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Abstract

We develop a new family of electronic structure
methods for capturing at the same time the
dynamic and non-dynamic correlation effects.
We combine natural orbital functional theory
(NOFT) and many-body perturbation theory
(MBPT) through a canonicalization procedure
applied to the natural orbitals to gain access to
any MBPT approximation. We study three dif-
ferent scenarios: Corrections based on second-
order Møller-Plesset (MP2), Random-Phase
Approximation (RPA), and coupled-cluster sin-
gles doubles (CCSD). Several chemical prob-
lems involving different types of electron cor-
relation in singlet and multiplet spin states
have been considered. Our numerical tests re-
veal that RPA-based and CCSD-based correc-
tions provide similar relative errors in molecu-
lar dissociation energies (De) to the results ob-
tained using a MP2 correction. With respect
to the MP2 case, the CCSD-based correction
improves the prediction, while the RPA-based
correction reduces the computational cost.

1 Introduction

Many body perturbation theory1 (MBPT) is
one of the preferred methodologies among the
chemists and physicists to account for electron
correlation energies (Ec). While physicists usu-
ally treat MBPT by building Green’s functions
and applying the GW approximation as pro-
posed by Hedin,2 chemists prefer the n-order
Møller-Plesset3 (MPn) perturbation theory or
the coupled-cluster (CC) approaches.4–6 These
methods lead to different correlation energy ex-
pressions, but have in common that they are
applied as a one-shot correction on top of the
result obtained with a single determinant (SD)
wavefunction from Hartree-Fock (HF) or den-
sity functional calculations.

Correlation energies from the GW approx-
imation7,8 are generally evaluated using the
Galitskii-Migdal9 (GM) or the Klein func-
tional.10 The latter produces the Random-
Phase Approximation (RPA),10–14 whose func-
tional expression can be obtained from the adi-
abatic connection formalism, whereas the GM
is an explicit functional of the Green’s func-
tion where the so-called self-energy can be ap-
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proximated by the GW product. In chem-
istry, it is often sufficient to obtain Ec us-
ing MP2 or the CC approximation including
only single and double excitations (CCSD).15–18

Lately, the physical and chemical approaches
of MBPT are spreading from one community
to other;19–25 improving the applicability of
MBPT and building bridges between the two
perspectives.26,27

A shortcoming of MBPT-based methods is
the poor description of the so-called non-
dynamic electron correlation. The latter can-
not always be overlooked and is present in many
physical and chemical processes, such as bond
breaking28,29 or Mott-Hubbard insulators.30–32

To account for the non-dynamic electron corre-
lation, any method must be capable of describ-
ing the multi-configurational character of the
corresponding physical state. Although multi-
configurational methods, such as complete ac-
tive space self-consistent field (CASSCF), are
suitable for retrieving non-dynamic electron
correlation energies,33 they cannot be consid-
ered as black-box methods. Indeed, a proper
definition of the active space is crucial to ob-
tain a good description of any system.34,35

An alternative approach is the one-particle re-
duced density matrix (1RDM) functional the-
ory. In 1975, Gilbert laid the groundwork by ex-
tending the Hohenberg-Kohn theorem to non-
local potentials.36 A few years later, Valone
proved37 the existence of the functional for en-
sembles using the Levy’s functional38 in the do-
main of all ensemble N-representable 1RDMs39.
Actually, we must only reconstruct the electron-
electron potential energy Vee in terms of the
1RDM since the non-interacting part of the
electronic Hamiltonian is a one-particle opera-
tor. Vee is defined independently of the external
potential under consideration and is therefore a
universal functional.

The 1RDM can be expressed in an orthonor-
mal basis set {φp} of dimension M as

γ(r, r′) =
M∑
pq

1Dq
pφ
∗
p(r
′)φq(r), (1)

whose diagonal part corresponds to the elec-

tronic density: ρ(r) = γ(r, r). The diagonal-
ization of the 1RDM 1D leads to the so-called
natural orbital (NO) representation

γ(r, r′) =
M∑
p

npχ
∗
p(r
′)χp(r) (2)

where {χp} are known as the natural orbitals
(NOs) and {np} are the corresponding occu-
pation numbers (ONs). The 1RDM functional
theory is referred to as Natural Orbital Func-
tional (NOF) theory (NOFT)40,41 when the
1RDM is expressed in its NO representation,
hence Vee [1D] becomes Vee [{χp, np}].

At the moment, the explicit reconstruction
Vee [{χp, np}] has resulted in an unattainable
goal, and we can only make approximations.
It is well known that the ground-state energy
of a system with a Hamiltonian involving not
more than two-body interactions can be cast as
an exact functional E [2D] of the two-particle
reduced density matrix (2RDM) 2D.42 Thus,
the typical approach is to employ a reconstruc-
tion functional 2D [{np}]. Such NOF approxi-
mations43,44 have proven to be efficient to ac-
count for the multi-configurational character of
electronic systems. An important advantage is
that they do not require the definition of an ac-
tive space, which facilitates their applicability.

Nevertheless, the functionalN -representability
problem arises;45 thus, the reconstructed 2D
must be N -representable.46 Otherwise, an ap-
proximate NOF can lead to non-physical energy
values. So far, only PNOFs47–50 are based on
the reconstruction of 2D subject to necessary
N -representability conditions. These function-
als are capable of achieving chemical accuracy
in many cases,51,52 however, they suffer from an
important lack of dynamic correlation. To re-
cover this correlation, orbital-invariant second-
order perturbative corrections have been imple-
mented53,54 with significant results.55,56 Note
that an orbital-invariant formulation is used
because the orbitals that serve as reference are
the NOs resulting from an approximate NOF
which are usually localized.

In this work, a new path is proposed based on
a modification of the standard MBPT formu-
lated for canonical HF orbitals. A canonicaliza-
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tion procedure is applied to the NOs in order
to produce suitable orbitals that can be used
in any MBPT approximation to compute the
dynamic energy correction. Our canonical or-
bitals should not be confused with the canonical
representation obtained57 by diagonalization of
the matrix of Lagrange multipliers built from
the optimized NOs. Our resulting orbitals are
similar to HF ones. They diagonalize a gener-
alized Fock matrix that includes electronic cor-
relation but does not contain interaction terms
in the Fockian between occupied and virtual or-
bitals, as occurs in the HF approximation. This
is crucial because it allows us to connect our
proposal with the NOF-oiMP2 method, just as
the orbital-invariant formulation of MP258 con-
nects with the standard MP2 theory.

We pursue two objectives: On the one hand,
set the theoretical foundations for a new family
of NOF-MBPT methods able to capture at the
same time the non-dynamic and dynamic elec-
tron correlation and, on the other hand, test the
proposed NOF-MBPT approximation by using
different MBPT corrections.

This article is organized as follows. In sec-
tion 2, we briefly review NOFT and explain
the canonicalization procedure. Next, we de-
velop energy corrections for the special cases
of describing dynamical correlation effects with
MP2, RPA or CCSD approximations. In sec-
tion 3, the performance of these approaches
is tested in detail with six different systems,
namely H2, (CH4)2, CO, NH, F2 and N2, as well
as with a set of small molecules, in comparison
with state-of-the-art electronic structure meth-
ods.

2 Theory

The success of NOF-MBPT methods is deter-
mined by the NOs used to generate the refer-
ence. The functional PNOF7s proved53 to be
the functional of choice for the NOF-oiMP2
method. The “s” emphasizes that PNOF7s
takes into account only the static correlation
between pairs, and therefore avoids double
counting in the regions where the dynamic cor-
relation predominates, already in the NOF opti-

mization. Along this work we employ PNOF7s
to obtain the NOs and ONs.

2.1 PNOF7s

In NOFT, the total energy is approximated in
terms of the ONs and NOs as

E = 2
M∑
p

npHpp +
M∑
pqrs

2D[np, nq, nr, ns]〈pq|rs〉

(3)
where

Hpp =

∫
drχ∗p(r)

(
−∇

2
r

2
+ vext(r)

)
χp(r) (4)

〈pq|rs〉 =

∫ ∫
dr1dr2

χ∗p(r1)χ∗q(r2)χr(r1)χs(r2)

|r2 − r1|
(5)

In Eq.(4), vext(r) is the external potential
defined by the geometry within the Born-
Oppenheimer approximation and in the absence
of any external field. The ONs are constrained
to lie in the interval 0 ≤ np ≤ 1 to have an
ensemble N -representable 1RDM.39

For a given spin S, there are (2S + 1) en-
ergy degenerate pure states |SM〉, so a quan-
tum mixed state formed with them is defined
by the following N -particle density matrix sta-
tistical operator

D̂ = (2S + 1)−1

S∑
M=−S

|SM〉 〈SM | (6)

According to the recent extension of the
NOFT to multiplets,54 and considering that the
expected value of the projection of the total
spin (Ŝz) for the whole ensemble is zero,

〈Ŝz〉 = (2S + 1)−1

S∑
M=−S

M = 0 (7)

we can adopt a spin-restricted formalism in
which a single set of orbitals is used for α and
β spins. All spatial orbitals will be then double
occupied, so that ONs for particles with α and
β spins are equal: nαp = nβp = np.

Let us consider that U single electrons deter-
mine the spin of the system, S = U/2, and the
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rest of electrons, L = N − U , are spin-paired
providing zero spin. Accordingly, we are going
to divide the orbital space Ω into two subspaces:
Ω = ΩU ⊕ ΩL. Both ΩU and ΩL are composed
of U and L/2 mutually disjoint subspaces Ωg,
respectively. Each subspace Ωg ∈ ΩU contains
only one orbital g with ng = 1/2 which is indi-
vidually occupied, but we do not know whether
the electron has α or β spin. In contrast, each
Ωg ∈ ΩL contains one orbital with g ≤ L/2,
and Ng orbitals with p > NΩ = L/2 + U . In
Fig. 1, an illustrative example is shown.

Taking into account the spin, the total occu-
pancy for a given subspace Ωg ∈ ΩL is 2, which
is reflected in additional sum rule, namely,∑

p∈Ωg

np = 1, Ωg ∈ ΩL (8)

It follows that

2
∑
p∈ΩL

np = 2

L/2∑
g=1

∑
p∈Ωg

np = L (9)

Consequently, the trace of the 1RDM is verified
equal to the number of electrons:

2
∑
p∈Ω

np = L+ U = N (10)

The reconstruction of the 2RDM in terms
of ONs implies intra- and inter-subspace
contributions subject to some necessary N -
representability conditions of the 2RDM, also
known as (2,2)-positivity conditions.46 The ex-
plicit expressions for nonzero 2RDM blocks can
be found in Ref. 54. Substituting these expres-
sions in Eq. (3) we obtain PNOF7s, namely

EPNOF7s =

L/2∑
g=1

Eg +

L/2+U∑
g=L/2+1

Hgg +

L/2+U∑
f,g=1;f 6=g

Efg

(11)

Eg = 2
∑
p∈Ωg

npHpp +
∑
p,q∈Ωg

Πtra
pq Kpq (12)

Πtra
pq =

{
−√npnq, p or q ≤ L/2

+
√
npnq, p = q or p, q > L/2

(13)

Figure 1: Splitting of the orbital space Ω into
subspaces. In this example, S = 3/2 (quadru-
plet) and U = 3, so three orbitals make up
the subspace ΩU , whereas ten electrons (L =
10) distributed in five subspaces {Ω1,Ω2, ...,Ω5}
make up the subspace ΩL = Ωa

L+Ωb
L. Note that

Ng = 2 and NΩ = L/2 + U = 8. The arrows
depict the values of the ensemble occupation
numbers, alpha (↓) or beta (↑), in each orbital.

Efg =
∑
p∈Ωf

∑
q∈Ωg

[npnq(2Jpq−Kpq)−4nphpnqhqKpq]

(14)
where hp = 1−np is the hole in orbital g. Jpq =
〈pq|pq〉 and Kpq = 〈pq|qp〉 are the Coulomb and
exchange integrals. To simplify the expressions,
the spatial orbitals were assumed to be real.
The first term in Eq. (11) draws the system
as independent L/2 electron pairs. It is worth
noting that this term recovers the Löwdin-Shull
functional59 with fixed phases that is almost
exact for any two-electron system (L = 2, U =
0).60

The solution is established by optimizing the
energy (11) with respect to the ONs and NOs,
separately. The conjugate gradient method is
used for performing the optimization of the en-
ergy with respect to auxiliary variables that
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enforce automatically the N -representability
bounds of the 1RDM. A self-consistent proce-
dure61 yields the NOs by an iterative diagonal-
ization procedure in which orbitals are not con-
strained to remain fixed along the orbital opti-
mization process.

2.2 NOF-MBPT

An important shortcoming of approach (11) -
(14) is the absence of inter-subspace dynamic
electron correlation. Indeed, the last term of
Eq. (14) has significant values only when the
ONs differ substantially from 1 and 0. Con-
sequently, PNOF7s is able to recover the com-
plete intra-subspace, but only the static inter-
subspace correlation. To add the missing dy-
namic correlation, Piris proposed49 the NOF-
MP2 method, where the total energy is approx-
imated as

ENOF-MP2 = ESD + Edyn + End (15)

The energy (15) is computed employing the
NOs and ONs that minimize a given NOF.
ESD is a HF-like energy obtained from the
Slater determinant formed by the strongly-
occupied NOs, the dynamic energy (Edyn) is
derived from the modified MP2 perturbation
correction, while the non-dynamic energy (End)
comes from the static component of the func-
tional. An important feature of the method
is that double counting is avoided by taking
the amount of dynamic and static correlation
in each orbital as a function of its occupancy.
Consequently, attenuation coefficients are in-
cluded into Edyn and End to eliminate the dou-
ble counting in the correlation energy contribu-
tions.

Despite the improvements achieved by NOF-
MP2 using directly the NOs, especially for pre-
dicting dissociation energies, it was found that
this approach fails to retrieve sufficient dy-
namic correlation energy in noble-gas dimmers
or when the number of electrons increases in
poly-atomic systems. One way to overcome this
issue was to formulate the dynamic correction
Edyn using the orbital-invariant MP2 energy58

which led to the NOF-oiMP2 method.53

In this work, we return to the original idea
of using the standard dynamic correction with
canonical orbitals, and generalize the Eq. (15)
to define the dynamic energy by any MBPT
correction. Consequently, the total energy of
all ENOF-c-X methods developed below will also
consist of three contributions, namely

ENOF-c-X = ESD
can + End

can + Edyn
can (X) (16)

where X = MP2, RPA, CCSD, etc. The “can”
label is introduced to highlight that the new
reference orbitals are not the NOs but those
that will result from a canonicalization process,
unlike those used in the NOF-MP2 method.

2.2.1 Orbital canonicalization

We now proceed with the canonicalization pro-
cedure in order to obtain a diagonal effective
Fock matrix that takes into account the effects
of electron correlation and with which we can
use the standard MBPT.

Following Ref. 49, we first define the intra-
subspace and inter-subspace attenuation coeffi-
cients Ctra

p and Cter
p , respectively, as follows

Ctra
p =

{
1− 4h2

p, p ≤ NΩ

1− 4n2
p, p > NΩ

(17)

Cter
p =

{
1, p ≤ NΩ

1− 4hpnp, p > NΩ

(18)

where NΩ = L/2 + U . These coefficients repre-
sent the amount of dynamic electronic correla-
tion in each p orbital as a function of its occu-
pancy. Indeed, Ctra/ter goes from zero for half
occupied orbitals to one if the orbital is empty
or fully occupied. The exception is Cter for an
orbital below NΩ for which this dependence is
not considered.

Next, we keep the diagonal elements of the
Fock matrix unmodified, that is F̃pp = Fpp,
and use the attenuation coefficients as the case
may be (intra-subspace and inter-subspace), to
define the off-diagonal attenuated-Fock matrix
elements and attenuated-two-electron repulsion
integrals as
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F̃pq = FpqCtra/ter
p Ctra/ter

q (19)

〈̃pq|rs〉 = 〈pq|rs〉Ctra/ter
p Ctra/ter

q Ctra/ter
r Ctra/ter

s

(20)
Recall that in the standard MBPT the canon-

ical HF orbitals that diagonalize the Fock ma-
trix are used to build the reference Slater de-
terminant. On the other hand, the orbital in-
variant MBPT uses non-canonical orbitals that
are related to the canonical ones through a uni-
tary transformation without mixing the occu-
pied and virtual spaces, which ensures that the
reference energy remains fixed. Taking this into
account, the canonicalization of NOs will there-
fore consist of the following steps:

1. Build F̃pq in NO representation, and set

all virtual-occupied (F̃ia) and occupied-

virtual (F̃ai) elements equal to zero.

2. Diagonalize the resulting matrix to pro-
duce the non-dynamically correlated
canonicalized orbitals φ̃p with their re-
spective energies ẽp.

3. Arrange the canonicalized orbitals {φ̃} in
ascending order of energies. Note that the
NΩ orbital is considered the last occupied
orbital.

4. Transform 〈pq|rs〉 and 〈̃pq|rs〉 from NO
basis {χ} to the canonicalized basis {φ̃}.

Note that the i, j indices refer to the strongly
occupied NOs and a, b to weakly occupied ones.
Steps 1 to 4 apply only once, that is, the pro-
cedure is not self-consistent. It is called canon-
icalization since it produces a basis {φ̃} with
a diagonal effective Fock matrix. Importantly,
the new canonical orbitals are close to those
of HF when dynamic correlation predominates,
but differ substantially from these when there
is non-dynamic correlation.

2.2.2 Edyn
can (X) contribution

To achieve the MBPT corrections, we consider
the Slater determinant ΨSD(φ̃) as the zeroth-
order wavefunction Ψ(0), and the zeroth-order
Hamiltonian Ĥ(0) =

∑
i ẽi|φ̃i〉〈φ̃i| where ẽi is

the ith diagonal element of the effective Fock
matrix. Accordingly, the first-order energy per-
turbation correction affords the reference en-
ergy in Eq. (16) as

ESD
can = 〈ΨSD(φ̃)|Ĥ|ΨSD(φ̃)〉 (21)

It is worth noting that ESD
can differs from the

HF energy since the φ̃ orbitals used to construct
ΨSD are those obtained from the canonicaliza-
tion rather than canonical HF orbitals.

Let us start with X = MP2. Edyn
can (MP2) is

obtained from the second-order correction E(2)

of the MP2 method.62 The first-order wavefunc-
tion is a linear combination of all doubly excited
configurations from ΨSD(φ̃). The dynamic en-
ergy correction takes the form

Edyn
can =

occ∑
i,j

virt∑
a,b

AiAj
2〈̃ij|ab〉 − 〈̃ij|ba〉
ẽi + ẽj − ẽa − ẽb

〈ij|ab〉

(22)

where the coefficients Ai were recently intro-
duced54 to consider one electron with α or β
spin in the subspaces ΩU present in spin multi-
plets as

Ai =

{
1, i ≤ L/2

1/2, i ∈ [L/2 + 1 : L/2 + U ]
(23)

Notice that the NOF-c-MP2 represents an ad-
vantage over the NOF-oiMP2 since a single di-
agonalization of the attenuated Fock matrix is
required instead of the solution of the resid-
ual equations.53 The correlation energy recov-
ered by NOF-c-MP2 is equivalent to the one
obtained with NOF-oiMP2 because these two-
formulations are related by the unitary trans-
formation mentioned above. In any case, both
methods extend the MP2 method to systems
that exhibit a multi-configurational character.

The attenuated two-electron integrals and or-
bital energies also provide access to other dy-
namic energy corrections given by the MBPT.
Next, we explore the link between NOF-c and
RPA, denoted as NOF-c-RPA, as well as with
the CCSD, hereafter referred to as NOF-c-
CCSD.

To introduce NOF-c-RPA, we must apply the
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RPA approximation, i.e. the time-dependent
Hartree approximation to build the screened
Coulomb interaction (W ). This quantity can
be readily obtained by solving the Casida-like
equations.63,64 However, since in our approach
attenuated orbital energies and two-electron in-
tegrals are inserted into Casida-like equations,
the RPA correlation energy is modified too.
Indeed, an attenuated version of the Casida-
like equations produces an attenuated-screened
Coulomb interaction (W̃ ), which is switched
off when non-dynamic electron correlation ef-
fects are dominant. More details concerning the
role of the Ctra/ter coefficients in the Casida-like
equations can be found in the supporting infor-
mation.

Defining the attenuated-averaged-screened
Coulomb interaction matrix elements in the
particle-hole basis and using the imaginary

frequencies we arrive to W̃ jb
ia(iω).65 Then, fol-

lowing Ref. 14, the resulting RPA correlation
energy reads as

Edyn
can = − 2

π

occ∑
i,j

virt∑
a,b

AiAj〈ij|ab〉 (24)

×
∫ ∞

0

dωW̃ jb
ia(iω)P̃ia(iω)P̃jb(iω)

where

P̃ia(iω) =
2(ẽi − ẽa)

(ẽi − ẽa)2 + ω2
(25)

Replacing the MP2 correlation energy by the
CCSD one leads to the NOF-c-CCSD approxi-
mation. In fact, we insert the attenuated two-

electron integrals (〈̃pq|rs〉) and attenuated or-
bital energies (ẽp) into the CCSD amplitudes
equations.15,18 The resulting dynamic contribu-
tion reads as

Edyn
can =

occ∑
i,j

virt∑
a,b

AiAj〈ij|ab〉,

×
(
2
[
t̃abij + t̃ai t̃

b
j

]
−
[
t̃abji + t̃aj t̃

b
i

])
(26)

where t̃ai and t̃abij are the attenuated spinless t1
and t2 amplitudes.15 The meaning of the Ai
coefficients is the same as in NOF-c-MP2 and
NOF-c-RPA. Recall that a restricted formalism

is employed, therefore, the spin dependence has
already been accounted.

It is worth to mention that we have also ex-
plored other MBPT flavors to define NOF-c-X
methods, such as GW evaluated as a one-shot
correction (G0W0) in the Galitskii-Migdal equa-
tion correlation energy.9 The dynamic correla-
tion energy contribution of this method (NOF-
c-G0W0@GM) can be written as

Edyn
can = 2

occ∑
i,j

virt∑
a,b

Nab∑
s

AiAj
w̃ia(X̃

s
jb + Ỹ s

jb)

ẽi − ẽa − Ωs

〈ij|ab〉

(27)

where the sum over s runs over all possible ex-
citations (Nab = occ× virt). {w̃ia} are the at-
tenuated residues, {Ωs} refer to the excitation

energies, and {X̃s
jb + Ỹ s

jb} are the coefficients of
the eigenvectors associated to excitations (see
the Eqs. 3 and 6 in the supporting information
for their definition).

We have also analyzed approximations includ-
ing second-order exchange corrections.14,66–69

These are usually referred to as SOSEX correc-
tions applied to RPA and G0W0, which can be
introduced by antisymmetrizing the Coulomb
integrals.66,70 The dynamic correlation energy
of the NOF-c-RPA+SOSEX method reads as

Edyn
can = − 1

π

occ∑
i,j

virt∑
a,b

AiAj [2〈ij|ab〉 − 〈ij|ba〉]

×
∫ ∞

0

dωW̃ jb
ia(iω)P̃ia(iω)P̃jb(iω) (28)

while for the NOF-c-G0W0+SOSEX@GM
method it can be written as

Edyn
can =

occ∑
i,j

virt∑
a,b

Nab∑
s

AiAj
w̃ia(X̃

s
jb + Ỹ s

jb)

ẽi − ẽa − Ωs

(29)

× [2〈ij|ab〉 − 〈ij|ba〉]

where the spin has been already accounted.

2.2.3 End
can contribution

In general, all X corrections introduced in the
previous section lacks non-dynamic correlation,
which is well recovered by PNOF7s. Neverthe-
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less, we cannot simply add these contributions
since double counting occurs.

Similar to the attenuation coefficients Cp, the
intra-subspace attenuation coefficients Λp are
defined49

Λp = 1− |1− 2np| (30)

Λp represents the amount of non-dynamic elec-
tron correlation in each orbital as a function
of its occupancy. Note that Λp goes from zero
for empty or fully occupied orbitals to one if
the orbital is half occupied. Analogously, the
inter-subspace attenuation coefficients are di-
rectly taken as 2nphp.

Using these functions, the End
can correction is

obtained from the pure non-dynamic compo-
nent of the PNOF7s as a sum of the static intra-
subspace and inter-subspace correlation ener-
gies (see Ref. 53), namely

End
can =

L/2∑
g=1

∑
p,q∈Ωg ,p 6=q

√
ΛpΛqΠ

tra
pq Kpq −

NΩ∑
g=L

2
+1

Kgg
4

− 4

NΩ∑
f 6=g

∑
p∈Ωf

∑
q∈Ωg

npnqhphqKpq (31)

In Eq. (31), the second term eliminates the
intra-pair αβ contribution of the singly occu-
pied orbitals to the energy (21) because in each
pure state |SM〉 of the ensemble there is no
such interaction.54

3 Results and discussions

3.1 Computational details

All calculations have been performed with
DoNOF code,71 while we have followed the
implementation of MOLGW package72 for the
evaluation of MBPT quantities and Refs. 14
and 68. For NOF-c-CCSD, we have imple-
mented the CCSD amplitudes equations fol-
lowing Ref. 18, where the restricted {ẽp} and

{〈̃pq|rs〉} integrals are employed. Let us re-
mark that for multiplets we employ the stan-
dard singlet restricted MBPT expressions, be-
cause the Ai factors are only used in the eval-

uation of Edyn
can . Thus, any other amplitudes

optimization procedure valid for restricted sin-
glets could have also been employed. 40-50
frequencies were employed for the integration
of the frequency dependence in Eq. (24) us-
ing a Gauss-Hermite quadrature. Reference
values obtained at CCSD(T) and UCCSD lev-
els were computed with Gaussian 03.73 Open
MOLCAS74 was employed for CASSCF calcu-
lations including second-order perturbative cor-
rections (CASPT2). The CASPT2 dissociation
energies (De) were validated using the UCCSD
ones, which produces comparable values for the
studied systems (see Table 1). Let us remark
that UCCSD De values presented in this work
were obtained as the difference between the en-
ergy of the optimized geometry and the iso-
lated atoms. In the case of H2, total energies
are used to represent potential energy curves
(PECs). For the rest of systems PECs are pre-
sented in terms of De. All bonds are assumed to
be broken at an inter-nuclear separation equal
to 10.0 Å, except for LiF where 12.0 Å is con-
sidered.

3.2 H2: A simple covalent single-
bond case

Our first analysis focuses on H2 bond cleavage
process in its ground state (X1Σ+

g ). To eval-
uate the performance and facilitate the analy-
sis of NOF-c-X methods, we have also included
the PECs obtained using the corresponding X
methods (i.e. the standard MP2 and RPA re-
sults applied as a one-shot correction on top of
a restricted HF calculation).

In Fig. 2, PECs are shown using solid lines for
Full Configuration Interaction (FCI) and NOF-
c-X methods, and dotted-lines for X meth-
ods. For this particular case, the CCSD and
PNOF7s are exact, therefore they coincide with
the FCI PEC. We notice that in the non-
dynamic correlation limit (when the bond is
fully broken) we obtain the correct asymptotic
behaviour for the system regardless of the NOF-
c-X method employed, in contrast to the case
of MP2 and RPA. From the error curves, i.e.
EX −EFCI against RH-H, we arrive to the same
conclusion as errors tend to zero when the bond
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Figure 2: Potential energy curves and absolute errors of energies of H2 computed using cc-pVTZ
basis set with FCI, NOF-c-X, and X methods (X=MP2, RPA, CCSD). PNOF7s and CCSD coincide
with FCI.

is stretched. This example shows how the at-
tenuation procedure switches off the Edyn

can con-
tribution and only the End

can contribution re-
mains active when the bond is stretched. Dy-
namic correlation effects are dominant near the
equilibrium geometry and neither NOF-c-MP2
nor NOF-c-RPA are able to describe this region
exactly. Regarding X methods, it is clear that
when the ONs are close to 0 or 1 all NOF-c-X
methods tend to their corresponding X coun-
terparts. This result suggests that the attenu-
ation coefficients switch off the End

can contribu-
tion near the equilibrium geometry, and thereby
only the Edyn

can term remains active. In the in-
termediate region the nature of electron correla-
tion changes from dynamic to non-dynamic as
the bond is stretched. Here there is a slight
difference between NOF-c-X and FCI, so all
NOF-c-X methods introduce artifacts. For H2

the NOF-c-MP2 and the NOF-c-CCSD meth-
ods show a tiny maximum around RH-H = 2.2Å.
Indeed, the maximum corresponding to NOF-
c-CCSD is due to an underestimation of ∼0.007
a.u. of the electronic correlation energy. Simi-
larly, the NOF-c-MP2 method depicts a similar
maximum.

Finally, we observe that NOF-c-RPA overesti-
mates the De of H2 while NOF-c-MP2 underes-
timates it. Only NOF-c-CCSD provides almost
the exact value, which slightly deviates from the
FCI result.

3.3 (CH4)2: The weak-interactions
problem

The (CH4)2 dimer has been widely used75 to
study the nature of weak-interactions.76,77 For
this systems, different orientations lead to dif-
ferent PECs depending, especially, on the Hy-
drogen bonds formed. In this work, we have
chosen the eclipsed orientation where only two
Hydrogen atoms approach each other, as shown
in Fig. 3. Initially, we performed the geometry
optimization employing the aug-cc-pVDZ basis
set of an isolated CH4 specie at the MP2 level.
Then, PECs were constructed by keeping frozen
all coordinates except the inter-molecular dis-
tance represented by the Carbon-Carbon dis-
tance.

For systems formed by weak-interactions, the
PEC of PNOF7s shows a purely repulsive pro-
file. This fact was already observed using the
PNOF7s method on He2, HeNe, and Ne2 sys-
tems.53 Here, we also confirm this observation
and show that all NOF-c-X methods tend to
their pure X counterparts.

The small difference between NOF-c-X and X
is due to two major effects: a) the attenuation
coefficients modifies the integrals, and b) the
{φ̃} basis does not exactly reproduce the HF
one. As the computational time required to
perform the optimization with PNOF7s func-
tional is longer that the time required by doing
HF, the X methods should be preferred over the

9
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Figure 3: Potential energy curves (∆E = ERC−C
− ERC−C=10Å) of (CH4)2 and absolute errors

computed with aug-cc-pVDZ basis set and CCSD(T), PNOF7s, and NOF-c-X (X=MP2, RPA,
CCSD).

NOF-c-X ones when systems are dominated by
weak interactions.

The error curves, i.e. ∆EX−∆ERef., confirm
that NOF-c-X methods account for the missing
dynamic correlation energy. For this particu-
lar example, the NOF-c-X methods always un-
derestimate the CCSD(T) reference correlation
energies.

3.4 CO: Breaking a multiple
bond

When single bonds are broken and neutral
species are formed, the multi-configurational
character of a state is enhanced. Then, SD
wavefunctions fail, and in some cases an un-
restricted formalism can overcome this issue,
but at the price of introducing spin contami-
nation.78 When multiple bonds are broken (e.g.
on CO molecule in the X1Σ+ state) even the un-
restricted formalism is unable to give a proper
description.

NOFs are suitable for treating the multi-
configurational character. In Fig. 4, we can
observe that the PNOF7s PEC exhibits a good
qualitative shape when the bonds are broken.
However, the missing dynamic electron correla-
tion in the equilibrium region makes PNOF7s
underestimate De. NOF-c-X approximations
produce an improvement w.r.t. PNOF7s on the
predicted value of De for any X approximation.

From Fig. 4 we observe that NOF-c-RPA
underestimates De, a behavior that is also ob-
served in most of the systems studied in this
work. Nevertheless, the NOF-c-RPA approxi-
mation provides the lowest error in this case.
Regarding NOF-c-MP2 and NOF-c-CCSD, we
have observed that the NOF-c-CCSD total en-
ergies are lower than NOF-c-MP2 ones, but dis-
sociation energies do not show any clear ten-
dency.

Finally, as it happened in the H2 case, the
major deviations w.r.t. the reference PEC oc-
cur in the region where the character of the
correlation energy changes (i.e. in the inter-
mediate region). Indeed, the non-dynamic cor-
relation energy character is enhanced around
the RC-O = 1.8 Å geometry as the bond is
stretched, which leads to important changes on
the attenuation coefficients as the ONs tend to
0.5 rapidly. Moreover, the error curves con-
firm that NOF-c-X methods fail to describe
the intermediate region as large differences are
shown between 1.5 Å and 2.5 Å, where NOF-
c-X methods underestimates the electronic cor-
relation energy. Despite producing the lowest
errors in the PEC profile (∼0.03 a.u.), NOF-
c-CCSD shows slight deviations in the way it
reaches the horizontal asymptote.
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Figure 4: Potential energy curves (∆E = ERC−O
−ERC−O=10Å) of CO and absolute errors computed

using cc-pVDZ basis set with CASPT2 (including 6 active electrons on 6 active orbitals), PNOF7s,
and NOF-c-X (X=MP2, RPA, CCSD).

3.5 NH (X3Σ−): Beyond singlet
state systems

The NOF-c-X PECs of NH in its X3Σ− state79

are shown in Fig. 5. As in singlets, NOF-c-X
approximations improve over PNOF7s. For this
particular test, the NOF-c-CCSD and NOF-c-
MP2 dissociation energies compare well with
the reference CASPT2 value (with errors of ∼8
KJ/mol). Unfortunately, the NOF-c-X meth-
ods do not retrieve enough dynamic electron
correlation energy and the De is underesti-
mated. This tendency was also observed in
some other multiplets. Nonetheless, let us high-
light that working with a spin-restricted for-
malism all NOF-c-X methods provide access to
PECs for multiplet state systems without intro-
ducing spin contamination effects.

According to the error plots in Fig. 5, we can
conclude that in the intermediate region, be-
tween 1.3 Å and 3.0 Å, all PECs produced by
NOF-c-X overestimate the amount of electronic
correlation energy retrieved and provide PECs
that tend to the horizontal asymptote slower
than PNOF7s and CASPT2. Indeed, the er-
rors obtained by PNOF7s show that it performs
better than NOF-c-X methods in the interme-
diate region, as it attains faster the reference
result. Nevertheless, NOF-c-X methods over-
come PNOF7s in general, as the errors obtained
in the small inter-atomic region are reduced.

3.6 Additional tests

Let us comment on F2 and N2 in their ground
states (i.e. in the X1Σ+

g state) to illustrate how
NOF-c-RPA represents a competitive approach.
In both cases the NOF-c-RPA PECs are the
best ones w.r.t. the reference providing accu-
rate Des (see Fig. 6). Both NOF-c-MP2 and
NOF-c-CCSD produce very similar PECs that
overestimate the amount of electron correlation
energy retrieved near the equilibrium distance
(ca. -0.025 a.u. for F2 and -0.07 a.u. for N2). In
the intermediate region, all NOF-c-X methods
depict a maximum around 2.2 Å for F2. As pre-
viously mentioned, this is an artifact produced
by NOF-c-X. For these tests, NOF-c-RPA per-
forms better than all other NOF-c-X counter-
parts. Indeed, the error curves show that NOF-
c-RPA improves the shape of the PECs as it
produces lower deviations in all regions. Never-
theless, NOF-c-RPA overestimates the amount
of electron correlation retrieved in the region
between 1.6 Å and 3.0 Å for N2 and attains
the horizontal asymptote slower than the refer-
ence result. It is worth to remark that NOF-
c-CCSD and NOF-c-MP2 perform better than
the PNOF7s method. In Table 1, we have col-
lected the De errors (in KJ/mol) for some repre-
sentative bond cleavage processes. From these
results we may conclude that there is a clear
improvement of all NOF-c-X approximations
over PNOF7s, although slight deviations on the
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Figure 5: Potential energy curves (∆E = ERN−H
−ERN−H=10Å) of NH (on X3Σ− state) and absolute

errors computed using cc-pVDZ basis set with CASPT2 (including 4 active electrons on 4 active
orbitals), PNOF7s, and NOF-c-X (X=MP2, RPA, and CCSD) methods.

De values are observed (especially for multiplet
state cases).

We have computed relative errors for the pre-
dicted De. The corresponding average relative
error is ∼10% when NOF-c-CCSD is employed
to compute singlet state systems. NOF-c-MP2
and NOF-c-RPA approximations provide aver-
age relative errors of ∼12% and ∼13%, respec-
tively. The latter points out that NOF-c-CCSD
overcomes the approximations based on MP2
and RPA for singlet state systems. In the case
of spin multiplets, larger average relative er-
rors were obtained (∼19% for NOF-c-CCSD,
∼16% for NOF-c-MP2, and ∼21% for NOF-c-
RPA), but still an important improvement w.r.t
PNOF7s errors (∼36%) is observed. NOF-c-X
methods do not reach the accuracy of UCCSD
(see Table 1). Nevertheless, let us remark that
UCCSD is unable to produce reasonable PECs
when multiple bonds are broken while NOF-c-X
approximations do so.

We have analyzed the predicted equilibrium
distances, and all NOF-c-X approximations
provided accurate results. The maximum rel-
ative error (∼5%) was obtained by using NOF-
c-RPA on He2. Certainly, the geometries pre-
dicted by PNOF7s are already accurate enough,
and PNOF7s only fails to predict systems
formed by weak interactions.

Finally, let us recall that the definition of the
attenuation coefficients, Eqs. (18) and (17) was
fixed to the original values presented in Refs.

53 and 54. Consequently, NOF-c-X approxi-
mations fail in general to reproduce the curva-
ture of the PEC from the equilibrium distance
to the horizontal asymptote. In other words,
the interval on the PEC where both dynamic
and non-dynamic correlation effects are impor-
tant, is not properly described by any NOF-c-X
approximation. Hence, NOF-c-X approxima-
tions also fail to describe a critical system such
as Be2, where both electron correlation flavors
need to be well balanced.

3.7 More NOF-c-X approxima-
tions

Concerning other NOF-c-X methods, all these
approximations provide accurate equilibrium
geometries but have troubles to reproduce dis-
sociation energies (the results obtained with
these approximations can be found in the
supplementary material). Below we sum up
these results. We have observed that NOF-
c-G0W0@GM overestimates the De for sin-
glet state systems because it provides too
large Edyn

can values in the dynamic electron-
correlation regime (near the equilibrium dis-
tance). This can be explained from the nature
of the G0W0@GM approximation, which misses
the kinetic correlation energy80 (usually labeled
as Tc) and also the second-order exchange cor-
rection.13

NOF-c-G0W0@GM provides reasonable re-
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sults only for multiplet state systems due to er-
ror compensation. Indeed, in the non-dynamic
correlation limit the End

can contribution is max-
imal (see Eq. 31) while in the dynamic cor-
relation regime G0W0@GM slightly overesti-
mates the Edyn

can energy, thus, these two ef-
fects compensate making this method applica-
ble for multiplet state species. The inclusion of
the second-order exchange contribution, as it
is done in NOF-c-G0W0+SOSEX@GM, makes
this approximation perform better than NOF-
c-G0W0@GM for singlet state species.

In NOF-c-G0W0+SOSEX@GM the effect of
the second-order exchange reduces the amount
of Edyn

can retrieved in the dynamic electron-
correlation regime making the De to lie close
to the NOF-c-RPA one. Lastly, the NOF-
c-RPA+SOSEX approximation underestimates
all De because of the presence of the second-
order exchange. As it happened with NOF-
c-G0W0+SOSEX@GM, the second-order ex-
change reduces the amount of Edyn

can retrieved
and, hence, it is not possible to compensate the
large amount of non-dynamic electron correla-
tion energy. That is to say, the dynamic and
non-dynamic correlation energy contributions
are not balanced.

3.8 Computational aspects

In terms of computational gain, let us first focus
on the NOF-c-MP2 method, which retrieves the
NOF-oiMP2 method53 by construction. Since
the NOF-c-MP2 requires a single diagonaliza-
tion of the attenuated Fock matrix, the canon-
icalization represents a computational advan-
tage over the NOF-oiMP2 formulation that re-
quires solving the residual equations.

The canonicalization also gives access to less
computationally demanding MBPT approxi-
mations; such as RPA.81 Indeed, NOF-c-RPA
produces competitive results compared to other
NOF-c-X approximations. In principle, the so-
lution of Casida-like equation to compute the
RPA approximation scales as M6, which is usu-
ally the limiting step in using this method.
However, the inclusion of imaginary times in-
stead of frequencies permits to reach a cu-
bic scaling,21,82–84 which makes NOF-c-RPA a

competitive approach for retrieving dynamic
and non-dynamic electron correlation effects in
large systems (e.g. polymers, periodic systems,
among others.), where MP2 and CCSD calcula-
tions may become computationally prohibitive.
To attain this scaling the density fitting tech-
nique for computing two-electron repulsion in-
tegrals is required. This technique was recently
implemented in DoNOF71 for the energy mini-
mization of PNOF approximations.85

Lastly, NOF-c-CCSD calculations are more
expensive than NOF-c-MP2 and thereby than
NOF-oiMP2, since the amplitudes equations
need to be solved for the CC correction.
Notwithstanding, much effort has been put
to make CCSD computationally affordable86–88

and it is considered a routine method in many
computational chemistry packages.89,90 From
Table 1 we notice that the small gain on the
precision of the De makes it worth to use NOF-
c-CCSD over any other NOF-c-X approxima-
tion (especially for singlets).

4 Closing remarks

In this work, we have introduced a canon-
icalization procedure to establish a link be-
tween NOFT and MBPT corrections (such as
MP2, RPA, CCSD, etc.). As a result, a fam-
ily of methods called as NOF-c-X approxima-
tions is proposed. Our numerical tests reveal
that RPA-based and CCSD-based corrections
provide similar relative errors and MAE (see
Table 1) to the results obtained using a MP2-
based correction (∼ 12% for singlets and ∼ 20%
for multiplets), which proves that NOF-c-X ap-
proximations yield competitive approximations
to NOF-oiMP2 and can reduce the computa-
tional cost, as well as improve the method ac-
curacy.

We have explored some MBPT corrections
based on the Galitiskii-Migdal functional;
also including second-order exchange correc-
tions. Our results suggest that only NOF-c-
G0W0+SOSEX@GM predicts reasonable De

values that are comparable with NOF-c-RPA
ones. Further studies could be performed with
more MBPT approximations, including for ex-
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ample the recently developed Bethe-Salpeter
correlation energies.27

Finally, let us highlight that PNOF7s pro-
duces a correlated density matrix while the ref-
erence system employed by NOF-c-X methods
is a single-determinant wave function for all
approximations, which facilitates the use of a
standard MBPT formulations. On the contrary,
the direct application of CCSD, for example, as
an on-top correction of PNOF7s may require a
modified CCSD version as proposed by Hollet
and Loos.91 In their case, a finite temperature
formulation of CCSD92 is required.
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Table 1: Absolute errors of the De in KJ/mol.

Molecule PNOF7s NOF-c-MP2 NOF-c-RPA NOF-c-CCSD UCCSD Basis set Ref.

H2 0 16 35 4 0 cc-pVTZ FCI

He2 0.08 0.03 0.05 0.01 0.01 aug-cc-pVTZ CCSD(T)

(CH4)2 2.99 0.50 0.24 0.63 0.47 aug-cc-pVDZ CCSD(T)

LiH 5 8 33 14 5 cc-pVTZ FCI

LiF 113 42 7 29 7 cc-pVTZ FCIa

Li2 0 10 14 14 4 cc-pVDZ CASPT2(2,2)

HF 117 31 51 26 10 cc-pVTZ FCIa

F2 73 67 5 60 25 cc-pVTZ FCIa

CO 183 42 33 35 47 cc-pVDZ CASPT2(6,6)

N2 188 135 52 130 12 cc-pVTZ FCIa

H2Ob 126 3 25 15 2 cc-pVDZ CASPT2(4,4)

O2(b1Σ+
g )c 215 9 79 5 32 cc-pVDZ CASPT2(8,6)

NH(1 Σ+)c 61 35 35 21 1 cc-pVDZ CASPT2(4,4)

BeH(X2Σ+)c 42 4 11 25 3 cc-pVTZ FCI

O2(X3Σ+
g )c 325 168 192 175 14 cc-pVTZ CASPT2(8,6)

NH(X3Σ−)c 42 8 14 8 0 cc-pVDZ CASPT2(4,4)

CN(X2Σ+)c 276 158 237 172 1 cc-pVDZ CASPT2(9,8)

MAE (singlet) 83 31 28 27 15

MAE 104 43 48 43 13

a FCI results were taken from Ref. 91; b The symmetric stretching of the two Hydrogen atoms was scanned
keeping a fixed angle 〈H-O-H of 103o; c In parenthesis we have specified the spatial and spin state com-
puted (for the rest of systems we used the ground state); d The reference number of electrons and the si-
ze of the active space of the CASSCF calculation used as reference for CASPT2 is specified in parenthesis

in the usual convention (number of electrons, number of orbitals).
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Matito, E. Salient signature of van der
Waals interactions. Phys. Rev. A 2017,
96, 050501.

(77) Via-Nadal, M.; Rodŕıguez-Mayorga, M.;
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(84) Kaltak, M.; Klimeš, J.; Kresse, G. Cubic
scaling algorithm for the random phase
approximation: Self-interstitials and va-
cancies in Si. Phys. Rev. B 2014, 90,
054115.

(85) Lew-Yee, J. F. H.; Piris, M.; del
Campo, J. M. Resolution of the identity
approximation applied to PNOF correla-
tion calculations. J. Chem. Phys. 2021,
154, 064102.

(86) Asadchev, A.; Gordon, M. S. Fast and
flexible coupled cluster implementation. J.
Chem. Theory Comput. 2013, 9, 3385.

(87) Kaliman, I. A.; Krylov, A. I. New algo-
rithm for tensor contractions on multi-
core CPUs, GPUs, and accelerators en-
ables CCSD and EOM-CCSD calculations
with over 1000 basis functions on a single
compute node. J. Comput Chem. 2017,
38, 842.

(88) Piecuch, P.; Kucharski, S. A.; Kowal-
ski, K.; Musia l, M. Efficient computer im-
plementation of the renormalized coupled-
cluster methods: the r-ccsd [t], r-ccsd (t),

21



cr-ccsd [t], and cr-ccsd (t) approaches.
Comput. Phys. Comm. 2002, 149, 71.

(89) Turney, J. M.; Simmonett, A. C.; Par-
rish, R. M.; Hohenstein, E. G.; Evange-
lista, F. A.; Fermann, J. T.; Mintz, B. J.;
Burns, L. A.; Wilke, J. J.; Abrams, M. L.,
et al. Psi4: an open-source ab initio elec-
tronic structure program. Wiley Interdis-
ciplinary Reviews: Computational Molec-
ular Science 2012, 2, 556.

(90) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.;
Booth, G. H.; Guo, S.; Li, Z.; Liu, J.;
McClain, J. D.; Sayfutyarova, E. R.;
Sharma, S., et al. PySCF: the Python-
based simulations of chemistry framework.
Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science 2018, 8, e1340.

(91) Hollett, J. W.; Loos, P.-F. Capturing
static and dynamic correlation with ∆
NO-MP2 and ∆ NO-CCSD. J. Chem.
Phys. 2020, 152, 014101.

(92) White, A. F.; Chan, G. K.-L. A time-
dependent formulation of coupled-cluster
theory for many-fermion systems at finite
temperature. J. Chem. Theory Comput.
2018, 14, 5690.

(93) Dreuw, A.; Head-Gordon, M. Single-
reference ab initio methods for the calcu-
lation of excited states of large molecules.
Chem. Rev. 2005, 105, 4009.

22



Graphical TOC Entry

23


