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ABSTRACT 

In this paper, the state of a project to interoperate among some complex symbolic computation systems is presented. We 
briefly put into context our problem, stressing the difficult points (essentially, the need of exchanging information which 
encodes infinite data structures) and showing the limitations of the current standard XML-based languages to 
communicate mathematical knowledge, as MathML. 
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1. INTRODUCTION 

With the intensive use of the World Wide Web (WWW), the trend to interoperate among heterogeneous 
systems through computer networks has been accelerated. The WWW is used as a mechanism to 
communicate and exchange information between different platforms and languages. The information which 
can be transferred is not only documentary but also data which can be used to carry out computations. In 
other words, Internet appears also as a tool for doing scientific computations in a distributed and 
collaborative way.  

One of the fields where these ideas can be applied is that of Symbolic Computation. Computer Algebra 
packages are being extended to interconnect them. In fact, some Computer Algebra Systems (CAS) are 
already enabled to perform distributed computing. An example is Distributed Maple [Schreiner2003], which 
is an environment for executing parallel computer algebra programs on multiprocessors and heterogeneous 
clusters. One of the key aspects of distributed computing is, as it is well-known, the data interchange among 
the distributed nodes. Some of the distributed CAS have an own proprietary format to exchange their data. 
But if we want to increase the degree of interoperability between different CAS, it is necessary a common 
format for representing the mathematical data. XML (eXtensive Markup Language) [XML] comes up as an 
acceptable alternative to such proprietary formats. 

This problem of universal representation of data is central in all the WWW research area. XML is being 
used as a de-facto standard protocol, allowing systems to exchange structured data. XML has some well-
known features that have supported its adoption in a lot of data interchange initiatives. In short, it is readable 
and human-friendly (only a simple text editor is necessary to write and read and XML document); the cost of 
transformation from an XML dialect to another format (being XML-based or not) is minimal (only an XSLT 
style sheet is necessary); and, at last, it is extendable (if the available set of element tags is neither enough nor 
suitable for a particular application, users can add new ones). 

In our particular problem (symbolic computation) the data to be transferred must encode mathematical 
knowledge. Fortunately, we dispose of some standard XML-based tools in this field. One of the dialects of 
the XML language family is MathML (Mathematical Markup Language) [MathML]. This language was 
authored with the goal of enabling mathematics to be served, received and processed through the WWW, in 
the same way that HTML had enabled it for text. MathML, which was developed by the World Wide Web 
Consortium [W3C], is an XML application and it was the first standard for representing mathematics. 
MathML allows the user to describe the symbolic meaning of the mathematics, not just its notation; so it is 
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adequate to exchange mathematical content between applications such as web browsers, computer algebra 
systems and other scientific software. Another XML application to represent mathematical data is OpenMath 
[OpenMath2000]. OpenMath is also a standard, and it was specifically developed to encode the semantics 
(i.e., the meaning) of mathematics; it is also used to exchange mathematical objects between applications. 
The meaning of the mathematical objects included in OpenMath is defined by means of content dictionaries.  

Therefore, MathML and OpenMath give XML representations for mathematical objects. While MathML 
tries to be used only to represent mathematics (in two possible ways: as presentation or content elements), 
OpenMath provides an extensible mechanism to describe mathematical semantics. Both of them are very 
related and they complement each other. In fact, MathML can include OpenMath elements to define the 
mathematical meaning of its content elements and, reciprocally, OpenMath can use the representation of an 
object given by MathML. These tools are obtaining a great attention in last years (see, for instance, the 
conferences [Buchberger2001], [Asperti2003]) and are the basis for our work, which is  presented in the 
following Section. 

2. INTEROPERABILITY AND SPECIALIZED CAS: BEYOND MATHML 

In some previous papers ([Lamban1999], [Domínguez2001a], [Domínguez2001b], [Lamban2003]), we 
undertook the formal analysis of two symbolic computation systems, EAT (Ef fective Algebraic Topology) 
[EAT]  and Kenzo [Kenzo]. These systems, written under the direction of Sergeraert, are devoted to symbolic 
computation in Algebraic Topology, and, in particular, they have been useful to compute homology groups of 
infinite topological spaces, namely loop spaces. Both systems are written in the Common Lisp programming 
language and have obtained some results (specifically, homology groups) which had never been determined 
before using neither theoretical nor computational methods. For this reason, it was considered interesting to 
carry out the formal analysis of the systems and to explore the application of their characteristics to other 
systems and environments. 

One of the conclusions of this analysis task was the convenience of making distributed the running of 
these software systems. Being devoted to intensive symbolic computation (usually, interesting groups need 
several days of CPU time over very powerful workstations), the possibilities opened by distributed 
computing are not at all negligible. Our first attempt was to directly reconstruct the systems in the Java 
language. But two evident difficulties appear. On one hand, the different type discipline in both languages. 
On the other hand,  the paradigm shifts between both programming languages (in order to encode infinite 
data structures, the functional programming features of Common Lisp are essentially used in EAT and 
Kenzo; on the contrary, Java is object-oriented). In order to confront these two difficulties, we introduced an 
intermediary step: we rebuilt (some fragments of) EAT in the ML programming language [Paulson2000]. 
ML is not so far of Common Lisp because it is a functional programming language; but due to its type 
system, it is a good bridge towards more standard languages. With respect to the implementation of 
functional programming in object-oriented languages, in [Aransay2001] we showed a solution that allowed 
us to represent lexical closures in Java. 

Thus, at this moment we have implemented three symbolic computation systems for Algebraic Topology, 
respectively, in Common Lisp, ML and Java. The following step we undertook was to interoperate with these 
systems through the net. For this, we needed to exchange complicated mathematical data among them. Our 
first attemp t was to use MathML as exchange language, but it turns out to be not adequate. The elements of 
the algebraic structures which EAT works with are more complicated than those of the MathML. But besides 
in our symbolic computation problem, we need to represent complex algebraic structures of infinite nature. 
These are very different from the elementary data (equations, polynomials and so on) which can be managed 
in MathML in the well-known CAS (as Mathematica or Maple, for instance). One alternative to MathML is 
to use OpenMath whose content dictionaries are provided, in principle, to achieve this kind of extension. 
Nevertheless, content dictionaries in OpenMath are strictly organised, so making difficult its application in a 
flexible and absolutely new field, as it is symbolic computation in Algebraic Topology. Thus, we have been 
obliged to define our own DTD, but trying to design it as a proper extension of the MathML DTD, in order to 
keep further compatibility. 

It is important to note that in our symbolic computation setting, there are always two layers of data 
structures (see [Lamban1999], for instance). In the first layer, we need, as usual, elementary data as symbols, 
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integers, lists of them, trees and so on. These data can be encoded without difficulty in MathML, and we can 
use them directly to communicate through the net. The second layer of data structures is intended to capture 
algebraic structures, as groups, rings, vectorial spaces, etc. These data can be (and they are frequently in 
symbolic computation in Algebraic Topology) of infinite nature, and their implementations require functional 
programming. The data from the first layer act as elements (in the set-theoretical sense) for the data in the 
second layer. For instance, a list can represent a vector which belongs to a given vector space (represented on 
computer memory in a functional way). This means that any intermediary structure consists of: (1) some 
first-layer data, and (2) one algebraic structure, where the data from (1) must be interpreted. This mixed 
organisation makes difficult to represent in an XML-flat document any relevant information. 

We have found a partial solution to this problem, taking profit of some internal organization details of the 
original Kenzo system. There, for maintenance purposes, each algebraic structure is endowed with the tree of 
calls which generated it. Now, this textual information can be encoded in an XML format, allowing another 
system to recover the exact algebraic structure where the computation is being carried out. This approach has 
two evident drawbacks. First, it is only applicable to interoperate among isomorphic software systems (that is 
to say, the constructors have the same names and the same parameters). Second, it can be very inefficient to 
reconstruct a complete algebraic structure each time that a computation is borrowed.  

With respect to the first point, let us note that our systems are, for the moment, isomorphic (because the 
ML and Java versions have been re-implemented from the Common Lisp Kenzo). In general, the solution can 
be based on ontology mappings; in other words, it would be necessary to indicate how each particular service 
in a system can be translated in another one. The second point should be dealt with a careful management of 
the computations already done for the system. 

At present, we have implemented a prototype which allows the three previously evoked systems (the 
Common Lisp, ML and Java versions) to interchange XML documents (between each one of them and also 
each program with itself), with the aim of doing collaborative computation. More concretely, one of the 
programs can stop temporarily its current computation and transfer the intermediate results in XML format 
(including also the necessary information on the “ambient” infinite algebraic structure where the computation 
is being carried out). Then itself or another of the programs can recover these data and continue the 
computation. For the moment, the prototype works in a local, no-distributed manner. One of the next steps is 
to  organise a web service to transmit this information through Internet, allowing several computers to 
collaborate in a same computation. We are planning to use the Linda coordination language in order to 
achieve this goal. Some experiences in this field, in a different computing context, have been already 
documented for our team in [Alvarez2003]. As usual, Java is the core language for all this web-services 
approach, and this justifies our efforts to translate from a typically scientific programming language, as 
Common Lisp, to an object-oriented standard as Java. 

3. CONCLUSION 

Our work focusses on a very important problem in intensive scientific computation: the use of Internet to 
make collaborative computations, in order to decrease the generally exponential computation times reached 
in some areas. One of these areas is Symbolic Computation (also known as Computer Algebra). In our 
concrete application domain (symbolic computation in Algebraic Topology), we must face an even more 
difficult question: the dealing with infinite (algebraic) data structures. Our current prototype shows that, in 
principle, distributed and heterogeneous symbolic computing in this area can be carried out, by using XML-
based communication. Another conclusion of our in-progress work is that interoperability between different 
programming languages (and even between different programming paradigms) can be also achieved. This is 
specially promising due to the intensive use of functional programming in the original systems EAT and 
Kenzo. This result can be understood as a practical realization of the theoretical results from [Lamban2003], 
where the implicit object-oriented aspects of EAT were elucidated. 

In a wider context, our research can have some value in understanding the expressiveness and adequacy 
of XML-based communications, in general. It is well-known that mathematical language is a good laboratory 
to experiment with general knowledge representation. This is illustrated, in the WWW domain, by the fact 
that MathML was the first accepted protocol satisfying the XML specifications. Therefore, knowing the 
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power and limitations of MathML (and, in particular, our work on very specialized CAS) becomes important 
for the whole XML community. 

As a consequence of our research, the need of enriching the MathML-extension features is enlighted. This 
need has been also documented by several authors. But our application field reveals a challenging problem: 
to find an extension allowing the programmer to encode infinite data structures, or even more generally, to 
represent the full functional programming constructs. 
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