
ww.sciencedirect.com

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 7 ( 2 0 2 2 ) 4 8 1 4e4 8 2 6
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/he
Parameter characterization of HTPEMFC using
numerical simulation and genetic algorithms
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This paper develops a novel approach to the parameterisation of high temperature ex-

change membrane fuel cells (HTPEMFC) with limited and non-invasive measurements. The

proposed method allows an effective identification of electrochemical parameters for

three-dimensional fuel cell models by combining computational simulation tools and ge-

netic algorithms. To avoid each evaluation undertaken by the optimisation method

involving a complete computational simulation of the 3D model, a strategy has been

designed that, thanks to an iterative process, makes it possible to decouple the fluid dy-

namic resolution from the electrochemistry one.

Two electrochemical models have been incorporated into these tools to describe the

behaviour of the catalyst layer, Butler-Volmer and spherical aggregate. For each one, a case

study has been carried out to validate the results by comparing them with empirical data in

the first model and with data generated by numerical simulation in the second. Results

show that, from a set of measured operating conditions, it is possible to identify a unique

set of electrochemical parameters that fits the 3D model to the target polarisation curve.

The extension of this framework can be used to systematically estimate any model

parameter in order to reduce the uncertainty in 3D simulation predictions.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/
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List of symbols

a Effective surface area (m�1)

C Mass fraction

D Diffusivity (m2 s�1)

E Energy activation (J mol�1)

Er Efficiency factor of agglomerates

f Platinum mass ratio to Pt/C

F Faraday constant (C mol�1)

H Henry constant (Pa m3 mol�1)

I Cell current (A)

j Exchange current density (A m�2) or (A m�3)

k Reaction rate (s�1)

K Permeability (m2)

L Volume fraction

M Molecular weight (kg mol�1)

m Mass loading (kg m2)

n Number of transfer electrons

N Theoretical reversible cell potential (V)

P Pressure (Pa)

R Universal gas constant (J mol�1 K�1)

s Number of locations

r Agglomerate radius (m)

t Thickness (m)

T Temperature (K)

u
⃗

Velocity vector (m s�1)

V Cell voltage (V)

x Mole fraction

z Number of polarisation points

Greek Letters

a Transfer coefficient

g pressure dependency coefficient

d Thin film thickness (m)

ε Porosity

h Over-potential (V)

r density (kg m�3)

m Dynamic viscosity (Pa s)

s Proton conductivity (S m�1)

F Thiele Module

4 Potential (V)

Superscripts and Subscripts

a Anode

agg Agglomerate

c Cathode/carbon

cl catalyst layer

cla Anode catalyst layer

clc Cathode catalyst layer

eff Effective

exp Experimental

i Reactants, H2, O2 or H2O/Ionomer

ref Reference conditions

p Protonic

PA Phosphoric acid

Pt Platinum

sim Simulation
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Introduction

Fossil fuel depletion and environmental issues have brought

attention to the need for a change in the current energy

model. The aim is to find new solutions for generating energy

in a clean way that also guarantees the safety of supply and

the current consumption model. In this context, increasingly

affordable renewable energies seem to be the optimal choice

and consequently their use has experienced exponential

growth in recent years [1]. However, their intermittent gen-

eration requires the availability of storage systems, named

energy vectors, which allow energy use to be deferred and at

the same time facilitate its transport. Among them, hydrogen

is a promising candidate, since it is obtained by electrolysis of

water, a very abundant resource in nature, and does not

generate pollution at the point of use. In addition, its storage

and transportation could potentially utilise facilities already

available to current vectors such as natural gas [2]. In contrast,

it has a low volumetric energy density, which makes both its

storage and transport more troublesome.

To recover the chemical energy contained in hydrogen, the

most efficient process is the electrochemical combination

with oxygen from the air, to form water and electrical energy.

This conversion is carried out by the fuel cells. In particular,

high temperature Proton Electrolyte Membrane fuel cells

(HTPEMFC) are promising devices for power distribution sys-

tems, firm candidates for their applications in both transport

and stationary use. However, their technological development

continues to have important shortcomings and requires sig-

nificant advances in order to be commercially competitive.

Numerical modelling and computer simulation make it

easier and more affordable to understand the processes that

take place inside the fuel cells, as well as serving as a tool to

refine their designs. It has special relevance in the analysis of

catalyst layers, as their thickness and manufacturing process

make it difficult to observe the electrodynamic and physical

phenomena taking place experimentally. As an example of

numerical simulation analysis capabilities, Ebrahimi et al. [3]

proposed a method to optimise the distribution of platinum

particles along the catalyst layers.

Modelling of a fuel cell must describe the transport phe-

nomena of gases and species through its channels and porous

areas, the electrochemical reactions taking place in its cata-

lyst layers and the transport of protons through its mem-

brane. It is necessary to find a trade-off between the level of

complexity of the model and the computational effort

required to numerically solve it.

According to the literature, there are two types of ap-

proaches in these models [4], which are usually complemen-

tary. The first one includes mechanistic models, which aim to

simulate the heat, mass transfer, and some electrochemical

phenomena. The second one is used with models based on

empirical or semi-empirical equations, whichmay also have a

background in mechanistic models. This latter approach is

used to explain the electrochemical phenomena, which are

more complex to accommodate in mechanistic models. This

involves tuning parameters so that the model fits the mea-

surements obtained for each device. Effective parameter

characterisation is a necessary step to release the full
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predictive power of physics-basedmodels, since the reliability

of the models depends to a large extent on these parameter

values.

During the last few years, the parameter estimation of the

electrochemical model has attracted a considerable amount

of attention. More specifically, it has been claimed to provide

an industrially relevant example of a complex, nonlinear

optimisation task. In particular, heuristic and meta-heuristic

search methods have been applied to the parameter estima-

tion problem.

Due to limitations in terms of computational cost, most

approaches use zero-dimensional, semi-empirical equivalent

circuit models, which are simplified, lumped representations

of the physical and electrochemical mechanisms involved in

fuel cells. Avoiding the spatial resolution of the problem al-

lows us to reduce the resolution time of the model, which

makes them particularly useful for studying the behaviour

and interactions of fuel cells in energy systems.

Therefore, research has focused on the implementation of

optimisation algorithms that improve search effectiveness

and reduce parameter identification times. Several numbers

of methods have been proposed in recent years for parameter

model identification of the PEMFC, for example, Gray Wolf

Optimizer by Ali et al. [5], Genetic Algorithm by Ariza et al. [6],

Cuckoo Search Algorithm by Zhu et al. [7], Deer Hunting

Optimisation Algorithm (DHOA) by Brammya et al. [8], Coyote

Optimisation Algorithm by Yuan et al. [9], Monarch Butterfly

Optimisation Algorithm by Bao et al. [10], Artificial ecosystem

optimizer by Rizk et al. [11] and Levenberg-Marquardt back-

propagation algorithm by Yang et al. [12].

A comparison between 45 references of parameter identi-

fication methods in zero-dimensional models is reported in

Ohenoja et al. [13]. The report analyses some relevant aspects

of these processes such as the optimisation method used, the

number of parameters to be identified, their search ranges or

the number of data points used in the optimisation.

Nevertheless, the parameters identified by this approach

cannot be used in the computational simulation of dimen-

sional models. While they are useful in the control and pre-

diction of integrated systems, they do not allow a complete

analysis of the inner workings of the fuel cell.

The fact that parameter identification remains a lesser

studied topic in the fuel cell dimensional models can be

mainly attributed to the computational cost of the available

physics-based models that do not lend themselves to the

systematic parameterisation of optimisation-based models,

which typically require a large number of model evaluations.

However, some researchers in the fuel cell community have

developed studies in this field. Dobson et al. [14], combine 2D

simulations model with computational optimisation,

although this type of strategy is still burdened by the need to

simplify the meshes used. A more recent work, developed by

Goshtasbi et al. [15], uses characterisation techniques to

identify a large number of parameters and thus rely less on

the parameters of the literature. A pseudo-2D numerical

model is used to reduce calculation times.

In both cases, these are simplifiedmodels of the device that

do not allow a complete analysis of the spatial phenomena,

especially in the case of devices with complex geometries.
The novelty introduced by this article is the development

of a parameter identification strategy that integrates full 3D

computational simulation models of HTPEMFC and optimi-

sation through genetic algorithms. The obtained parameters

can then be used directly in 3D simulations with predictive

capabilities.

The remaining part of the article is structured as follows: in

Section HTPEMFC Model and relevant parameters, the math-

ematical model of the fuel cell is explained briefly. Section

Characterisation process description presents the optimisa-

tion algorithm and the process of parameter characterisation.

Section Results and discussions provides the results of the

characterisation applied to two cases and the work is

concluded in Section Conclusions.
HTPEMFC model and relevant parameters

The proposed model is a 3D steady state, isothermal, incom-

pressible flow model with further assumptions:

C Infinitely thin catalyst layers.

C High temperature fuel cell (single-phase gas flow).

C Migration ofHþ protons through themembrane obeying

Onsager's principle, Vali~no et al. [16]. Therefore there is

a one-to-one match between the current densities at

the anode and at the cathode catalyst layers, that is,

ja ¼ jc.

C The electrical potential is constant along the electrodes.

V$ðru⃗Þ ¼ 0 (1)

V$ðu⃗CÞ ¼ V
�
DeffVC

�
(2)

1
ε
2
V$ðru⃗u⃗Þ ¼ �VPþ 1

ε

VðmVu⃗Þ � mu
⃗

K
(3)

4
p
clc � 4

p
cla ¼

j
s
¼ N� hc � ha � V (4)

The equations governing the operation of the fuel cell

under the previous assumptions, include those of conserva-

tion of mass and momentum (Navier Stokes), species trans-

port, electrochemical phenomena in the catalyst layers and

transport of protons across the membrane. Fig. 1 shows

schematically the domains where each equation is solved

with its corresponding boundary conditions.

The theoretical reversible cell potential, N, at given pres-

sure and temperature conditions is calculated by the Nernst

equation.

N ¼ Nref þ RT
nF

,ln

 
PH2

,P0:5
O2

PH2O

!
ðVÞ (5)

Two electrochemical models have been incorporated in

order to describe the relationship between current density

and overpotential in the catalyst layers:
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Fig. 1 e Outline of equations, boundary conditions and domains where they apply. Colours indicate the locations where

each boundary condition is applied. Sub-indices i and j refer to the reactive species involved in each region, H2 at the anode

and O2 and H2O at the cathode.

Table 1 e Formulas for the agglomerate model of the catalyst layer. The reaction rate equation has been adapted by
considering aRd ¼ ¡ ac and aOx ¼ ¡ (1 ¡ ac).

Parameter Expression Source

Effective agglomerate area (m�1)
aagg ¼ 3LPt=CεCL

r3agg
�
1� Li;agg

��ragg þ di
�
2 [19]

Volume fraction of platinum particles
LPt=C ¼ mpt

tCL

�
1
rpt

þ 1� f
f

1
rc

�
[19]

Volume fraction of the void space εcl ¼ 1 � LPt/C � Li [19]

Thickness of the ionomer film (m)
di ¼ ragg

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lið1� Li;aggÞ

LPt=C
� Li;agg þ 1

3

s
� 1

#
[19]

Efficiency factor of agglomerates
Er ¼ 1

F

�
1

tanh 3F
� 1
3F

�
[19]

Thiele Module
F ¼ ragg

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc

L1:5i;aggDO2

s
[19]

Reaction rate (s�1)

kc ¼ jrefc;0

nFð1� εclÞCref
O2

�
e

acFhc
RT � e

�ð1� acÞFhc
RT

� [20]

O2 diffusivity in ionomer (m2s�1)
DðiÞO2

¼ ð42:4C3
PA � 110:1C2

PA þ 95:3CPA � 27:4Þ � 10�3

e

89449C2
PA � 155346CPA þ 71 429

T

[21]

Henry constant (Pa m3mol�1)

Ho2 ¼ e

 
ð�1:27CPA þ 1:23Þ � 104

T
þ 35:2CPA � 46:6

!
[20]

PA mass fraction
CPA ¼ 0:0 544xPA

ðxPAð0:054 4� 0:01Þ þ 0:01Þ
[20]

PA mole fraction

xPA ¼
lnðPH2oÞ þ

2765:1
T

� 22:002

�4121:9
T

þ 2:592 9

[20]
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Table 2 e Physical properties and operation conditions.

Parameter Value

Membrane thickness (m) L 2 � 10�4

Inlet stoichiometric ratio 4

Inlet mass concentration CH2O 0.5

(anode) CH2 0.5

Inlet mass concentration CH2O 0.5

(cathode) CO2 0.5

Temperature (K) T 393

Universal gas constant (J mol�1 K�1) R 8.314 72

Faraday constant (C mol�1) F 96 487

Reference pressure (atm) Pref 1

Reference temperature (K) Tref 298.15

Energy activation Anode (J mol�1) Ea 25 000

Energy activation Cathode (J mol�1) Ec 66 000

Protonic conductivity (S m�1) s 1.2

Porosity ε 0.5

Anode pressure dependency coefficient ga 0.5

Cathode pressure dependency coefficient gc 1
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Butler-Volmer

In this model, the surface current density is related to the

overpotential in the catalyst layers according to the expres-

sions 6 and 7. This relationship is determined by the operating

conditions, such as the partial pressure of the reactants PO2 ,

PH2 , the temperature in the catalyst layers, T, and also by other

parameters, most of which are known a priori, and are listed

in Table 2.

ja ¼ jrefa;0,

�
PH2

Pref

�ga

e

	
�Ea
R

�
1
T� 1

Tref

�
�
� e

�aaFha
RT þ e

ð1�aa ÞFha
RT

��
Am�2

�
(6)

jc ¼ jrefc;0,

�
PO2

Pref

�gc

e

	
�Ec
R

�
1
T� 1

Tref

�
�
e
acFhc
RT � e

�ð1�ac ÞFhc
RT

��
Am�2

�
(7)

However, some of the electrochemical properties are not

easy to measure. Such is the case for the anodic and cathodic

charge transfer coefficients, aa and ac, which physically

represent the fraction of additional energy entering the

oxidation and reduction reactions [17]. Their values depend on

the type and conditions under which the reaction takes place

and on the material of the electrodes. In practice they are

fitting parameters.

In the above model jrefa;0 and jrefc;0 are defined as the exchange

current density per unit of geometric area at reference pres-

sure and temperature. Its value depends on the amount of

platinum and the resulting geometry of the catalyst layers;

hence it is generally difficult to be evaluated precisely a priori.

These four variables are chosen to be the object of this char-

acterisation process for the Butler-Volmer model.

Agglomerate

This model arises as a method for taking into account the

microstructure of the catalyst layer, which is composed of

platinum and carbon particles bonded together by the ion-

omer to form agglomerates. It has the ability to capture the

loss of oxygen concentration at the platinum interface at high
current densities. The reaction kinetics of the cathode catalyst

layer is well known to be the limiting factor of the reaction in

fuel cells and therefore it is only in the cathode where the

model is implemented. This is due to the fact that the cathode

reaction rate is several orders of magnitude lower than the

anode one [18].

The spherical agglomerate model described by Dobson

et al. [14] has been taken as a reference. This model is derived

from the Butler-Volmer equation and incorporates a group of

expressions that allow the characteristics of the agglomerates

to be related to the phenomenon of losses due to concentra-

tion. According to the above-mentioned model, the catalyst

layer is treated as a volume and therefore the current appears

as a source term. To accommodate these expressions to the

assumption of a layer of negligible thickness, appropriate

modifications have beenmade so that the expression refers to

the surface current density. Taking these considerations into

account, the current density in the cathode catalyst layer is

described by Equation (8), with terms as listed in Table 1.

jc ¼ tCLnFPO2
HO2

�
1

Erkcð1� εclÞ þ
�
ragg þ di

�
di

aaggDO2

��1�
Am�2

�
(8)

The set of expressions contained in Table 1 describes the

relationship between current density and overpotential in the

cathode according to the operating conditions, i.e. partial

pressure of oxygen, PO2
, the temperature in the catalyst layer,

and a list of parameters that define the properties of the re-

action. A sketch of the internal structure of the catalyst layer

is shown in Fig. 2 in order to visualise the physical meaning of

the parameters included in the equations of this model.

The volume fraction of platinum particles LPt/C, and the

volume fraction of ionomer in the catalyst layer Li, are known

as they depend on the amount of material added during

manufacture and the resulting thickness of the catalyst layer.

However, in order to fully define the geometry of the ag-

glomerates, it is necessary to know other parameters which,

due to their nature, are extremely difficult tomeasure without

invasive methods. These are the radius of the agglomerates,

ragg, and the thickness of the ionomer film over the agglom-

erate di. Both depend on not only how the platinum particles

are clustered and how the ionomer is distributed during the

manufacturing process of the catalyst layers, but also on the

degradation processes that occur during the operation of the

fuel cell. Therefore, in the selection of the parameters to be

characterised, di and ragg have been chosen, in addition to

those already highlighted for the Butler-Volmer model (aa, ac,

jrefa;0 and jrefc;0).
Characterisation process description

The aim of the optimisation is to find a combination of the

electrochemical parameters mentioned in Section HTPEMFC

Model and relevant parameters, which allows us to fit the

points of the simulated polarisation curve into those available

experimentally. For this purpose, genetic algorithms, which

are computational evolutionary techniques for optimisation

problems based on the selection of the fittest individuals, will

be used. Fig. 3 shows a schematic of the evolutionary process.

https://doi.org/10.1016/j.ijhydene.2021.11.084
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Fig. 2 e Schematic of the catalyst layer agglomerate structure.
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According to the implemented system, each individual in the

population corresponds to a potential solution, that is a

combination of values of the parameters to be optimised. For

example, for the Butler-Volmer model, one individual would

be one set of possible values of
n
aa;ac; j

ref
a;0; j

ref
c;0

o
. The goal is to

choose the best individual, that is, the four-dimensional set

which is the best approximation of the experimental voltages.

The problem with implementing this type of evolutionary

process with 3D models is that the computational cost of

performing a numerical simulation for each individual eval-

uated would result in an unaffordable use of computing re-

sources and time. To overcome this limitation, an iterative

process is implemented which uncouples the fluid dynamics

resolution from the electrochemical one during the evaluation

of each individual by the genetic algorithm. This strategy

makes sense because all the parameters needing characteri-

sation are electrochemical. During the evaluation of each in-

dividual, the flow field is frozen, so only non-fluid related

equations need to be solved, which are numerically much

simpler. Once the best individual is found, the fluid dynamics

is updated by a full 3D simulation (in fact, one per measured

point in the polarisation curve to compare) and with the

updated fluid fields, a new genetic algorithm search is

launched. The process is repeated until simulated and

experimental voltages converge. This procedure is explained

in more detail below.

Experimental data

Experimental operating data of the analysed fuel cell should

be available in order to proceed with the characterisation
Fig. 3 e Evolutionary loop of populations in the genetic

algorithm.
process. The points of the polarisation curvemust be provided

for stationary operating conditions. Besides the voltage and

current values, it is necessary to know the conditions inwhich

they have been obtained. That is to say, the flow and con-

centrations of the supplied species and the operating tem-

perature at each point of the polarisation curve to be

considered for fitting. It is important that the data collection is

carried out in optimal conditions and with the appropriate

measuring equipment, since the correct characterisation of

the parameters depends largely on the reliability of the data

obtained. In addition, it is required to gather the characteris-

tics of the fuel cell used and its properties to be introduced in

the computer simulationmodels. This includes, the geometric

data of the fuel cell, the known electrochemical properties of

the catalyst layers or the proton conductivity of the

membrane.

General iteration

The procedure for advancing one general iteration step is

described next, leaving the particularities of the initial itera-

tion for the next subsection. We start from the optimal indi-

vidual selected by the genetic algorithm in the previous

iteration. It must be reminded that the optimal individual

provides the best fit for the measured voltages given in the

polarisation curve. With the parameters of the optimal indi-

vidual and the information provided by the experimental

measurements (boundary conditions, chosen intensity and

necessary physical coefficients) the equations of the fuel cell

in section HTPEMFC Model and relevant parameters can be

solved. Using the solution of the previous iteration as the

initial condition, convergence is fast. Solutions are to be ob-

tained for each measurement point of the polarisation curve.

From this moment on during the present iteration, the fluid

dynamics field solutions are considered frozen.

Next, the genetic algorithm needs to evaluate individuals,

that is, sets of the electrochemical parameters (the ones

needing characterisation) by calculating their associated

voltages. Diagram 9 shows the relationships (via equations in

section HTPEMFC Model and relevant parameters including

boundary conditions) between the physical magnitudes

https://doi.org/10.1016/j.ijhydene.2021.11.084
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involved in the numerical calculation of the voltage. Once the

fluid dynamics is frozen, so are the partial pressures at the

catalyst layer and the surface current densities at the catalyst

layers ja, jc. Both sets of quantities are directly linked by the

fluid dynamics Equations (1)e(3) and boundary conditions).

With those quantities fixed, the voltage V would only depend

on the electrochemical parameters, according to the electro-

chemical Equations (4)e(6), 7/8). Hence, the genetic algorithm

only needs to solve the electrochemical equations for evalu-

ating individuals, which is computationally very fast.
For each individual, one voltage distribution is obtained per

measured point of the polarisation curve. Notice that the

predicted voltage should be constant along the electrodes, but

this is not guaranteed during this phase of the iterative pro-

cess due to the frozen distribution of j imposed. The best in-

dividual is chosen to be the one that minimises the distance

between its predicted voltages and the constant ones

measured experimentally:

min
Xz

i¼1

Xs

j¼1

�
Vexp½i� � V½i;j�

�2
; (10)

where z describes the number of points of the polarisation

curve collected in the experimental phase and s the number of

locations selected permeasured point in order to proceedwith

a discretised evaluation of the distance. Vexp[i] is the
Fig. 4 e Current density distribution in the catalyst layer

and the s ¼ 8 selected locations for voltage calculation of

the genetic algorithm.
experimental value of the fuel cell voltage for each point of the

polarisation curve. V[i,j] includes all the voltage values ob-

tained for a single set of parameters to be optimised. Notice

that, due to the algebraic nature of the electrochemical

equations, explicit calculations are only needed for the small

set s of selected locations.

Fig. 4 illustrates an example of the distribution of eight

locations (s ¼ 8) along the catalyst layer for the voltage eval-

uation of one individual. In order to select the representative

locations, the software groups the information from the

catalyst layers according to its oxygen partial pressure value

PO2 . The range of values of PO2 obtained at the cathode catalyst

layer is divided into s intervals, then for each interval, the

locationwith the best local convergence is selected. Due to the

iterative process of the 3D simulation process, there are local

convergences of the electrochemical equations. This implies

that, despite having a common convergence criterion, there

are regions with a better correspondence and therefore these

should provide information of a higher quality. Other

reasonable criteria have been tested (consider intervals for jc,

locations homogeneously distributed), with a slightly lesser

performance. These good behaviours are not surprising given

the relative smooth distribution of physical magnitudes along

the catalyst layers.

Fig. 5a and b illustrate graphically the adequacy between

the calculated voltages and the experimental ones (see

Equation (10)) for z¼ 9 and s ¼ 8 for two individuals during the

last iteration of a typical case, which actually corresponds to

the second case presented in the next section. Fig. 5a shows

the relatively poor behaviour of an individual of the first

generations of the genetic algorithm. Genetic algorithms

approach the solution by creating a new generation from the

previous individuals, so younger generations are closer to the

solution. Fig. 5b corresponds to the excellent agreement of the

optimal individual (last generation). Each horizontal line rep-

resents the range of current densities values along the catalyst

layer (see horizontal bar at the top of Fig. 4) corresponding to

one measured point, which has the same experimental

voltage.

The greater the number of location points, the better the

quality of the estimation of the distance between the experi-

mental and the calculated voltage for one individual. A higher

s then implies that the genetic algorithm has a better esti-

mation tool to obtain a solution closer to the one that satisfies

all the operating conditions. However, this also means

increasing the computational time. The selection of the

optimal number of selected locations is therefore a trade-off

between computational cost and required accuracy. This se-

lectionmust also take into account the operating conditions of

the fuel cell, since the greater the differences in the values

along the catalyst layers, the greater the number of locations

that allow smoothing the optimisation errors arising from the

non-linearity of the electrochemical equations. In practice, as

commented above, this is not an issue, given the relatively

smooth distribution of physical magnitudes along the catalyst

layers.

Notice also that the quality of the information provided to

the genetic algorithm, and therefore the results it provides,

depends on the agreement of the simulated conditions of

partial pressures of reactive species and current densities
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Fig. 5 e Representation of the calculated voltage V[i,j], and the experimental target values, Vexp[i], for each of the locations

analysed.
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with the experimental ones. In this sense, since experimental

data are subject to numerous measurement errors and de-

viations due to environmental and measurement conditions,

increasing the amount of data beyond a certain point does not

make much sense. Of course, it is necessary to carry out the

simulations under the condition that the calculated intensity

(the integral of the current density on the membrane) is equal

to the intensity measured experimentally at each point of the

polarisation curve.
Initial simulation

At the start, there is not any existing flow field solution to be

used and only the experimental Ii, i ¼ 1, …, z are available as

input data. Taking a look at Diagram 9, a simple functioning

approach has been derived. For this first iteration, Ii is

considered uniformly distributed along the catalyst layers, so

the density currents in the mentioned diagram ja, jc, are con-

stant. An initial flowfield can then be obtained, and from it the
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Fig. 6 e Diagram of the characterisation process through a combination of GA and CFD. Where i represents the points of the

polarisation curve and j the number of locations selected at each point.
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partial pressures (PO2 , PH2 , PH2O) at the catalyst layers. It has

been observed that averaging these partial pressures provides

a more robust starting point of iteration. With all this infor-

mation, the genetic algorithmmay start testing individuals in

order to choose the optimal one. Notice that for this first

iteration, since ja, jc, PO2 are constant, the interval of possible

values is reduced to a point, so s ¼ 1. Once the optimal indi-

vidual is obtained, the general iteration procedure shown in

the previous subsection may begin. The whole algorithm is

summarised in Fig. 6.

Two computational tools have been developed to imple-

ment this algorithm, both of which include the two electro-

chemical models described previously: a 3D simulation

module for HTPEMFC in OpenFOAM and a Cþþ code for
Table 3 e Parameters to be characterised, search ranges
and values obtained after one and two optimisations.

Parameter Range 1� Iter. 2� Iter.

aa [0e1] 0.667 1 0.674 8

ac [0e1] 0.945 2 0.962 3

jrefa;0 ðA =m2Þ [0e5000] 163.63 161.03

jrefc;0 ðA =m2Þ [0e0.005] 1.455 � 10�5 1.185 � 10�5
optimisation using genetic algorithms. It is recognised that

even with the improvements shown in this section, the

biggest CPU load still resides in the 3D simulations and the

main feature of the optimisation step is robustness. For this

purpose the readily available in-house genetic algorithm

technique developed by the authors in Mustata et al. [22] is

employed. The selection of the optimal individual in each

iteration has been implemented by incorporating the elec-

trochemical equations to this genetic algorithm.
Results and discussions

The method presented has been applied to two case studies,

each one for each electrochemical model developed in Section

HTPEMFC Model and relevant parameters.

Buttler-Volmer model

In the first case study, the data extracted from the experimental

polarisation curve, published by Vali~no et al. [16], have been

used. The fuel cell analysed is a small device, 2� 2 cm, powered

by a mixture of hydrogen and water steam at the anode and a

mixture of oxygen and water steam at the cathode. The
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Fig. 7 e Simulated polarisation curves for each parameter optimisation vs. Experimental polarisation curve.

Table 4 e Physical properties and operation conditions.

Parameter Value

Inlet stoichiometric ratio 1.5

Inlet mass concentration CH2O 0.218

(anode) CH2 0.782

Inlet mass concentration CH2O 0.02

(cathode) CO2 0.23

CN2 0.75

Temperature (K) T 393

Reference pressure (atm) Pref 1

Reference temperature (K) Tref 353

Energy activation Anode (J mol�1) Ea 16 900

Energy activation Cathode (J mol�1) Ec 72 400

Porosity ε 0.5

Anode pressure dependency coefficient ga 0.5

Cathode pressure dependency coefficient gc 1

Protonic conductivity (S m�1) s 2.9

Cathode catalyst layer thickness (m) tCL 1.25 � 10�5

Volume fraction of ionomer Li 0.43

Pt loading (kg m�2) mpt 0.004

Pt fraction f 0.5
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laboratory test was carried out at a constant temperature using

cooling devices, which is necessary to ensure that the data

obtained are consistent with an isothermal numerical model.

The operating conditions of the different points of the curve

and the physical and electrochemical parameters used for the

simulations are shown in Table 2.

The range of parameter values to be optimised by the ge-

netic algorithm is indicated in Table 3 and has been set ac-

cording to their possible values within the described model.

Bard et al. [17], report that the transfer coefficients,ac and aa,

can range from zero to unity. According to Barbir [18], the

exchange current density at 25 �C and 1 atmosphere for the

reactions of hydrogen oxidation and oxygen reduction, with

platinum catalytic, values are around 1 � 10�3 and

1 � 10�9 A cm�2Pt respectively. In addition, the maximum

electrolyte roughness value measured in fuel cells can reach

500 cm2 of catalytic surface area per electrode geometric area,

cm2. In accordance with these references, the upper limit for

the search for jrefa;0 and jrefc;0 has been set at 5000 and 0.005 A m�2

respectively.

By applying the process described above, and after per-

forming two iterations through the characterisation loop, we

obtain the sets of characterised parameters shown in Table 3,

and the polarisation curves illustrated in Fig. 7. In both cases

the curves obtained fit the experimental values, with a root

mean square deviation value of 0.00374 V and 0.00371 V

respectively. The fact that the curves converge after the first

optimisation is due to the operating conditions of the exper-

imental phase being such that they give rise to almost uniform

distributions of the species along the catalyst layer and

therefore the non-linearity of the electrochemical models is

attenuated.

It is worth mentioning that the characterised parameters

differ from those shown in Vali~no et al. [16], because different

models have been used to calculate both the overpotentials

and the Nernst potential value.

Notice that the discrepancies between the simulated and

experimental polarisation curves are due to a combination of
the simplifications of the numerical model itself and the

quality of the information extracted from the experimental

phase.

Agglomerated model

The second case study uses a numerical simulation to replace

the data obtained in the experimental phase. This option has

been considered because the operating conditions of the curve

of the previous experiment do not reflect the concentration

losses at high current densities. Furthermore, it is difficult to

find polarisation curves for HTPEMFC in the literature that

provide the necessary information in order to implement the

process described in this article.

Besides, the numerically simulated experiment allows a

better evaluation of the developed methodology as it elimi-

nates the errors of the experimental measurements. In addi-

tion, it allows us to choose operating conditions that generate
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Fig. 8 e Simulated polarisation curves for each parameter optimisation vs. target polarisation curve. (Eight locations case).

Table 5 e Root mean square deviation of the polarisation
curves obtained for each number of location selection and
iteration. Units in V.

Locations 1�Iter. 2�Iter. 3�Iter. 4�Iter. 5�Iter.

Four 0.036 8 0.006 79 0.001 24 0.000 56 0.000 41

Six 0.036 8 0.012 58 0.001 41 0.000 35 0.000 21

Eight 0.036 8 0.006 32 0.001 08 0.000 27 0.000 09
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irregular current density distributions along the membrane

and therefore to illustrate the potential of selecting locations

from the internal regions in the optimisation process.

The same geometry has been used as in the previous case.

For the range of values of the electrochemical properties of the

agglomerate model, Sousa et al. [20] has been considered as a

reference. Similar electrochemical models are used in that

work and in the present one, avoiding the discrepancies found

in the previous case. Both the electrochemical properties and

the operating conditions chosen for the simulation are shown

in Table 4.

Following the methodology described in Section Charac-

terization process description, three characterisation experi-

ments have been carried out on the same model, using a
Table 6 e Parameters to be characterised, search ranges, value
characterisation case. Comparisons with experimental data.

Parameter Range 1�Iter. 2�Iter.

aa [0.3e0.98] 0.651 0.397

ac [0.3e0.98] 0.803 0.749

irefa;0 ðA m�2Þ [0e720000] 240 418 456 734

irefc;0 ðA m�3Þ [0e10500] 1699 4100

di (nm) [5e100] 18.7 18.5

ragg (nm) [50e1000] 142 119
different number of locations (4, 6 and 8) in each point of the

polarisation curve in order to see their influence on the pro-

cess. In each of them, five iterations through the optimisation

loop have been performed.

Fig. 8 shows the target and simulated polarisation curves

using the optimised electrochemical parameters at each itera-

tion for the case of eight locations. It can be observed that from

the third iteration onward, the polarisation curves already

show a reasonably good fit. The cases of 4 and 6 locations show

similar behaviour and, visually, there are no major differences

between the three cases. However, taking into account the

value of the rootmean square deviation shown inTable 5, it can

be observed that in the following iterations the level of ade-

quacy continues to improve. It can also be seen that, although

there are no great differences, a greater number of locations

allows to reach a better convergence.

Each simulation uses the optimised parameters under the

pressure and current density conditions obtained from the

previous simulation. The values used in the first simulation

have been optimised on the basis of the data obtained from a

simplification of the model as described in Section Initial

simulation. Therefore, the result that it provides differs

notably from the objective, since in this case of study, the
s obtained in each iteration for the 8 locations

3�Iter. 4�Iter. 5�Iter. Exp.

0.666 0.567 0.802 0.5

0.731 0.742 0.736 0.74

631 923 706 203 717 221 80 559

5242 4554 4974 4708

20.3 18.6 18.9 19.1

98 115 112 110
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operating conditions cause the non-linearity of the equations

to be manifested. In the subsequent ones, the data are ob-

tained from a complete simulation and the optimisation is

carried out using the different locations for each point of the

polarisation curve.

In this case study, the values of the parameters to be char-

acterised are known, since the information that replaces the

experimental curve has been carried out by means of a nu-

merical simulation. This allows the optimised parameters to be

compared with the objectives and, in this way, to evaluate the

identification capability of the developed methodology.

Table 6 shows the values of the parameters characterised

in each iteration of the optimisation process for the case of

eight locations, the target values used to obtain the experi-

mental curve and the search ranges used. The characterisa-

tion of the parameters for the other two cases, with a smaller

number of locations, show similar results although with a

slightly lower performance with respect to the target values.

The search limits for the parameters have been set according

to their possible values in the electrochemical model used. As

mentioned in section Buttler-Volmer model, the transfer co-

efficients can take values between 0 and 1.

According to the data provided by Sousa et al. [20], the

reference current densities per unit catalytic area at 80 �C and

1 atm are 1.44 � 103 and 2.63 � 10�4 A m�2Pt. To obtain the

reference current densities as a function of geometrical area,

these values are multiplied by the anode and cathode electro-

lyte roughness, 56 and 223.7 cm2 of catalytic surface area per

electrode geometric area, cm2. It is also necessary to multiply

jrefc;0, by the thickness of the catalyst layer to express its value as a

function of the geometric volume and thus fit the equations of

the implemented model. The upper limits for searching the

reference current densities have been set considering the

values provided by Sousa et al. [20] and a maximum roughness

of 500 of catalytic surface area per electrode geometric area in

both cases. There is a wide variety of values in the literature

concerning the dimensions and composition of agglomerates.

According to the Review of Agglomerate Model Parameters

collected by Dobson et al. [14] and Li S. et al. [19], di values can

vary from 55 nm to 100 nm, while the agglomerate radius can

range from 50 nm to 1000 nm.

Table 6 shows a better agreement of certain parameters

compared to others. This is because their influence on the

model is much greater. The properties of the agglomerate, di
and ragg exhibit a better fit due to the fact that under the

simulated operating conditions there is a strong influence of

the concentration loss phenomenon. The values of the

transfer coefficient and the reference exchange current den-

sity at the cathode also have a great influence on the model

and it can be seen that both have a high fit to the target, and

that this is enhanced at each iteration of the characterisation

process. The anode parameters, on the other hand, not only

show a poor fit in the last optimisation, but their values have

erratic fluctuations in previous iterations, showing that the

model sensitivity to these parameters is significantly lower.

The results obtained are in line with those shown in the

literature, since it is the cathode values that have the greatest

influence and, therefore, those that the optimisation process

best characterises.
Conclusions

The present work develops a methodology and corresponding

numerical tools that allow for the characterisation of elec-

trochemical parameters of HTPEMFCs that are difficult to

measure experimentally. In contrast with previous works, full

3Dmodels have been used. This enhances the accuracy in the

representation of the device behaviour, a most needed prop-

erty in parameter characterisation. The procedure involves

the use of a genetic algorithm in order to search for the best

electrochemical values iteratively. In each iteration, the fluid

dynamics field is frozen and only electrochemical equations

are solved by the genetic algorithm during the optimisation.

The fluid dynamic fields are upgraded at the end of the iter-

ation. This approach significantly reduces the computational

cost, making the procedure feasible on a personal computer.

The methodology presented in this paper has been vali-

dated for two different electrochemical models. As future

work, this technique can also be used to study the loss of ef-

ficiency of fuel cells by following the degradation of their

parameter values at different points in their life cycle. This

would help to derive improved degradation models. Thermal

equations would need to be included in most of these studies.

Other points of improvement are the analysis of sensitivity

and collinearity between parameters, such as the one carried

out by Goshtasbi et al. [23]. This kind of analysis would help

with the selection of the parameters to be optimised, as well

as the design of experimental conditions that wouldminimise

possible collinearity issues among model parameters. Finally,

for some cases, it could be interesting to explore the perfor-

mance of other optimisation alternatives, besides the genetic

algorithm used in this paper.
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