries randomly collected from many grape clusters [2,3,39–42]. In these works,
two different spectral ranges (400–1000 nm and 900–1700 nm) were used to determine
the grape quality parameters such as Phenolic compounds, TSS, pH, Titratable Acidity
and Antioxidant activity. The best prediction results gathered with the PLS regression
achieved R2 of 0.86 and standard error of prediction (SEP) values of 2.62 and 3.05 mg/g for
Nonacylated and Total Anthocyanins [2,39]; R2 of 0.88, 0.89 and 0.84 and RMSEP values
of 0.95 ◦Brix, 35.6 mg/L and 0.13 g/L CE for TSS, Anthocyanins and Tannins, respec-
tively [3,40,42]. Additionally, in these works, values of R2 of 0.81, 0.78 and 0.62 and RMSEP
of 0.25, 0.04 g/100g tartaric acid and 48.98 mg/100g Trolox for pH, Titratable Acidity and
Antioxidant Activity, respectively were reported [40,42]. These outcomes are very close to
the results presented in this study. It is important to note that, in the present work spectral
acquisition was carried out contactless, on-the-go, from a mobile vehicle, and overcoming
the difficulties encountered in the vineyard such as irregularities in terrain, vibrations, and
differences in the distance between the hyperspectral camera and the target.

Recent works have reported the integration of hyperspectral sensors, global posi-
tioning systems (GPS) and a computer unit both on unmanned aerial vehicles [43] and in
terrestrial platforms [21] to perform reliable predictions about berry composition. In the
latter study, two important parameters (TSS and Anthocyanins) were estimated deploy-
ing a VIS–NIR hyperspectral camera mounted on an all-terrain vehicle in a commercial
vineyard. In that work [21] the predictive capability of the models trained with support
vector machines yielded determination coefficients of prediction R2 of 0.92 and 0.83 with
RMSEP values of 1.274 ◦Brix and 0.211 mg/g berry for TSS and Anthocyanin concentration,
respectively. The accuracy of these models was very similar to the ones displayed in this
work (RMSEP values of 1.218 ◦Brix and 0.204 mg/g berry for Anthocyanin). In another
study, Benelli et al. (2021) [20] showed the potential of the use of HSI in outdoor conditions,
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from a manually powered garden cart, towards decision-making about harvest time onset,
and the classification of samples of Sangiovese into two classes (ripe vs. unripe) according
to the amount of TSS only. The developed models to estimate the TSS concentrations in
the berries yielded a R2

cv of 0.77 and RMSECV of 0.79 ◦Brix. It is important to highlight
that this work used a manually-powered platform at low speed, which may not be fully
suitable to measure large vineyards.
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validation; (red colour) external validation. Solid line represents the regression line and dotted line
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The VIP scores that correspond to the most relevant wavelengths of the best grape
composition PLS models (TSS, Titratable acidity, Malic acid and Anthocyanins) are shown
in Figure 5. Computation of the VIP scores disclosed the importance of the wavelengths
in the Vis region at 454, 625, 646 and 698 nm, with VIP scores above 1. The highest VIP
scores for the four quality attributes were observed at 698 nm with VIP values ranging
between 9.54 and 17.62. The behaviour of these four parameters was practically the same
in terms of the most consistent wavelength, except at around 646 nm, where the trend
in the case of Malic acid was different (Figure 5). These findings could pave the way
towards a simpler spectral monitoring, from hyperspectral imaging (hundreds of bands)
to multispectral imaging (limited number of bands, usually from six to eight), focusing
on the spectral acquisition at these four, more informative, wavelengths (454, 625, 646
and 698 nm). Should the performance of the multispectral solution be comparable to
that of the hyperspectral camera used in this work, then a lower cost, simpler, easier to
process spectral methodology could be used to non-invasively assess the technological
maturity (soluble solids and acidity features) and total anthocyanins in grape berries in
the vineyard. In fact, this step towards multispectral imaging should be taken in further
experimental studies.
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Figure 5. Variable Importance in the Projection (VIP) score values for the PLS models to determine
Total soluble solids (purpura color), Titratable acidity (light green color), Malic acid (gray color), and
Anthocyanins (yellow color). The dotted line at VIP value equal to 1 refers to the threshold defined
to assess the relevance of each wavelength.

The methodology reported in the present work enabled the estimation of the main
grape composition parameters, including all relevant acidity variables, whose determi-
nation had not been attempted previously, processing the full image of all visible berries
associated at each cluster. This approach could ensure that grape monitoring is much more
feasible, robust and accurate than those studies in which a few intact berries from the
clusters were selected and scanned during the ripening period. The strength and stability
of the relationship between the composition of visible berries and that of the entire cluster
during ripening was a crucial approach evaluated by Tang et al. [44] as a necessary step
towards developing non-destructive, sensing-based systems in the vineyard. These authors
reported very good correlations between visible berries and entire clusters, with R2 values
ranging from 0.76 to 0.99 for most compositional variables. These findings confirmed the
applicability of non-destructive sensing-based systems in the vineyard to assess grape
composition evolution during ripening. Moreover, in that study it was also pointed out
the need for individual models for different compositional parameters and grape cultivars,
as the correlations did not always follow the 1:1 line, as observed as well in the present
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work. The promising results exposed in this work disclosed a notable methodology on-
the-go for the in-field assessment of grape quality composition parameters during the
ripening period.

Nevertheless, in this study, grapevines were planted on a vertical trellising, and the
fruiting zone was partially defoliated (common practice in many grape-growing regions
worldwide), therefore clusters were adequately exposed to the moving hyperspectral mon-
itoring system and the number of fruit-spectra were sufficient in number to the rate of
acquisition of the spectral camera and speed at which the ATV moved along the rows. In
case of no defoliation at all around the fruiting zone, at least some cluster exposure is nec-
essary since the VIS-NIR radiation cannot go through the leaves completely and reach the
clusters behind them. Therefore, in order to expand the applicability of this methodology, it
would be necessary to investigate additional factors, such as dissimilar levels of defoliation
at the fruiting zone, vineyards planted with different varieties and trellising.

4. Conclusions

This work describes a novel methodology for providing a non-invasive, reliable es-
timation of the most relevant red berry composition parameters used in grape ripening
monitoring, including TSS, acidity features as well as anthocyanins and phenols, using
hyperspectral images acquired on-the-go, and subsequently processed to extract the infor-
mation related to the visible berries from the cluster in VSP Tempranillo (Vitis vinifera L.)
vineyards. The results reported in this work confirm the good predictive capacity of the
PLS models to track the evolution of the dynamics of the main quality parameters during
grape ripening in a commercial vineyard. This approach has the potential to facilitate
the decision support process in the field relative to the optimum time for harvesting and
selective harvest (according to differences in grape composition) and provides further
knowledge about the practical implementation and performance of non-invasive HSI as a
helpful technology to be used for monitoring purposes in viticulture in the future.
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