Computing
https://doi.org/10.1007/500607-021-01012-x

SPECIAL ISSUE ARTICLE

®

Check for
updates

Automated and non-intrusive provenance capture with
UML2PROV

Carlos Saenz-Adan’ . Francisco J. Garcia-lzquierdo' - Beatriz Pérez’
Trung Dong Huynh? - Luc Moreau?

Received: 26 February 2021/ Accepted: 2 September 2021
© The Author(s) 2021

Abstract

Data provenance is a form of knowledge graph providing an account of what a
system performs, describing the data involved, and the processes carried out over
them. It is crucial to ascertaining the origin of data, validating their quality, audit-
ing applications behaviours, and, ultimately, making them accountable. However,
instrumenting applications, especially legacy ones, to track the provenance of their
operations remains a significant technical hurdle, hindering the adoption of prove-
nance technology. UML2PROV is a software-engineering methodology that facilitates
the instrumentation of provenance recording in applications designed with UML dia-
grams. It automates the generation of (1) templates for the provenance to be recorded
and (2) the code to capture values required to instantiate those templates from an
application at run time, both from the application’s UML diagrams. By so doing,
UML2PROV frees application developers from manual instrumentation of provenance
capturing while ensuring the quality of recorded provenance. In this paper, we present
in detail UML2PROV’s approach to generating application code for capturing prove-
nance values via the means of Bindings Generation Module (BGM). In particular, we
propose a set of requirements for BGM implementations and describe an event-based
design of BGM that relies on the Aspect-Oriented Programming (AOP) paradigm to
automatically weave the generated code into an application. Finally, we present three
different BGM implementations following the above design and analyze their pros
and cons in terms of computing/storage overheads and implications to provenance
consumers.

Keywords Data provenance - Application logging - Technology audits

Mathematics Subject Classification 68p20

Extended author information available on the last page of the article

Published online: 10 December 2021 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-021-01012-x&domain=pdf
http://orcid.org/0000-0001-9235-7311

C.Séenz-Adan et al.

1 Introduction

Over the last few years, there has been a growing interest in the origin of data, in order
to enable its rating, validation, and reproducibility. In this context, the term provenance
has emerged to refer to “the information about entities, activities, and people involved
in producing a piece of data or thing, which can be used to form assessments about its
quality, reliability or trustworthiness” [17]. This interest in provenance has led to var-
ious solutions developed to capture provenance (such as PASS [29] and SPADE [14],
tools explicitly developed for provenance purposes, or the Kepler provenance sys-
tem [1], an extension of the Kepler system to provide it with provenance capabilities).
The need for interoperability between systems has been a driver for the creation of the
PROV standard [17], a conceptual data model for provenance, aiming at the interoper-
able exchange of provenance information. Toolkits supporting PROV [34] have been
developed to facilitate the software engineer’s task of creating, storing, reading, and
exchanging provenance data; however, such toolkits do not help decide what informa-
tion should be included in provenance, and how software should be designed to allow
for its capture. Therefore, the ability to instrument provenance capturing into applica-
tions, especially during the design phase of software engineering, has become critically
important to support software designers in building provenance-enabled systems.

PrIMe [26] is the first provenance-focused methodology for adapting applications
to make them provenance-aware. Although the application of PrIMe has demonstrated
promising results, it is standalone and does not integrate with existing software engi-
neering methodologies, making it challenging to be adopted in practice. In contrast,
design proposals have been put forth to shorten the development time of software
products, and to increase their quality, avoiding developers from expending extra time
and efforts during subsequent phases. Some of these proposals use the Unified Mod-
elling Language (UML) [31] that, despite being considered as the de facto method
for designing object-oriented software systems, offers no specific support for prove-
nance. In fact, our experience in developing software applications augmented with
support for provenance is that the inclusion of provenance within the design phase
entailed significant changes to an application design [26]. This is a cumbersome task
for the designers and programmers alike, since they have to be knowledgeable about
provenance, deal with complex diagrams, and maintain the application’s provenance-
specific code. In short, the gap between software engineering design methodologies
and provenance engineering may result in applications generating provenance that is
not aligned with what the application actually does, or that is not fit for purpose.

Against this background, PROV-Template [28] allows the structure of provenance
to be described declaratively: a provenance template is a document containing place-
holders (referred to as variables). An expansion algorithm instantiates a template
with values, which are contained in bindings associating variables with concrete val-
ues. Although this approach reduces the development and maintenance effort, it still
requires designers with provenance knowledge.

UML2PROV [37] is a more recent software-engineering methodology the authors
proposed to facilitate the instrumentation of provenance recording in applications by
addressing the gap between application design and provenance design. It automates
the generation of (1) PROV templates for the provenance to be recorded in a given

@ Springer

Automated and non-intrusive provenance...

application and (2) the code to capture values required to instantiate those templates
at run time, both from the application’s UML diagrams. The latter is produced in the
form of a Bindings Generation Module (BGM) to be linked with the application to
capture the bindings required for provenance data during its execution (Sect. 3).

UML2PROV methodology is the subject of several previous publications [36,37,
39], which also include its evaluation as such methodology. However, those publi-
cations only partially described the definition of the BGM and provided a succinct
description of its design. Here, we focus on this critical UML2PROV component to
generate code for capturing provenance values. Concretely, the contributions of this
paper are the proposal of: (1) a set of requirements for any BGM implementation to
work with UML2PROV (Sect. 4), (2) an event-based design of BGM that relies on the
Aspect-Oriented Programming (AOP) paradigm to automatically weave the generated
BGM into an application (Sect. 5), and (3) three different BGM implementations fol-
lowing the above design. Finally, our proposal is analyzed in terms of computing and
storage overheads and implications to provenance consumers (Sects. 6 and 7). The
paper finishes by discussing the related work (Sect. 8) and presenting conclusions and
future directions for this work (Sect. 9).

2 Background

PROV [17] is a World Wide Web Consortium standard that aims to facilitate the
publication and interchange of provenance between applications. PROV is specified
in a family of documents, including the PROV Data Model (PROV-DM) that forms
the basis for the remainder specifications, and a human-readable notation for the
provenance model (PROV-N). Figure 2d depicts a graphical PROV document with the
three key elements defined by PROV-DM: (1) an Entity, which is a physical, digital,
conceptual or other kind of thing with some fixed aspects (yellow oval); (2) an Activity,
defined as an occurrence of something taking place over a period of time and acting
upon or with entities (blue rectangle); and (3) an Agent, something that bears some
form of responsibility for an activity, an entity or another agent (orange pentagon). As
shown in Fig. 2d, these concepts are related to one another through relationships such as
used, which represents an activity beginning of utilizing an entity, or wasGeneratedBy,
a new entity was produced by an activity.

The PROV-Template approach [28] builds on top of PROV as a templating system for
provenance, and helps differentiate the provenance design from the creation of prove-
nance data. It consists of three main elements. First, PROV templates offer a language
to design the provenance to be generated. They are provenance documents, expressed
in a PROV-compatible form, that contain placeholders (referred to as variables) for val-
ues. Second, bindings are associations between a template’s variables and value(s), and
are usually grouped in sets of bindings. Finally, an expansion algorithm [28] replaces
each variable from the templates with data values from the bindings, generating an
expanded PROV document. Figure 2b depicts a template as a PROV document, where
the prefix var identifies variables. It shows, e.g., an activity var : operation that
wasAssociatedWith the agent var : senderObject, used anentity var : starter
for its execution, and generated another entity var : response. Starting from this

@ Springer

C.Séenz-Adan et al.

template and the values associated to its variables given by the bindings collected dur-
ing the application execution (Fig. 2¢), the expansion algorithm generates the expanded
PROV document (Fig. 2d).

The Aspect Oriented Programming (AOP) paradigm [21,22] promotes software
design so that the designer focuses on the functional concerns (core) of a system as
opposed to non-functional concerns (e.g., logging or security). Non-functional con-
cerns tend to cut across the system rendering it difficult to understand, maintain, and
modify. AOP allows a developer to modularize these crosscutting concerns into enti-
ties called aspects, which can then be “woven into” the core code by an aspect weaver,
building the final system. Aspect] [23] is an AOP Java extension that expresses cross-
cutting mainly through join points and pointcuts. While join points are well-defined
points in a program execution (e.g., objects creation or methods call), pointcuts are
distinguished selections of join points that meet some specified criteria (e.g., the call
of a method with a certain name or with a parameter of a concrete type). A pointcut
expression starts with a pointcut designator, a keyword that tells Aspect] what to match
(e.g., call, to select operation calls, or initialization, to select constructor
invocations). AspectJ also uses wildcards to construct the pointcuts in order to cap-
ture the join points that share common characteristics (e.g., * and . .). For instance,
the pointcut call (* *.setName (..)) captures all calls (call designator) to
operations with the name setName, regardless of the access modifier (first * wild-
card), the class to which it belongs (second * wildcard), and number of parameters
(. . wildcard). After a pointcut captures join points, the focus is augmenting them with
additional or alternative behaviour (e.g., that related to logging or security). Advices
are method-like constructs defining such a complementary crosscutting behavior at
join points. Depending on the declaration, advice bodies are executed before or after a
specified join point, or they can surround (around) a join point. In our previous exam-
ple, if we define a before advice associated to our pointcut, the advice instructions will
be executed before a setName method starts running. Additionally, the behaviour
inside the around advice could proceed with the actual behaviour when it considers it
necessary. To do this, Aspect] defines the proceed () statement for carrying out the
actual behaviour. Finally, aspects embed crosscutting logic by defining the pointcuts
and advices [23].

3 UML2PROV architecture

The use of UML2PROV involves both design time and runtime scenarios (red back-
ground with a stripped texture, and blue plain background, respectively, in Fig. 1),
each one identifying different key facets and stakeholders involved in the process —the
software designer and the developer at the beginning, and the provenance consumer
at the end.

Starting point. UML2PROV starts from the UML design of the application to be
made provenance-aware. Such design can be the one used to guide the development of
the application or, in case of legacy applications built without UML, the one obtained
by means of reverse engineering [3]. Among the UML diagrams considered to extract
data provenance, we have focused on those that not only have a strong relation with

@ Springer

Automated and non-intrusive provenance...

’ Legend: design time element D runtime element . involved tools

Software . il"% 7% B N
designer =" /J'\/AL/}' in out ? //é/ in out PROV
------------------ PROV -eeeo--
It documents
2 iz
S/, W A
. — l out a ini
ol . ; i
/7 % ' =
Software 7| context Context |/ % B .. . Z
developer icati A i =
d Application 7 independent dependent % Bindings oA
(base code) component] component % Provenance
7
/7 Bindings Generation Module (BGM) ~ consumer

Fig.1 The UML2PROV approach

provenance, but are also mostly used by software designers [35]: Sequence (SqD),
State Machine (CD), and Class (CD) Diagrams. Taking the UML diagrams as input,
UML2PROV automatically generates (Step I in Fig. 1): (1) the PROV templates with
the design of the provenance to be generated, and (2) the BGM responsible for capturing
provenance according to the PROV templates.

Provenance design. Our proposal for obtaining PROV templates from the UML
diagrams relies on a set of 17 transformation patterns that ultimately associate UML
elements with PROV elements (see [38] for full details). UML2PROV advocates
designing provenance around the executions of operations for two main reasons: (1)
the execution of concrete behaviour (operation) drives the provenance of a piece of
data, and (2) the three supported types of diagrams provide elements for modeling
different perspectives of the execution of an operation. Each transformation pattern
identifies a concrete situation, usually presented in systems modelling, which can
be addressed by a UML diagram: four of them are modelled by SqDs , three by
CDs, and ten by CDs. Figure 2 illustrates one of our patterns presenting the transla-
tion of an excerpt of a SqD diagram (Fig. 2a) into PROV Templates. This diagram,
slightly modified from [42], depicts the situation in a University application when
a Student (sender) enrols in a Seminar (recipient) by calling enrolStudent
(operation) in the recipient; the sender waits for a response. This situation is addressed
by the Sequence Diagram Pattern 2 (SeqP2) [38] that, as all our patterns, defines
the correspondence between each UML element involved in the transformation
(denoted by a numeric identifier inside a green label) and a PROV element in
the PROV template (labelled in purple with the same identifier #). For example, the
enrolStudent operation execution ExecutionSpecification B activated
by the Lifeline B (Student) of Fig. 2a is translated into a prov:Activity
identified as var : Operation B in the PROV Template of Fig. 2b, which is asso-
ciated with the Student var:SenderObject .

Provenance capture. The same UML diagrams used to obtain the provenance design
are also taken as source to generate the Bindings Generation Module (BGM) for
the application. This module is automatically and non—intrusively integrated into the
application, which does not require any source code modification. The ultimate goal
of the BGM is capturing provenance data during the application execution. When the
application is running, the BGM generates bindings, i.e. variable-value pairs which
associate concrete values collected from the execution (provenance data) with vari-
ables in a PROV template (Step 2). An example of bindings for the template of

@ Springer

C.Séenz-Adan et al.

prov:value var:inputValue
u2p:typeName var:inputType

3

‘ u2p:typeName var:senderClassNama
Lifeline Input Argument ANy 1

s ronous :Semin var:senderObject

st Sugent = Emonoo] I

:
u2p:className var:outputType

6

@wasAssociatedWitl

engIStudent(boolR sponse)

4) (@ wasStartedBy
1 Output Argument var:operation| o wasperivedkrom

Reply Message
ExecutionSpecification

@ hadMember

(@) wasGeneratedBy

L
prov:type var:operationName
tmpl:startTime var:operationStartTime|
tmpl:endTime var i I Time

variresponse

. N
prov:type u2p:ReplyMessage

A Excerpt of a SgD showing the interaction b PROV template obtained by applying SeqP2 to the SqD
between student and Seminar

{"var":{

"senderObject" [{ "@id": "ex:Student3" } 1,

"senderClassName" : [{ "@type": "xsd:string",
"@value": "Student"}],

"starter" : [{ "@id": "ex:Message_1" }],

"input" : [{ "@id": "ex:Student3_1"} 1, ex:Student3

"inputvalue" : [{ "@type": "xsd:string", y

ex:Student3_1
"@value": "Carlos S." } 1,

hadMember
"inputType" : [{ "@type": "xsd:string",

"@value": "Student" }] wasAssociptedWith
"operation" : [{ "@id": "ex:enrolStudent1" }], ex:Message 1

"operationName" : [{ "@id": "ex:enrolStudent" }],

"operationStartTime":[{ "@type": "xsd:dateTime",
"@value han
"operationEndTime" : [{ "@type": "xsd:dateTime", wasStartedBy ex:Booleanl 1
"@value”: "..."}], =
"response” : [{ "@id": "ex:Message_2" }], ex:enrolStudent]

"output" : [{ "@id": "ex:Boolean1_1"} 1, wasDerivedFrom

"outputValue" : [{ "@type": "xsd:boolean",
”@value"‘ "true" }],

"outputType" : [{ "@type": "xsd:string", wasGeneratedBy
"@value": "Boolean" }]

hadMember

http://www.w3.0rg/2001/XMLSchema#",
"http://uml2prov.unirioja.es/ns/u2p#",
: "http://example.com"

C Possible set of bindings obtained from the execution d PROV document (without properties), resulting after
of the enrolStudent operation. expanding the PROV template with the bindings.

Fig. 2 UML2PROV process: a UML diagram; b corresponding PROV template; ¢ set of bindings; d the
expanded PROV document

Fig. 2b is presented in Fig. 2c, which include provenance values captured during an
hypothetical execution of the University application (e.g., var : senderObject is
related to ex : Student 3, and the variable var : operation is associated with the
value ex: enrolStudentl). This paper focuses on the strategy to define the BGM,
as a way to enrich applications with provenance capture capabilities, distinguishing
between conceptual and implementation aspects.

Provenance generation. Finally, the expansion algorithm [28] takes as input the
PROV templates and the bindings, and generates the PROV documents for the executed
application (Step 3 in Fig. 1). The resulting PROV documents include high-quality
provenance ready to be exploited by the provenance consumer. For example, Fig. 2d
shows a PROV document (without properties) obtained from the template in Fig. 2b
and the bindings in Fig. 2c.

@ Springer

Automated and non-intrusive provenance...

4 BGM principles and requirements

The wide range of applications that may require provenance instrumentation makes it
impossible to provide a single generic implementation for the above-mentioned BGM's
that is suitable for all situations. Instead, we propose a set of principles to drive future
BGM implementations. These principles are inspired by the findings and conclusions
drawn from the taxonomy of provenance systems published by Pérez et al. in [32],
concretely in its data capture dimension, which refers to the way in which provenance
data can be captured. This dimension distinguishes four categories, Tracing, Level,
Mechanism, and Technique, which embody our principles.

Principle 1 Freedom to decide when to compute provenance. As the Tracing category
of the taxonomy in [32] points out, provenance systems generally employ two strate-
gies to decide when to compute final provenance data: when it is required (usually
referred to as lazy) or immediately (eager). Many readers will be familiar with these
strategies, since they appear in other contexts such as Object—Relational Mapping
(ORM) tools, for loading data; or in the Apache Spark framework [2], for the lazy
evaluation of transformations, definitely computed when Spark actions are executed.
In our context, the provenance information is computed when the PROV templates
are expanded with bindings to obtain the final PROV documents. BGM's must allow
developers to choose when to compute provenance, regardless of when and how bind-
ings are recorded. For example, the computation of provenance could be delayed until
the application finishes (the lazy approach), which would require storing the bindings,
individually or in sets, until the provenance consumer decides to expand the corre-
sponding PROV templates; or, these templates could be expanded as the application is
being executed (the eager approach), thus avoiding the requirement to store bindings.

Principle 2 Capture of provenance data from the executions of operations. Among
the literature, most provenance systems gather provenance data at database-level,
workflow-level, and OS-level in the software stack (taxonomy [32], Level category).
In our domain, a database-level approach is out of scope since these systems track
provenance in database/data warehouse scenarios. On the other hand, workflow-level
and OS-level were ruled out because workflow-level approaches are strongly depen-
dent from WMS, and OS-level systems capture very low-level information for our
purposes. Taking these facts into account, and that UML2PROV advocates designing
provenance for operation executions, Principle 1 states that the BGM must generate
bindings based on data obtained from the executions of the operations of a process
(i.e., at process-level). In this way, UML2PROV will be independent from WfMS,
unlike the workflow-level, and it will also be able to capture high level meaning of the
process, as opposed to the OS-level.

Principle 3 Generation of bindings relying upon application’s internal structures.
The mechanism used to capture provenance data could rely on internal structures
or external services (taxonomy [32], Mechanism category). The BGM is meant to
be integrated into the existing application, thus relying on internal structures for
generating the bindings.

@ Springer

C.Séenz-Adan et al.

Table 1 Requirements

established for the BGM Req Description

R1 The instrumentation of the application to add the binding
generation instructions must be carried out automatically

R2 The instructions for bindings generation must be located
apart from the application’s source code, in an indepen-
dent module, avoiding the generation of repetitive and
obfuscated code

R3 The BGM has to be able to identify the specific points
within the application’s source code where such instruc-
tions must be included

R4 The BGM must provide software developers with mech-
anisms to select the configuration that best suits their
needs, allowing them to decide when to compute the
provenance

RS Each binding obtained from an application’s execution
must be associated with at least one PROV template auto-
matically generated from the UML diagrams

R6 The variables included in a set of bindings must cor-
respond with the variables in their associated PROV
templates

Principle 4 Automatic annotation of existing data when generating bindings. The
Technique category in the taxonomy [32] specifies two techniques to capture prove-
nance: the inversion approach, that relies on inversion functions to find the history
of derivations of a data product; and the annotation approach, where metadata about
the evolution of a data product are collected as annotations and descriptions about its
source and processing. An annotation is a name-value pair [8], as also are bindings.
We advocate for annotating data in a fully automated way, instead of in a manually or
partially automated manner.

To ensure that these principles are respected, our proposal imposes a number of
requirements every BGM implementation must meet (Table 1) in order to guarantee
that provenance capture is performed in an automatic and non-intrusive manner, with-
out modifying software designers’ and developers’ modus operandi, without affecting
the maintenance of the application, and ensuring consistency between the designed
provenance and the generated bindings. Consequently, the requirements are organised
into the following categories:

Automatic instrumentation. The instrumentation of an application’s code to gen-
erate bindings may be performed manually or automatically. A manual adaptation is
a tedious, time-consuming and error-prone task for developers, who would have to
work hard on traversing the whole source code, carefully analysing it to add suitable
instructions to generate the bindings structures. In addition, manual code adaptation
negatively impacts maintainability, since changes in the application code may affect
the added provenance-specific instructions, which could need to be adapted, also man-
ually. Requirement 1 (R1) in Table 1 aims to avoid this problem.

Non-intrusive instrumentation. Relying upon the internal structures of an appli-
cation for generating bindings (Principle 3) could result in provenance capture code

@ Springer

Automated and non-intrusive provenance...

scattered throughout the source code, since bindings must be generated at concrete
points distributed over the application’s code. This fact would make it difficult to
maintain the application. Similarly, the need for adapting the application’s design to
the changes it may face over time could lead software designers to modify design
elements involved in the generation of bindings. To avoid inconsistencies between
the evolving application’s design and the existing instructions for capturing bindings,
designers should identify the concrete points in the code for bindings capture, so that
they may be adapted. Requirements R2 and R3 have been considered to avoid these
inconveniences.

Provenance computation. The BGM must be agnostic about when to compute
provenance, that is, when to expand the PROV templates (Principle 1). Software
developers should be able to choose between following a lazy or an eager approach.
Requirement 4 (R4) recognises this optionality.

Consistency. As Principles 2 and 3 claim, consistency between the PROV tem-
plates and the generated bindings must be guaranteed to ensure the production of
coherent PROV documents after expansion. First, since UML2PROV focuses on the
executions of operations to generate the PROV templates with the provenance design,
the BGM must collect the provenance data from the same operation executions (Prin-
ciple 2). To generate coherent provenance, there must be a correspondence between the
provenance data captured by the BGM and PROV templates created by UML2PROV.
This is guaranteed by Requirements 5 and 6 (R5 and R6). Second, our proposal
advocates for automatically annotating the existing data when generating bindings
(Principle 4). For example, the set of bindings depicted in Fig. 2c meets R5 and R6: it
was generated during the execution of the enrolStudent operation of our exam-
ple, and it links each variable of the template in Fig. 2b with the corresponding value
collected during such execution.

5 An event-based design and implementation for BGM

An earlier implementation of the BGM, based on XSLT [47] and the Proxy-pattern[13],
was presented in [36,39]. However, XSLT turned out not to be suited for model
(UML diagrams) to text (code) transformations, whereas the Proxy-pattern requires
a manual instrumentation of the code (thus not meeting requirements R/-R3). The
proposed BGM design and implementation presented here not only fulfils all the
requirements stated for the BGM (Table 1), but it also allows developers to follow
different approaches (called configurations) to manage provenance. This approach,
briefly presented in [37], is a generic event-based proposal developed on top of the
AOQOP paradigm [21] to generate bindings without user intervention.

Our proposal of BGM's implementation is mainly based on two key elements: events,
i.e., notable occurrences that happen while the application is running, and listeners,
which specify the behaviour for processing the events. Thus, provenance capture is
decoupled from the actual generation of provenance data, making it possible for an
application to have simultaneously several listeners that manage provenance in differ-
ent ways. E.g., this facilitates development in scenarios where applications composed
of several modules are running. The provenance consumer may be interested in directly

@ Springer

C.Séenz-Adan et al.

obtaining provenance documents for immediate consumption, but only from a specific
module of the application. For the rest of the modules, he wants to store the bindings
information, perhaps in a secondary storage system, just for possible future queries.
The development of two listeners would facilitate this different processing, making it
modular.

Since UML2PROV advocates capturing provenance during the executions of oper-
ations (represented as PROV activities), four types of events that may occur during an
operation execution have been identified, each one corresponding to a type of variable
within the PROV activity element [25].

— operationStart/operationEnd. They refer to the start and the end of an operation
execution. They are important when developers want to create and store sets of
bindings associated with a concrete operation execution, instead of storing each
binding independently (see Sect. 5.1).

— newBinding. This event type indicates the collection of a provenance value that
will identify a PROV element. For instance, the collection of a value associated
with var : operation in Fig. 2b will trigger an event of this type, since var:
operation occurs in a mandatory identifier position.

— newValueBinding. It indicates the collection of a provenance value that will not
identify a PROV element. For instance, obtaining values associated with var:
operationEndTime and var :operationName in Fig. 2b fires newValue-
Binding events because they occur in non-identifier positions.

According to the UML2PROV architecture depicted in Fig. 1, our BGM imple-
mentation comprises the context-independent and the context-dependent components.
The former are the elements that do not depend on the source UML diagrams, and
are therefore common for every BGM. These are the BGMEventListener, BGMEvent,
and BGMEventManager (depicted in white background in Fig. 3). The latter are the
elements whose implementations depend on the source UML diagram models. In
this implementation, the single element needed is BGMEventInstrumenter (in dark
background in Fig. 3).

BGMEventListener. In UML2PROV, the mechanisms used to manage provenance
are performed through the so-called listeners, which are classes that implement the
BGMEventListener Java interface. They are registered in the BGM thanks to the
BGMEventManager (see the UML2PROV User Guide [46] for more details). While
the instrumented application is running, these registered listeners collect the aforemen-
tioned events generated by the BGM, more concretely by the BGMEventInstrumenter.
The BGMEventListener Java interface defines four operations for managing each type
of event (operationStart, operationEnd, newBinding, and newValueBinding). Such
operations have a BGMEvent input parameter that encapsulates the provenance data
to be processed. The implementation of these operations constitutes the mechanism
used by a concrete listener to generate, manage, and store the bindings data carried
by the BGMEvents. In the end, classes that implement the BGMEventListener allow
developers to choose whichever suitable strategy for computing provenance (i.e., when
to expand the PROV templates with the collected bindings), thus fulfilling R4. This
way, unlike other provenance systems [32], our proposal does not couple this task to
a concrete persistence infrastructure. Section 5.1 exemplifies three different imple-

@ Springer

Automated and non-intrusive provenance...

BGMEvent
-executionID:String
-className: String <<interface>>
-executionIdMethod: String BGMEventListener
-varName:String
-value:String +operationStart(e:BGMEvent):void
-state:String +operationEnd(e:BGMEvent):void
+getExecutionID():String +newBinding(e:BGMEvent):void
+getClassName(): String +newValueBinding(e:BGMEvent):void
+getExecutionIDMethod(): String tlistListeners 1%
+getVarName(): String
+getValue(): String
+getState(): String

1

0..%
L BGMEventManager
Application <<aspect>> 1
(source code) BGMEventInstrumenter| 1 +addListener(l:BGMEventListener): void

+removelistener(l:BGMEventListener): void
+disseminateEvent(event:String, e:BGMEvent):void

Fig.3 UML Class diagram depicting our implementation for a BGM

mentations of this interface (configurations), which ultimately manage provenance
capturing in three different ways.

BGMEvent. Objects of this class are used to carry information about the occur-
rence of events. They encapsulate the provenance data necessary for constructing the
corresponding bindings. Attributes of the BGMEvent are, for instance, varName and
value, for the name and value of the variable to which the binding corresponds
(see Fig. 3). For example, in the case of a newBinding event, a BGMEvent object
could have “var:operation” as the value of its attribute varName, and the value
“ex:enrolStudentl”inits attribute value (you can see this varName-value
attribute pair in the set of bindings of Fig. 2c).

BGMEventManager. Helper class that manages the list of subscribed listeners, and
disseminates the BGMEvent objects among them as events occur.

BGMEventInstrumenter. With our event-based approach, instrumenting an applica-
tion to include provenance capture functionality would require to identify application
classes, and those places within them, where BGM Event objects have to be fired. Appli-
cations’ source code should include additional instructions to construct such events
with the provenance data, and to disseminate them among the BGMEventListeners
using the BGMEventManager. Requirement R/ mandates that such instrumenta-
tion tasks are performed in an automatic fashion, which prevents a developer from
traversing the whole code to include such instructions. This, besides being tedious,
time-consuming and error-prone, would lead to the provenance instructions being
scattered throughout the application’s classes, making their maintenance a cumber-
some task. The use of the AOP paradigm [21] for implementing the denominated
BGMEventInstrumenter removes such inconveniences. Provenance capture instruc-
tions are placed apart from the application’s source code, which, thanks to AOP,
automatically adopts events triggering functionality. Aspect] [45] has been used to
implement the BGMEventInstrumenter by means of an aspect, which is made up
of an advice with a specific pointcut (see Fig. 4). The pointcut identifies locations
within the application code where events must be fired to collect provenance data. The
call and the initialization pointcut designators are used to select operation
calls and constructor invocations, respectively (remind that UML2PROV advocates
capturing provenance from operation executions). Thus, in the pointcut of Fig. 4,

@ Springer

C.Séenz-Adan et al.

Excerpt of application’s code

public class Student { public class Seminar {

public Seminar(...) {
[...]

Seminar sm = new Seminar(...

sm.enrolStudent(this); N ¥
[looo]] \\ ~ public boolean enrolStudent(...) {
} N [...]
N NG
N

~ N

N N

(this part of the pointcut identifies (this part of the pointcut identifies
operation invocations) \ constructor invocations)
N

public aspect BGMEventInstrumenter { | N N
1 A
Object around():| call(* <class>.<operation>(..))|| “initialization (<class>.new(..)) |{

behaviourBeforeExecution(); // Custom behaviour run before actual behaviour
Object rtn = proceed(); // Actual behaviour

behaviourAfterExecution(); // Custom behaviour run after actual behaviour
return rtn;

¥
Excerpt of behaviourBeforeExecution()

[
BGMEvent operationStart =
new BGMEvent (APP_EXECUTION_ID, // id of the execution of the application
OPERATION_ID, // id of the operation execution
thisIdentifier, // id of the object "this" in the execution
className); // class to which the operation belongs
bgmEM.disseminateEvent ("operationStart"”, operationStart);

[...1 " "
bgmEM. disseminateEvent("newBinding”, ...); Excerpt of behaviourAfterExecution ()

[...] [.-.]
bgmEM.disseminateEvent ("newValueBinding", ...);| bgmEM.disseminateEvent("newBinding", ...);
[...]

fiooo]
bgmEM.disseminateEvent("newvalueBinding", ...);

]
bgmEM.disseminateEvent("operationEnd", ...);
[

Fig.4 Structure overview of the BGMEventInstrumenter in Aspect]

the identified operation calls are denoted as “<class>.<operation>”, being
<class> the full class name of the classes in the UML design, and <operation>
the name of each identified operation. Likewise, invocations to constructors of classes
in the UML design are denoted as <class>.new. The actual pointcuts generated
by UML2PROV will include one call (..) expression per each identified oper-
ation, and one initialization(..) per each class in the UML design. For
example, considering our University application, the defined pointcut would include
in its definition the expression call (* Seminar.enrolStudent(..)) ||
initialization (Seminar.new(..)) so that it can capture calls to the
enrolStudent operation and invocations to the Seminar constructor. Since the
events can occur both before and after operation calls and constructor invocations,
an around advice has been used associated to such a pointcut (see Fig. 4) to spec-
ify the custom behaviour to be executed before and after the actual behaviour. More
specifically, while the actual behaviour is represented by the proceed statement, the
custom behaviour is provided by the methods behaviourBeforeExecution
and behaviourAfterExecution (see Fig. 4). This custom behaviour involves
precisely the aforementioned construction of BGMEvent objects and their dissemina-
tion to the BGMEventListeners (by invoking the disseminateEvent operation of

@ Springer

Automated and non-intrusive provenance...

the BGMEventManager). Finally, the Aspect] weaver automatically integrates the
behaviour from the aspect into the locations specified by the pointcut at compilation
time. In this way, our AOP approach does not require a manual intervention to adapt
the source code (R1); it collects provenance data in an automatic and transparent for
software developers way (R2 and R3). Also, since the BGMEventInstrumenter is cre-
ated from the UML design, just as the PROV templates, and it considers the structure
of such templates, it is ensured that the collected bindings are associated with at least
one PROV template, and that the variables included in the bindings correspond to
those in the templates (R5 and R6).

5.1 Implementation of representative configurations

Developers may configure their BGMs to manage provenance in different ways
by employing a different implementation of the BGMEventListener interface. This
section presents three of such possible implementations, called configurations: the
classes BindingsConfiguration, SetBindingsConfiguration, and ProvenanceConfigu-
ration. Serving as a guide for developers, they illustrate different alternatives from
the provenance capture point of view, and present different temporal and spatial over-
heads that should also be considered when devising the instrumentation strategy (see
Sect. 6). The review of provenance systems by Pérez et al. [32] identifies several
categories related to temporal and spatial overheads: granularity of provenance data,
technique, level, and tracing. The first three are intrinsic aspects of the UML2PROV
proposal (fine-grained data, annotations at process-level), but the tracing may be con-
figured to be either on demand (lazy) or as the application is running (eager) just by
implementing the BGMEventListener interface differently.

Concretely, two lazy (BindingsConfiguration and SetBindingsConfiguration), and
one eager (ProvenanceConfiguration) configurations are presented. These are illus-
trated in Fig. 5, each one including two main blocks: the “Operation Execution” block
represents the behaviour carried out during the execution of a tracked operation, from
the start to the end of the operation execution; and the “Provenance consumer tasks”
block includes the behaviour executed to exploit the provenance information, which
takes place after the execution of the tracked operation.

— BindingsConfiguration. This configuration expands PROV templates on demand
(the lazy approach). Each time an BGMEventListener operation is executed, the
data contained in the BGMEvent is sent to a database in the form of binding (“Oper-
ation Execution” block in Fig. 5a). The templates expansion may be performed
later, when the final PROV documents are needed (“Provenance consumer tasks”
block). Then, the provenance consumer has to: (1) retrieve all binding from the
database, (2) create the set of bindings, and (3) expand the PROV templates with
the set of bindings.

— SetBindingsConfiguration. 1t also follows the lazy approach, but in contrast to
the first configuration, bindings data received in the BGMEvents are stored in
memory until the operationEnd event, signalling the end of execution of the tracked
operation, is listened. Then, the accumulated set of bindings is shipped to the
database (Fig. 5b). The PROV documents generation is now simpler: (1) retrieve

@ Springer

C.Séenz-Adan et al.

Provenance consumer

tasks
PROV
Operation Execution ™\
store i P
) retrieve) !
Start operationStart(BGMEvent), binding deg n v N

newBinding(BGMEvent) or Bindings-
newValueBinding(BGMEvent) (YT
- =

tion

N
D NCIN0 B .
binding DB binding Setof M out | PROV
binding binding Bindings

a BindingsConfiguration

operationEnd(BGMEvent)
_—|
End

Provenance consumer
tasks
N
N
PROV
Operation Execution templates:

Start operationStart(BGMEvent),
e ATy

binding

3 ing

newBinding(BGMEvent) or ~[SSIREIRE - Set of retrieve . \ 4 N
newValueBinding(BGMEvent) [a8 ile i a—naing P&t \ Setof | IN out PROV
— 1 binding _ Bindings Bindings|” = >

. = gs documents

operationEnd(BGMEvent)
N
End store
b SetBindingsConfiguration

Operation Execution

Provenance
consumer
tasks

N\
PROV
documents

Start operationStart(BGMEvent) binding PROV
_

newBinding(BGMEvent) or IJTIENENE .
newValueBinding(BGMEvent) ET}{=elY,
-

D templates
Set of
Py binding _ Bindings inv
operationEnd(BGMEvent) [l —— —> store
_ 3 out PROV
in=---» documents|

End

C ProvenanceConfiguration

Fig.5 Graphical representation of the three defined configurations

the set of bindings from the database, and (2) use this set of bindings to expand
the PROV templates.

— ProvenanceConfiguration. This configuration (Fig. 5¢) expands PROV templates
as the application is running (the eager approach). Bindings data received in the
events are also accumulated in memory, and when the tracked operation execution
ends (operationEnd event), the PROV templates are expanded with the set of
bindings then generated, and the resulting PROV documents are sent to a database.
Thus, consuming provenance only requires retrieving the PROV documents from
the database.

5.2 Model-driven implementation of the BGM

Our proposal advocates automatically generating the BGM's code using existing map-
ping and transformation languages created by the MDD community. They have better
properties in terms of maintenance, reusability, and support to software develop-
ment [43] than the previous UML2PROV implementation based on XSLT [39]. As
stated in [43], model-driven development is simply the notion that we can construct a
model of a system that we can then transform into the real thing. The Xtend MDD-
based tool [48] has been used to implement a model-to-text (M2T) transformation

@ Springer

Automated and non-intrusive provenance...

module which takes the application’s UML model as source, and automatically gener-
ates the Java and Aspect] code of the BGM for the modelled application. To reduce code
dependencies, this Xtend based module generates the BGM as a single Java library
(jar file). This library will contain both the three elements of the context-independent
component, common for every BGM, and the context-dependent component (i.e., the
BGMEventInstrumenter aspect) which corresponds to the concrete application’s UML
diagram models. Integrating the generated library into the application is straightfor-
ward by using the Aspect] compiler to weave the generated BGM with the original
application, thus obtaining the instrumented application ready to produce provenance
data (for more information, see the Supplementary Material [38] and the UML2PROV
User Guide [46]).

6 Evaluation

The work in [37] provides quantitative data and qualitative arguments to show the
benefits and trade-offs of applying UML2PROV, focusing mainly on how the level
of detail of several UML designs of an application affect aspects such as provenance
design generation, application instrumentation, maintenance of provenance capabili-
ties, storage and run-time overheads, and quality of the generated provenance. In that
evaluation only one of the configurations presented in Sect. 5.1, the SetBindingsCon-
figuration, was studied. All of them will now be compared, in order to analyze how
the three representative configurations for managing the collection of provenance may
impact on the application, considering aspects such as run-time and storage overhead,
and provenance consumption effort.

Here, as well as in [37], a Bioinformatics application called GelJ [18] is used as case
study. Gell is a platform-independent, open-source tool that arose for analyzing DNA
fingerprint gel-images [18]. Its main component is the experiment wizard, which is
used to perform the analysis of gel-images through different steps that take as source
a gel-image and return an experiment consisting of the source gel-image together
with a set of detected bands on it. This evaluation has been conducted taking Gell’s
UML design as starting point, and applying UML2PROV on it with the three different
configurations to be compared. Each resulting version of the provenance-aware GelJ
has been used to create a representative experiment (the same that is described in [37]).
This use case involves the execution of about 46,000 operations in the Gell’s source
code, about which provenance data is collected.

6.1 Analysis
This evaluation has been run on a personal computer, Intel(R) Core(TM) i7 CPU,
2.8GHz, with Oracle JDK1.8 and a Windows 10 Enterprise OS running MongoDB [27]

and using JSON to serialize bindings (comparing other storage systems or serialization
formats is not in the scope of this paper).

@ Springer

C.Séenz-Adan et al.

6.21%

3.5MB 3.6MB
2.3MB
)
1.26% 1.53%
Run-time overhead Storage overhead
BindingsConfiguration SetBindingsConfiguration ProvenanceConfiguration

Fig.6 Comparison of Run-time overhead (%) and Storage overhead (MB) for provenance collection with
the three configurations of Sect. 5.1

Run-time overhead. Provenance capture in UML2PROV involves two time-
consuming tasks that may lead to run-time overhead: (1) the execution of database
operations for storing provenance data, as they imply the transmission of data and the
management of database connections; and (2) the execution of the expansion algo-
rithm for generating the final PROV documents from the PROV templates and the
sets of bindings. Of the three configurations, BindingsConfiguration yields the high-
est overhead, 6.21%, as it stores the bindings one by one, each requiring a database
operation. Conversely, the other two configurations require one database operation for
each traced operation execution: SetBindingsConfiguration to store the set of bindings
it collects in memory, and ProvenanceConfiguration to store the expanded PROV doc-
ument. This reduces their run-time overheads down to 1.26% and 1.53%. What makes
ProvenanceConfiguration to yield a higher overhead is the execution of the expansion
algorithm to obtain the PROV documents (Fig. 6).

Storage overhead. SetBindingsConfiguration yields the most compact storage at
MongoDB (2.3MB versus 3.5MB and 3.6MB corresponding to the other configura-
tions). Note that, with the BindingsConfiguration, each collected binding is stored
with additional data that will allow the generation of the set of bindings to which that
binding belongs and, subsequently, the expansion of the associated templates (e.g.,
operation execution ID, its associated templates, and so on). Thus, a lot of recur-
rent information is stored. The SetBindingsConfiguration reduces the storage needs,
as the additional data for expanding the templates is stored only once. In addition,
and unlike ProvenanceConfiguration, SetBindingsConfiguration leverages the PROV-
Template approach [28] by storing, instead of final PROV documents, sets of bindings
that contain no topological information. Thus, SetBindingsConfiguration results in an
even more compact storage.

Provenance consumption effort. ProvenanceConfiguration constitutes the most
appropriate configuration as far as consumer effort to exploit provenance data is con-
cerned. It directly stores the PROV documents, unlike SetBindingsConfiguration that
stores sets of bindings to expand the templates before consumption; or, even worse,
BindingsConfiguration, which makes it necessary a prior step to group bindings in sets
to feed the template expansion algorithm. In conclusion: the more effort devoted to
implementing the configuration, the less effort required for provenance consumption.

@ Springer

Automated and non-intrusive provenance...

7 Discussion

Our approach advocates for an automatic and non-intrusive instrumentation of applica-
tions to make them provenance-aware. It allows the provenance capture to be decoupled
from the management of the corresponding provenance data, regarding aspects such
as format and data storage. Using different implementations of the BGMEventLis-
tener (configurations), bindings can be stored in different storage systems, serialized
in a more or less verbose format (e.g., CSV, JSON, XML), individually or as sets of
bindings, or even as expanded PROV documents (the configurations in Sect. 5.1 pro-
vide an example of these alternatives). Additionally, these configurations are reusable
among all applications sharing the same bindings management policy. Our different
configurations, together with its evaluation, provide developers with some guide to
implement their own configurations.

Note that, as shown in the previous section, the chosen configuration affects not
only run-time and storage overhead, but also the effort provenance consumers have
to make to exploit the provenance information. Our evaluation has shown that the
SetBindingsConfiguration has the lowest performance penalty. This strategy, based
on a bulk submission of bindings, is aligned with other proposals [7,16] that lead to
savings in the overhead of establishing extra database connections. This configuration
also follows the more compact storage approach, although, it is not the most conve-
nient option from the final provenance consumer point of view (the PROV document
is not directly available). Concretely, SetBindingsConfiguration is oriented to those
consumers that know exactly what provenance they want to retrieve. For example,
the provenance from a specific operation execution that led to a set of bindings. Con-
versely, ProvenanceConfiguration is oriented to those consumers that want to explore
the generated provenance as a whole; for example, executing SPARQL queries over
all the provenance, and navigating the result.

Although our BGM implementation proposal is Java-based, the generic event-based
structure on which it is built (Fig. 3) could be implemented in other programming lan-
guages. The unique requirement is to have an AOP implementation compatible with the
programming language of the target application (so that the BGMEventInstrumenter
can be implemented). This should not be considered an obstacle given the large num-
ber programming languages that implement AOP (Python, C, Ada, JavaScript, C#,
and so on) [24].

Both UML2PROV provenance design and provenance capture approaches are
closely related to PROV standard [17], but some of the ideas underlying the BGM struc-
ture proposed here may be reused, even without using UML as source. More
specifically, a developer may take inspiration from BGM requirements R/ to R4,
and adapt them for defining a provenance capture artefact without resorting to PROV
templates.

The UML2PROV provenance capture presented here is based on UML, so it is
worth reflecting on whether the use of UML in industry justifies this choice. Empir-
ical evidence shown by surveys investigating the adoption of UML in the software
development community [19,40], together with the fact that the types of UML dia-
gram used by UML2PROV are among the most frequently used [19], support our
decision for using UML. Second, UML2PROV requires that all elements on which

@ Springer

C.Séenz-Adan et al.

provenance is to be captured are present in the UML design. Works as PrIME [26]
remark that to address some provenance requirements, it is needed to adapt the appli-
cation to surface some data. Nevertheless, UML2PROV advocates not changing the
application, so users must avoid provenance requirements that require the adaptation
of the application. Third, UML2PROV works on two main assumptions: that the UML
design includes the level of detail required to capture the desired provenance, and that
the implementation of the application conforms to such UML design. UML diagrams
are used in industry with different purposes, such as for analysis and understanding,
communication, or automatic code generation. Depending on the intended use, the
level of detail of the design varies. The completeness of UML models has a direct
impact on downstream development quality and productivity. More specifically, stud-
ies have shown that, when it is used for communication purposes, a lower quality of
UML models led to more variety in the interpretation of the models [6]. Since one of
the key purposes of UML models is to enable communication between team mem-
bers [6,31], this is already a serious indication that consistency and completeness in
modeling should be part of quality assurance practices. Similarly, studies shown that a
lower quality of UML models correlates with a lower quality of the final source code
when using UML designs as a blueprint for the implementation or for automatic code
generation [6]. The second assumption is related to the degree to which applications
adhere to the design specified by the UML diagrams. However, although it is not a
good practice, applications that do not strictly follow the design specified by the UML
diagrams are not unusual [15]. In case the underlying assumptions are not satisfied,
users could leverage reverse-engineering to obtain the UML design that is faithful to
the source code [37].

8 Related work

In the scope of Software Engineering, several approaches stand out for enriching
the software development life-cycle of systems with provenance information in two
different ways. On the one hand, approaches such as [12,41] address the development
process as a whole, providing provenance information about each phase (planning,
design, coding, testing, etc.). On the other hand, approaches such as [10,20] are only
focused on a concrete phase in the development life-cycle: testing. UML2PROV is
similar in spirit to these last works, but focusing on the design phase instead of the
testing phase.

The conceptual guiding principles of the bindings generation module BGM are
based on the taxonomy of characteristics of provenance systems presented in [32],
concretely in the Data capture dimension defined in it. Herein, we have selected the
Level and Technique categories as the two main facets of interest (we do not discuss
about Tracing or Mechanism aspects since our proposal is agnostic about lazy or eager
approaches, and focuses on internal structures).

As for the Level category, provenance may be collected at different points in
the application software stack. The most common proposals, WIMS, follow a
workflow-level strategy, capturing provenance while the workflow is being enacted
(Kepler provenance system [1] and COMAD [4] adopt this strategy). Other works,

@ Springer

Automated and non-intrusive provenance...

such as PASS [29] or SPADE [14], follow an OS-/evel strategy where provenance data
is collected at the system API level, recording a low level of metadata for all executions.
Despite being two low intrusive strategies, the former have a strong dependency on the
WIMS, and the latter usually provides too much irrelevant information. In contrast,
UML2PROV does not depend on WEMS. It drives the capture of provenance from the
UML design of a system, so the generated provenance is aligned with the level of detail
of the UML. UML2PROV, as systems such as noWorkflow [30], adopts a process-
level approach, capturing provenance at the level of operations. This fact overcomes
the drawbacks of the previous approaches but requires adapting pre-existing process
activities to incorporate provenance capture functionalities [11], which requires mod-
ifying existing applications or scripts. This adaptation may be done from scratch [11],
or, as UML2PROV proposes, automatically from the application design.

At this respect, and focusing on the Technigue used for provenance capture, sys-
tems such as ZOOM [9] use an inversion approach that, although provides a more
compact representation of the provenance [44], provide sparse information, limited
to the derivation history of the data. In contrast, UML2PROV, similar to systems
such as yesWorkflow [33], use annotations, giving more flexibility in the richness of
provenance metadata, while avoiding computing provenance ‘“just-in-time” like in
the inversion method. Annotations can be provided both manually by users, or auto-
matically by applications. UML2PROV relies on AOP to automatically annotate the
existing data when generating bindings. To the best of our knowledge, CAPS [5] and
UML2PROV are the only proposals that leverages AOP for weaving provenance col-
lection concerns into Java applications. In contrast to UML2PROV, CAPS is restricted
to a specific programming language by analysing the structure of the source code.
UML2PROV is a generic solution based on the application design.

9 Conclusions and future work

In the context of UML2PROV, this paper describes our proposal to provide applications
with provenance capture capabilities. On the one hand, the guiding principles of the
bindings generation module BGM, and the requirements it must meet to respect such
principles, provide a means to guarantee: 1) an automatic (R/) and non-intrusive
(R2 and R3) instrumentation of the application; 2) which is flexible enough to allow
developers to choose the most suitable provenance computation strategy (R4); 3) all
while ensuring that the generated bindings are compatible with the provenance design
also generated by UML2PROV (R5 and R6).

On the other hand, our generic event-based design of BGM relying on the Aspect-
Oriented Programming paradigm, allowing for the generated code to be automatically
weaved into an application. Additionally, our three different BGM configurations
implemented following the above design may be considered as guides for developers
to implement their own BGMs. The impact of the three configurations on the instru-
mented application have been analysed considering aspects such as computational
and storage overhead, and provenance consumption effort. Configuration SetBind-
ingsConfiguration was found to be the most efficient from a performance point of
view, although not the best for the final provenance data consumption. Although our

@ Springer

C.Séenz-Adan et al.

approach has been established to be compatible with PROV standard, some of the ideas
supporting the proposed BGM structure may be reused, even without using UML as
source, or PROV as target. The implementation of UML2PROV in other languages
(such as Python), or providing UML2PROV as a service, are lines of future work.
Additionally, as commented before, the conceptual guiding principles of the BGM
are based on the taxonomy of characteristics of provenance systems presented in [32].
Thus, an interesting line of further work is to compare UML2PROV to other proposals
through such a taxonomy.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Altintas I, Barney O, Jaeger-Frank E (2006) Provenance collection support in the kepler scientific
workflow system. In: Proceedings of the international provenance and annotation workshop (IPAW’06),
pp 118-132
2. Apache SPARK: 2021 Available at http://spark.apache.org/. Last visited on September, 2021
3. Baxter ID, Mehlich M (2000) Reverse engineering is reverse forward engineering. Sci Comput Pro-
gramm 36(2):131-147
4. Bowers S, McPhillips TM, Ludischer B (2008) Provenance in collection-oriented scientific workflows.
Concurr Comput 20(5):519-529
5. Brauer PC, Fittkau F, Hasselbring W (2014) The aspect-oriented architecture of the caps framework for
capturing, analyzing and archiving provenance data. In: Proceedings of the international provenance
and annotation workshop (IPAW’14), pp 223-225
6. Chaudron MRV, Heijstek W, Nugroho A (2012) How effective is UML modeling?—an empirical
perspective on costs and benefits. Softw Syst Model 11(4):571-580
7. ChenZ, Moreau L (2008) Implementation and evaluation of a protocol for recording process documen-
tation in the presence of failures. In: Proceedings of the 2nd International provenance and annotation
workshop, pp 92-105
8. Clifford B, Foster I, Voeckler JS et al (2008) Tracking provenance in a virtual data grid. Concurr
Comput 20(5):565-575
9. Cohen-Boulakia S, Biton O, Cohen S, Davidson S (2008) Addressing the Provenance Challenge using
ZOOM. Concurr Comput 20(5):497-506
10. Campos Junior Hde S, de Paiva CA, Braga R, Aratjo MAP., David JMN, Campos F (2017) Regression
tests provenance data in the continuous software engineering context. In: Proceedings of the 2nd
Brazilian Symposium on Systematic and Automated Software Testing, pp 1-6
11. da Cruz SMS, Campos MLM, Mattoso M (2009) Towards a Taxonomy of Provenance in Scientific
Workflow Management Systems. In: Proceedings of the IEEE Congress on Services, Part I, SERVICES
I, pp 259-266
12. Dalpra HL, Costa GCB, Sirqueira TFM, Braga RM, Campos F, Werner CML, David JMN (2015)
Using ontology and data provenance to improve software processes. In: ONTOBRAS
13. GammaE, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented
software. Addison Wesley, Boston

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://spark.apache.org/

Automated and non-intrusive provenance...

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Gehani A, Tariq D (2012) SPADE: support for provenance auditing in distributed environments. In:
Proceedings of the 13th International Middleware Conference, pp 101-120

Gorp PV, Stenten H, Mens T, Demeyer S (2003) Towards automating source-consistent UML refac-
torings. In: Proceedings of the 6th international conference on the unified modeling language, pp
144-159

Groth P (2007) The origin of data: Enabling the determination of provenance in multi-institutional
scientific systems through the documentation of processes. Ph.D. thesis, University of Southampton
Groth P, Moreau (eds) L (2013) PROV-Overview. An Overview of the PROV Family of Documents.
‘W3C Working Group Note NOTE-prov-overview-20130430, World Wide Web Consortium www.w3.
org/TR/2013/NOTE-prov-overview-20130430/

Heras J, Dominguez C, Mata E, Pascual V, Lozano C, Torres C, Zarazaga M (2015) GelJ — a tool for
analyzing DNA fingerprint gel images. BMC Bioinformatics 16(1)

Hutchinson JE, Whittle J, Rouncefield M, Kristoffersen S (2011) Empirical assessment of MDE in
industry. In: Proceedings of the 33rd international conference on software engineering, pp 471-480
Khalilian A, Azgomi MA, Fazlalizadeh Y (2012) An improved method for test case prioritization by
incorporating historical test case data. Sci Comput Programm 78(1):93-116

Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Irwin J (1997) Aspect-
oriented programming. In: Proceedings of the european conference on object-oriented programming
(ECOOP’97), pp 220-242. Berlin, Heidelberg

Kiczales G, Mezini M (2005) Aspect-oriented programming and modular reasoning. In: Proceedings
of the 27th international conference on software engineering (ICSE’05), pp 49-58. ACM, New York,
NY, USA

Laddad R (2009) Aspectj in action: enterprise AOP with spring applications. Manning Publications
Co, Shelter Island

Lilis Y, Savidis A (2019) A survey of metaprogramming languages. ACM Comput. Surv. 52(6)
Michaelides D, Huynh TD, Moreau L (2014). PROV-TEMPLATE: A Template System for PROV
Documents Available at https://openprovenance.org/prov-template/. Last visited on September, 2021
Miles S, Groth PT, Munroe S, Moreau L (2011) PrIMe: a methodology for developing provenance-
aware applications. ACM Trans Softw Eng Methodol 20(3):8:1-8:42

MongoDB Inc. Version 4.0.2: (2018). Available at www.mongodb.org/. Last visited on September,
2021

Moreau L, Batlajery BV, Huynh TD, Michaelides D, Packer H (2018) A templating system to generate
provenance. IEEE Trans Softw Eng 44(2):103-121

Muniswamy-Reddy KK, Holland DA, Braun U, Seltzer MI (2006) Provenance-Aware Storage Systems.
In: USENIX Annual Technical Conference, General Track, pp. 43-56

Murta L, Braganholo V, Chirigati F, Koop D, Freire J (2014) noworkflow: capturing and analyzing
provenance of scripts. In: International Provenance and Annotation Workshop, pp. 71-83. Springer
OMG: Unified Modeling Language (UML). Version 2.5 (2015). Document formal/15-03-01, March,
2015

Pérez B, Sdenz-Adan C, Rubio J (2018) A systematic review of provenance systems. Knowl Inf Syst
57(3):495-543. https://doi.org/10.1007/s10115-018-1164-3

Pimentel JF, Dey SC, McPhillips TM, Belhajjame K, Koop D, Murta L, Braganholo V, Luddscher B: Yin
& yang: demonstrating complementary provenance from noworkflow & yesworkflow. In: Proceedings
of the International Provenance and Annotation Workshop (IPAW’16), pp. 161-165

ProvToolbox.: Available at http://lucmoreau.github.io/ProvToolbox/. Last visited on September, 2021
Reggio G, Leotta M, Ricca F, Clerissi D (2013) What are the used UML diagrams? A preliminary
survey. In: EESSMOD @MoDELS, USA, pp. 3-12

Sdenz-Adéan C, Moreau L, Pérez B, Miles S, Garcia-Izquierdo FJ (2018) Automating provenance
capture in software engineering with UML2PROV. In: Proceedings of the International Provenance
and Annotation Workshop (IPAW’18), pp 58-70

Sdenz-Adén C, Pérez B, Garcia-Izquierdo FJ (2020) Moreau L Integrating Provenance Capture and
UML with UML2PROV: Principles and Experience. IEEE Transactions on Software Engineering
https://doi.org/10.1109/TSE.2020.2977016. Early Access

Sdenz-Adédn C, Pérez B, Garcia-Izquierdo FJ, Moreau L (2020) Supplementary material of
UML2PROV. Available at http://uml2prov.unirioja.es

@ Springer

www.w3.org/TR/2013/NOTE-prov-overview-20130430/
www.w3.org/TR/2013/NOTE-prov-overview-20130430/
https://openprovenance.org/prov-template/
www.mongodb.org/
https://doi.org/10.1007/s10115-018-1164-3
http://lucmoreau.github.io/ProvToolbox/
https://doi.org/10.1109/TSE.2020.2977016
http://uml2prov.unirioja.es

C.Séenz-Adan et al.

39.

40.

41.
42.
43.
44,
45.
46.

47.

48.

Sdenz-Adéan C, Pérez B, Huynh TD, Moreau L (2018) UML2PROV: automating provenance capture
in software engineering. In: Proceedings of the 44th International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM’18), pp 667-681

Scanniello G, Gravino C, Tortora G (2010) Investigating the role of UML in the software modeling and
maintenance - A preliminary industrial survey. In: Proceedings of the 12th international conference on
enterprise information systems, pp 141-148

Schreiber A, von Kurnatowski L, de Boer C (2021) Analyzing software engineering processes with
provenance-based knowledge graphs. In: 2021 IEEE Aerospace Conference, pp 1-11

Seidl M, Scholz M, Huemer C, Kappel G (2015) UML@Classroom: An Introduction to Object-
Oriented Modeling. Springer Publishing Company, Incorporated

Selic B (2003) The pragmatics of model-driven development. IEEE Softw 20(5):19-25

Simmhan YL, Plale B, Gannon D (2005) A Survey of Data Provenance Techniques. Computer Science
Department, Indiana University, Bloomington IN (612) Extended version of SIGMOD Record 2005.
Available at: www.cs.indiana.edu/pub/techreports/TR618.pdf

The Aspect] Project: Available at www.eclipse.org/aspectj/. Last visited on September, 2021
UML2PROV User Guide: Available at https://github.com/uml2prov/uml2prov. Last visited on Septem-
ber, 2021

XSL Transformations (XSLT) Version 3.0: W3C Candidate Recommendation 7 February 2017. Avail-
able at www.w3.org/TR/xslt-30/. Last visited on September, 2021

XTend: Available at www.eclipse.org/xtend/. Last visited on September, 2021

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Carlos Saenz-Adan' - Francisco J. Garcia-lzquierdo' - Beatriz Pérez' () -
Trung Dong Huynh? . Luc Moreau?

X

Beatriz Pérez
beatriz.perez @unirioja.es

Carlos Sdenz-Adan
carlos.saenz @unirioja.es

Francisco J. Garcia-Izquierdo
francisco.garcia@unirioja.es

Trung Dong Huynh
dong.huynh@Xkcl.ac.uk

Luc Moreau
luc.moreau@kcl.ac.uk

Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain

Department of Informatics, King’s College London, London, UK

@ Springer

www.cs.indiana.edu/pub/techreports/TR618.pdf
www.eclipse.org/aspectj/
https://github.com/uml2prov/uml2prov
www.w3.org/TR/xslt-30/
www.eclipse.org/xtend/
http://orcid.org/0000-0001-9235-7311

	Automated and non-intrusive provenance capture with UML2PROV
	Abstract
	1 Introduction
	2 Background
	3 UML2PROV architecture
	4 BGM principles and requirements
	5 An event-based design and implementation for BGM
	5.1 Implementation of representative configurations
	5.2 Model-driven implementation of the BGM

	6 Evaluation
	6.1 Analysis

	7 Discussion
	8 Related work
	9 Conclusions and future work
	References

