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Abstract: Pseudomonas is characterized by its great capacity to colonize different ecological niches,
but also by its antimicrobial resistance and pathogenicity, causing human, animal, or plant diseases.
Raw and undercooked food is a potential carrier of foodborne disease. The aim of this study was to
determine the occurrence of Pseudomonas spp. among raw vegetables, analysing their antimicrobial
resistance, virulence, and molecular typing. A total of 163 Pseudomonas spp. isolates (12 different
species) were recovered from 77 of the 145 analysed samples (53.1%) and were classified into
139 different pulsed-field gel electrophoresis patterns. Low antimicrobial resistance levels, but one
multidrug-resistant isolate, were found. Among the 37 recovered P. aeruginosa strains, 28 sequence-
types and nine serotypes were detected. Eleven OprD patterns and an insertion sequence (ISPa1635)
truncating the oprD gene of one imipenem-resistant strain were found. Ten virulotypes were observed,
including four exoU-positive and thirty-one exoS-positive strains. The lasR gene was absent in three
ST155 strains and was truncated by different insertion sequences (ISPre2, IS1411, and ISPst7) in
other three strains. High biofilm, motility, pigment, elastase, and rhamnolipid production were
detected. Our study demonstrated a low occurrence of P. aeruginosa (18%) and low antimicrobial
resistance, but a high number of virulence-related traits in these P. aeruginosa strains, highlighting
their pathological importance.

Keywords: biofilm; lasR; OprD; pigment; ST155; virulence

1. Introduction

Vegetables and fresh fruit are important products in a healthy diet. In recent years, the
search for a good lifestyle has led to an increased consumption of fresh products. Never-
theless, vegetables have become increasingly recognised as potential carriers of foodborne
diseases due to various contamination sources, such as dust, soil, manure, irrigation water,
or wild animal faeces [1,2]. Moreover, fresh vegetables which are grown close to the soil, are
often consumed raw, exposing consumers to the risk of infection [3]. Most foodborne dis-
eases are not reported, and sometimes outbreaks may affect a wide number of people. Thus,
there is a special interest to know the epidemiology and spread of foodborne pathogens
that are adaptable to different environmental conditions [4]. Additionally, bacteria can
develop antimicrobial resistance due to spontaneous mutations or acquisition of resistance
mechanisms by horizontal gene transfer. Antimicrobial resistant isolates can also spread
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antimicrobial resistance genes to other commensal and pathogenic bacteria [5]. The role
of food in human exposure to antimicrobial resistant bacteria, as well as a reservoir of
resistance genes, is becoming a growing food safety issue [3].

Pseudomonas is a non-fermenting Gram-negative bacterium that colonizes different
niches, due to their metabolic capacity and broad potential for adaptation to different
conditions [6]. This genus includes a wide variety of species, Pseudomonas aeruginosa
being the most important one. This species is a major opportunistic human pathogen with
increasing medical and veterinary importance. The significance of P. aeruginosa is marked by
its great resistance to antimicrobials and antiseptics and the presence of multiple virulence
factors [6]. P. aeruginosa uses its big arsenal of pathogenicity factors (including adhesins and
secretion toxins, effector proteins, proteases, elastases and pigments) to interfere with host
defences. The type 3 secretion system (T3SS) is a major virulence weapon that contributes
to cytotoxicity and acute infections, injecting potent exotoxins called effectors (ExoU, ExoS,
ExoY and ExoT) into cytoplasm of the host cell due to its syringe form [6,7]. The ExoU
effector is associated with an increased risk of early clinical mortality [8,9]. Furthermore,
it has been demonstrated that the predominance and persistence of this species in food
and on surfaces of food processing plants is related to its ability to form biofilm. Most of
these virulence factors are under the control of a cell density recognition mechanism called
Quorum-Sensing (QS) [10,11]. P. aeruginosa possesses two well-defined and interrelated QS
systems, las and rhl, which are used to regulate gene expression through the production
and secretion of autoinducers, by lasI and rhlI genes, activating LasR and RhlR regulators,
respectively [10].

Previous studies have given information about the detection of Pseudomonas spp. in
food of animal or vegetable origin [1,3,12,13], but there are little data about their antimi-
crobial resistance and virulence phenotype. For this reason, the purpose of this study was
to analyse and characterise the Pseudomonas spp. population in food vegetables, at both
genotypic and phenotypic levels.

2. Results
2.1. Isolates of Pseudomonas spp.

In total, 163 Pseudomonas spp. were isolated from 77 vegetal samples (prevalence of
53.1%), belonging to (number of positive samples): lettuce (18), chard (14), potato (11),
green bean (10), cucumber (9), zucchini (8) and onion/leek (7) (Table S1). Regarding each
sample type, the highest prevalence was detected in lettuce (90%) and chard (70%) samples,
and the lowest one was among the onion/leek samples (26.3%).

The 163 isolates were classified into twelve different Pseudomonas species. P. putida
(51 isolates), P. aeruginosa (50 isolates) and P. mendocina (32 isolates) were the most abundant
ones and were isolated from 46, 26 and 29 samples, respectively (Table 1). Thirty samples
harboured more than one different Pseudomonas species (Table S1).

Table 1. Description of the twelve different Pseudomonas species isolated from raw vegetables, including the number of
isolates and the samples where they were recovered.

Species No. Isolates Samples (No.)

P. putida 51 Chard (11), potato (8), zucchini (7), cucumber (6), lettuce (5), green bean (5), onion/leek (4)
P. aeruginosa 50 Chard (7), lettuce (7), green bean (5), potato (2), zucchini (2), cucumber (2), onion (1)
P. mendocina 32 Lettuce (16), chard (12), potato (1)

P. plecoglossicida 17 Lettuce (5), cucumber (4), chard (3), potato (3), onion/leek (1), green bean (1)
P. monteilii 6 Zucchini (2), onion/leek (2), cucumber (1), chard (1)

P. alcaligenes 1 Lettuce (1)
P. alcaliphila 1 Cucumber (1)

P. chlororaphis 1 Potato (1)
P. fluorescens 1 Zucchini (1)

P. oryzihabitans 1 Green bean (1)
P. otitidis 1 Lettuce (1)

P. punonensis 1 Green bean (1)
163
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2.2. Antimicrobial Susceptibility Testing

The 163 Pseudomonas spp. isolates showed the following resistance percentages to:
aztreonam (42%), imipenem (1.8%), meropenem (1.8%), doripenem (1.8%), piperacillin
(0.6%), and ceftazidime (0.6%). The isolates showed susceptibility to the remaining seven
antibiotics tested. Fifty-four per cent of the isolates were susceptible to all antibiotics tested
(Table S1). Conversely, one P. fluorescens isolate (Ps876), recovered from a zucchini collected
in an orchard, showed a multidrug-resistance phenotype, showing resistance to imipenem,
meropenem, doripenem, ceftazidime and aztreonam (Table S1).

None of the 163 isolates showed class A carbapenemase, metallo-beta-lactamase (MBL)
or extended spectrum beta-lactamase (ESBL) phenotypes, whereas the AmpC inducible
phenotype was detected in 31% of the isolates, which included all P. aeruginosa isolates and
the multidrug resistant P. fluorescens isolate (Ps876) (Table S1).

2.3. Molecular Typing

One hundred and thirty-nine different pulsed-field gel electrophoresis (PFGE) patterns
were detected among the 163 Pseudomonas spp. (Table S1), and regarding the 50 P. aeruginosa
isolates, 36 PFGE patterns were observed (Table 2). Indistinguishable patterns were only
detected among isolates from the same sample, selecting one strain for next steps; except
for two P. aeruginosa isolates that showed the same PFGE pattern, but they were recovered
from two different chard samples (Tables 2 and S1). One strain with different PFGE pattern
and species per sample were included in further studies. Additionally, three P. putida
isolates from the same cucumber were included because they showed the same PFGE
profiles but different resistance phenotypes. After these criteria, 142 Pseudomonas spp.
strains were chosen: 105 strains corresponding to Pseudomonas non-aeruginosa species and
37 P. aeruginosa strains (Table S1).

Twenty-eight different sequence types (ST) were determined among the 37 P. aeruginosa
strains using Multilocus sequence typing (MLST) method (Table 2). Eight of them (ST2416,
ST2427-ST2432 and ST2448) were first described in this study and named by the MLST
database. Seven ST were repeated more than once: ST155, ST274, ST982, ST1226, ST1228,
ST2416 and ST2432 (Table 2 and Figure 1). The P. aeruginosa strains were distributed into
three clusters (Cluster I, II and III) when a phylogenetic tree based on the MLST was
obtained (Figure 1). Cluster I was an outlier and only included the Ps760 strain (ST2448).
Cluster II included the new high-risk clone ST155, whereas the cluster III possessed the
intercontinental clones, ST253, ST274 and ST395. The new ST were distributed between
both clusters.

2.4. Serotyping

Nine different serotypes were identified in these 37 P. aeruginosa strains, in addition to
five non-agglutinable (Ps798, Ps839, Ps884, Ps892 and Ps913) and one poly-agglutinable
(Ps796) strains. Serotype O:6 was the most predominant (40.5%), followed by O:5 (10.8%)
and O:1 (8.1%) (Table 2). Serotypes O:2, O:7, O:10, O:12; O:13, O:14 and O:15 were not
found in this study. Strains belonging to the same ST showed the same serotype, except for
ST155 strains that were non-agglutinable or O:6 serotype (Table 2).
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Table 2. Genotypic and phenotypic characteristics of the 37 P. aeruginosa strains recovered from food vegetables.

Strain Origin PFGE Serotype a MLST
Resistance

Phenotype a
OprD

Pattern b
Virulence
Pattern c

Biofilm (%) d Pigments (%) d
Elastase

(%) d
Motility (mm2) Rhamnolipids

(mm)CV FDA Pyocyanin Pyorubin Swimming Swarming

Ps720 Cucumber P11 O:5 ST277 - F I 103.1 197.2 443.4 154.7 390.0 6400.0 4637.6 17
Ps733 Lettuce P1 O:11 ST2427 e - D VIII 90.0 42.4 68.6 67.6 376.2 1748.6 383.9 16
Ps734 Lettuce P12 O:6 ST1090 - B I 204.0 161.4 91.0 71.7 240.2 6400.0 6400.0 18
Ps752 Chard P2 O:6 ST385 - B I 434.3 846.8 51.4 138.2 326.9 1267.5 555.4 20
Ps756 Potato P3 O:6 ST2429 e - B I 113.0 142.3 144.1 93.4 279.8 6400.0 6400.0 20
Ps757 Potato P5 O:6 ST2430 e - B I 138.8 609.8 101.7 84.3 368.6 6400.0 6400.0 17
Ps760 Lettuce P24 O:8 ST2448 e - H III 136.4 333.5 607.9 296.2 380.6 68.7 40.1 17
Ps764 Onion P25 O:6 ST155 - B IV 157.0 325.0 22.8 167.0 51.9 2158.5 542.8 15
Ps775 Lettuce P4 O:6 ST782 - B I 260.6 547.3 62.3 68.5 158.5 6400.0 6400.0 19
Ps786 Lettuce P26 O:9 ST2351 - B I 190.0 620.4 127.7 142.6 228.9 6400.0 6400.0 20
Ps791 Potato P6 O:4 ST1033 - B I 155.2 603.4 45.0 111.5 133.5 6400.0 6400.0 18
Ps793 Potato P7 O:5 ST2428 e - E I 203.0 101.1 557.4 347.3 948.7 6400.0 6400.0 17
Ps794 Lettuce P8 O:3 ST274 - B I 167.1 43.2 149.5 106.5 420.9 6400.0 5969.0 18
Ps795 Lettuce P9 O:6 ST1135 - B I 190.0 72.7 84.1 100.0 170.8 6400.0 6400.0 17
Ps796 Green

bean P27 PA ST2411 MEM; ATM C VI 600.0 875.7 91.8 600.5 167.6 5363.7 97.2 14

Ps798 Green
bean P28 NA ST2431 - B III 121.3 26.2 123.2 135.2 74.4 6400.0 6267.7 19

Ps801 Green
bean P29 O:6 ST2432 e - B I 123.8 243.8 141.5 134.2 246.7 6400.0 6400.0 17

Ps804 Cucumber P30 O:6 ST982 - B I 189.4 138.0 355.7 213.2 350.3 6400.0 6400.0 18
Ps805 Lettuce P10 O:6 ST2432 e - B I 141.7 183.6 92.7 95.2 214.3 6400.0 6400.0 20
Ps837 Green

bean P15 O:6 ST1226 - B I 184.4 125.8 120.1 76.9 260.9 6370.2 6400.0 19
Ps838 Chard P13 O:6 ST982 - B I 188.8 155.2 481.3 266.6 1017.3 6400.0 6400.0 18
Ps839 Chard P14 NA ST155 IPM B IV 208.5 694.0 66.9 606.8 162.2 865.7 134.3 17
Ps845 Chard P16 O:6 ST155 - B IIa 510.6 801.9 3877.5 6880.3 1195.7 272.4 56.1 14
Ps846 Chard P22 * O:1 ST1228 - I I 174.8 46.4 1249.9 980.1 1535.7 6400.0 6400.0 19
Ps848 Zucchini P17 O:11 ST1232 - G I 126.3 54.4 7013.9 4902.2 6331.2 6400.0 6400.0 17
Ps849 Chard P22 * O:1 ST1228 - I I 186.7 52.3 154.8 121.5 281.6 6400.0 6400.0 19
Ps851 Green

bean P18 O:5 ST244 - A I 65.0 89.9 780.9 229.6 265.7 6400.0 6400.0 -

Ps852 Green
bean P19 O:5 ST267 - J IIb 332.4 700.4 2245.2 2070.5 493.9 342.1 167.5 16

Ps854 Zucchini P20 O:1 ST252 - B I 118.1 103.7 132.3 69.9 231.7 6400.0 6400.0 17
Ps855 Zucchini P21 O:16 ST253 - C V 112.8 75.2 2355.4 1119.6 1750.2 6400.0 6400.0 16
Ps857 Chard P23 O:6 ST1226 - B I 157.6 219.7 111.5 81.5 482.9 6014.5 6400.0 19
Ps858 Chard P31 O:3 ST274 - B I 159.0 148.6 166.5 111.1 430.4 6400.0 5892.1 17
Ps883 Zucchini P32 O:11 ST1284 - C V 952.1 652.8 7.6 144.7 95.6 2532.6 187.6 14
Ps884 Green

bean P33 NA ST2416 e IPM K VII 276.4 292.4 4.8 133.5 25.0 25.2 38.3 -
Ps892 Chard P34 NA ST155 - B IV 155.5 259.1 335.2 1005.7 210.8 84.5 69.8 18
Ps893 Chard P35 O:6 ST395 - B IIc 55.8 85.3 13.2 382.2 55.9 21.6 30.0 11
Ps913 Chard P36 NA ST2416 e - A VII 241.3 863.8 3.8 88.1 24.5 261.6 48.4 12

a NA, non-agglutinable; PA, poly-agglutinable; -, this strain was susceptible to all 13 antibiotics tested; ATM, aztreonam; IPM, imipenem; MEM, meropenem. b The OprD patterns are described in Table S2.
c Virulence profiles are defined in Table S3. d Percentages determined by comparison with P. aeruginosa PAO1 (100%). e New MLST. * Ps846 and Ps849 showed the same PFGE pattern, but they were recovered
from different chard samples (Table S1).
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Figure 1. Maximum-likelihood phylogenetic tree based on the sequence type (MLST) and phenotypic characteristics of the
37 P. aeruginosa strains analysed in this study. The phylogenetic tree was obtained using the IQTREE v.1.6.1 [14] software.
The iTol v.4 [15] program was used to visualise the phylogenetic tree and to perform the eight heatmaps. In order: biofilm
biomass production (CV), bacterial metabolic activity inside the biofilm (FDA), pyocyanin and pyorubin production, elastase
activity, swimming and swarming motility and rhamnolipids production. Legend values belong to the minimum and
maximum data for each phenotypic assay (Table 2). The three clusters (I, II and III) were marked with different colours:
yellow (Cluster I), red (Cluster II) and blue (Cluster III).

2.5. Characterisation of Porin OprD

The oprD gene was amplified in all P. aeruginosa strains, and eleven amino acidic OprD
profiles were distinguished (Tables 2 and S2). Only two strains had the same pattern as
P. aeruginosa PAO1 (pattern A, wild type), and pattern B was the most frequently detected
(23 strains). The deletion of two amino acids in the region from amino acid 372 to 383 of the
loop 7 (loop L7-short), which encodes a protein OprD of 441 amino acids, was identified
in 24 strains (64.8%) (patterns B and E) (Tables 2 and S2). Regarding the two imipenem-
resistant strains, pattern B was observed in Ps839 strain, and the Ps884 strain showed the
oprD gene truncated by the insertion sequence ISPa1635 at nucleotide position 561 (pattern
K). This insertion sequence belongs to the IS4 family, and this is the first description of
ISPa1635 truncating oprD gene. Thus, the sequence was included in GenBank with the
accession number MH050332.

A total of 11 P. aeruginosa strains (one per pattern) with different protein OprD profiles
were selected to study their outer membrane proteins by SDS-PAGE. The OprD band was
detected in all tested strains except in pattern K, which corresponded to the strain with
ISPa1635 element truncating the oprD gene.
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2.6. Virulence Patterns

The presence of virulence and QS genes was investigated in the 37 P. aeruginosa strains,
and ten different virulence patterns were obtained (Tables 2 and S3). Regarding the T3SS,
exoU gene was detected in 4 P. aeruginosa strains and exoS in 31 strains. Neither exoU nor
exoS genes were amplified in two strains (pattern VII). Moreover, exoA and exoY genes
did not amplify in one and three strains, respectively. The exoT, lasA, lasB, aprA, rhlAB,
rhlC, rhlI, and rhlR genes were detected in all strains, whereas exlA gene was absent in
all of them. The lasI and lasR genes, involved in the QS system, were not amplified in
three strains (pattern IV) that belonged to ST155 (Ps764, Ps839, Ps892). In the remaining
ST155 strain (Ps845), as well as in two more strains (Ps796, Ps852), the lasR amplicon sized
higher than 2,000 bp, resulting in the first description of three insertion sequences (IS1411,
ISPre2, and ISPst7, respectively) and truncating this gene (Table 2 and Figure 2). All lasR
sequences were submitted in GenBank (accession number): IS1411 (MH050330), ISPre2
(MH050329), and ISPst7 (MH050331). Finally, the lasR gene of Ps893 strain sized lower than
expected, 647 instead of 720 bp, due to the presence of a deletion at the beginning of the
gene (Figure 2).
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Figure 2. Representation of truncated lasR genes found among our P. aeruginosa strains. The position
and orientation of the gene and insertion sequences are indicated by arrows: (a) lasR gene (PA1430)
of the control strain P. aeruginosa PAO1 (NCBI accession number NC_002516); (b) Ps893 strain, lasR
size is 647 bp due to the presence of a deletion at the beginning of the gene; (c) Ps852 strain, lasR
truncated at position 125 bp by the insertion sequence ISPst7 (1193 bp) (GenBank accession number
MH050331); (d) Ps796 strain, lasR truncated at position 125 bp by the insertion sequence ISPre2
(1190 bp) (GenBank accession number MH050329); (e) Ps845 strain, lasR truncated at position 595 bp
by the insertion sequence IS1411 (1419 bp) (GenBank accession number MH050330).

2.7. Biofilm Quantification

Table 2 and Figure 1 summarise the biofilm biomass production (CV) and the bacterial
metabolic activity inside the biofilm (FDA) of the 37 P. aeruginosa strains. The 92% of
P. aeruginosa strains displayed higher values for biomass biofilm production than P. aerug-
inosa PAO1. Ps883 and Ps796 strains showed the highest percentages (952% and 600%,
respectively), whereas Ps893, Ps851 and Ps733 exhibited the lowest ones (56, 65 and 90%,
respectively). For FDA assay, 73% of strains showed more metabolic activity than the
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control strain P. aeruginosa PAO1. Ps752, Ps796, Ps845, Ps852 and Ps913 were the highest
producers (>700%), and Ps798 the lowest producer (26.2%). Likewise, strains that had
an absent or truncated lasR gene showed high levels of biomass production and bacterial
metabolic activity inside the biofilm, except for Ps893 that showed low levels in comparison
with reference P. aeruginosa PAO1 strain.

2.8. Motility

The different swarming and swimming patterns detected among the 37 P. aeruginosa
strains are included in Figure S1. Analysing the swimming results, many strains belonging
to the Cluster III showed higher motility than the remaining ones (Table 2 and Figure 1).
In fact, 23 of 37 strains (62.1%) covered the entire Petri dish surface (5363.7 to 6400 mm2)
in swimming and swarming. Ps893 and Ps884 strains described the lowest swimming
(21.6 and 25.2 mm2) and swarming (30.0 and 38.3 mm2) values (Table 2 and Figure 1).
Ps796 showed a high value of swimming (5363.7 mm2) but showed a low swarming value
(97.2 mm2).

P. aeruginosa strains having an absent or truncated lasR gene showed medium and low
levels of motility, except the Ps796 swimming (Table 2 and Figure 1). Ps892 (absent gene)
and Ps893 (truncated gene) showed the lowest motility values. Considering the strains
which carried an insertion sequence truncating the lasR gene (patterns IIa, IIb and VI), the
swarming levels were lower than the swimming motility ones.

2.9. Elastase and Pigment Production

Results for quantification of pyorubin and pyocyanin production as well as elastase
activity are summarised in Table 2 and Figure 1.

For pyorubin assay, 70.2% of strains showed high levels of production in comparison
with P. aeruginosa PAO1. Besides, Ps845, Ps848 and Ps852 showed the highest levels of
pyorubin. Conversely, 27% of strains were the lowest pyorubin producers, highlighting
Ps733, Ps775 and Ps854 strains. For the pyocyanin values, 62% showed high levels of
production, being Ps845 and Ps848 the most producers. Conversely, fourteen strains
showed low levels in comparison with reference strain, and Ps883, Ps884 and Ps913 strains
were the weakest producers. The four strains with an absent or truncated lasR gene showed
low levels of pyocyanin production.

Regarding elastase activity assay, 83.7% of strains showed high levels of activity in
comparison with P. aeruginosa PAO1. Ps846 and Ps855 were the most important elastase
producers (Table 2 and Figure 1).

2.10. Rhamnolipids Detection

Figure S2 shows some of the results obtained with the rhamnolipid assays in P. aeruginosa
strains. The 94.6% of the strains showed halos ≥11 mm (the minimum value observed),
many of them (10 strains) with halos ranging 19–20 mm of diameter (Table 2 and Figure 1).
Ps851 and Ps884 did not produce rhamnolipids.

3. Discussion

Food and the environment have been described as reservoirs of bacteria harbouring
antimicrobial resistance genes that could be transferred or mobilised into human pathogens.
Moreover, the extensive use and even the misuse of antimicrobial agents in clinic, ani-
mal production, and agriculture could be a way to select and disseminate these resistant
human pathogens [5], and among them Pseudomonas genus. Some reports showed differ-
ent clinical cases caused by environmental Pseudomonas, such as P. mendocina, P. monteilii
or P. putida [16–19], although P. aeruginosa is the most important pathogenic bacterium.
In our study, the 53.1% of fresh vegetables were positive for Pseudomonas spp., and let-
tuce and chard were the most frequently contaminated vegetables, as well as in previous
studies [12,13]. According to our results and previous reports [1,20,21], the vegetables cul-
tivated in contact with the soil may be contaminated more easily with Pseudomonas coming
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from soil, fertilizers, manure or water used for irrigation. In contrast, the lowest presence
of Pseudomonas spp. was among onion samples. This fact could be due to the layered
structure of the onion and/or the bioactive compounds present in onions [22–24]. Previous
studies revealed that fresh onions, even onion wastes, exhibited high antimicrobial activity
against bacteria such as Escherichia coli, P. fluorescens and Bacillus cereus, among others.

Antibiotic susceptibility testing revealed that all Pseudomonas spp. were susceptible
to aminoglycosides and fluoroquinolones, and they showed low resistance rates for aztre-
onam and carbapenems. Only two imipenem-resistant P. aeruginosa strains were detected,
and none of them were an MBL producer. The imipenem-resistance of Ps884 strain was
associated with the loss of function of its OprD porin due to the truncation of the oprD
gene by the insertion sequence ISPa1635. The inactivation of this porin gene by insertion
sequences has been deeply studied in clinical strains [25–27], but this is the first time
that the ISPa1635 has been identified in a P. aeruginosa from food origin and truncating
oprD gene. Conversely, the imipenem-resistant Ps839 strain showed the same amino acid
changes detected in the OprD porin as those reported in carbapenem-susceptible P. aerug-
inosa isolates [28,29]. Thus, other resistance mechanisms such as active efflux pumps or
AmpC hyperproduction could be involved in that phenotype.

Considering P. aeruginosa QS genes, rhlI and rhlR genes were amplified in all P. aerug-
inosa strains. However, lasI and lasR genes were not detected in three strains; the other
three strains showed insertion sequences truncating the lasR gene (IS1411, ISPst7 and
ISPre2), and one strain showed a short lasR gene leading the possibility of losing the QS
function. Several reports have mentioned the frequency of lasI and lasR mutations, or the
lack of lasR gene among clinical and environmental isolates to favour their adaptation or
persistence [30–32]. They have also demonstrated that a mutation in lasR does not lead
to virulence factors loss, due to the regulation mediated by the rhl system, taking control
of the phenazines production or rhamnolipids synthesis [10]. In addition, there are two
other QS mechanisms, the Pseudomonas quinolone signal (PQS) and the integrated quorum
sensing (IQS) mechanism, able to replace, in many cases, the LasR function [6,10]. Regard-
ing our phenotypic results, it is important to remark that a high percentage of analysed
P. aeruginosa showed high levels of biofilm, pigments and rhamnolipids production, and
elastase activity even those with an absent or truncated lasR gene; however, in these cases,
the strains were not as mobile as the remaining strains. Nevertheless, the hypothesis of the
action of other QS mechanisms could demonstrate the pathological importance of these
P. aeruginosa strains.

In P. aeruginosa, the T3SS mechanism contributes to cytotoxicity and acute infections [6,7].
The exoU gene was detected in four strains, all of them situated in the same branch of the
MLST cluster, including the ST253 [33] and the new one ST2427, and belonging to O:11
serotype or poly-agglutinable, as other reports [34]. Usually, the exoU gene is described in
clinical isolates, but it has also been detected in environmental strains [29,35].

The pathogenicity and host adaptation of P. aeruginosa is associated with its worldwide
dissemination and specific sequence types. Among all sequence types detected, unlike
other reports regarding clinical isolates, the most important “high-risk clones” ST111, ST175
and ST235, were not found. However, intercontinental clones disseminated worldwide,
newest high-risk clones, such as ST155 and ST244 [36,37], as well as the epidemic clone
ST274 circulating in Spain [38,39], were detected. All of those, including ST252, ST253, and
ST395 epidemic clones were also previously observed in clinical animal and environmental
samples [36,40–42]. However, none of the epidemic clones showed the same pathogen
phenotype. In this case, the low motility but high biofilm production that possessed the
STs from the second cluster, where ST155 clone was included. Conversely, the P. aeruginosa
strains belonging to the third cluster exhibited higher motility, where high-risk clones
ST253, ST274 and ST395 were englobed. However, there are some exceptions, such as
P. aeruginosa strains with lacked or truncated lasR gene, Ps852 (ST267), Ps893 (ST395)
or Ps764, Ps839, Ps845 and Ps892 (ST155). Further studies are needed to delve into the
relationship between the genotype and phenotype of these epidemic clones because, to the
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best of our knowledge, this is the first time the analysis of this relationship is described in
environmental samples.

4. Materials and Methods
4.1. Bacterial Isolates

One hundred and forty-five samples of raw vegetables were recovered from orchards
(82 samples) and little markets (63 samples) of different areas of La Rioja region (Spain),
during 2015. Samples were divided as follows: 20 lettuces (Lactuca sativa), 22 cucumbers
(Cucumis sativus), 20 zucchinis (Cucurbita pepo), 23 onions/leeks (Allium cepa/Allium ampelo-
prasum var. porrum), 20 potatoes (Solanum tuberosum), 20 green beans (Phaseolus vulgaris)
and 20 chards (Beta vulgaris var. cicla).

A quantity of 30–35 g of each sample was enriched in 100 mL of Tryptose Soy Broth
(Becton Dickinson, Franklin Lake, NJ, USA), and homogenised in a stomacher. A suspen-
sion volume (40 mL) was incubated at 37 ◦C during 24 h in agitation. Then, 100 µL of
this suspension was streaked onto Cetrimide-agar plates (Becton Dickinson, Le Pont de
Claix, France) and incubated at 42 ◦C during 24–48 h. Two or three different colonies per
plate, presumptive of being Pseudomonas, were selected, identified by classical biochemical
methods (Triple Sugar Iron and oxidase tests), and confirmed by PCR amplification and se-
quencing of 16S rRNA fragment [28] and by Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight (MALDI-TOF) mass spectrometry (Bruker, Billerica, MA, USA).

4.2. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing was performed by disc diffusion method following
the Clinical and Laboratory Standards Institute guidelines [43]. Thirteen antipseudomonal
agents were tested (disc concentration), including piperacillin-tazobactam (100/10 µg),
piperacillin (100 µg), aztreonam (30 µg), cefepime (30 µg), ceftazidime (30 µg), imipenem
(10 µg), meropenem (10 µg), doripenem (10 µg), tobramycin (10 µg), gentamicin (10 µg),
amikacin (30 µg), netilmicin (30 µg), and ciprofloxacin (5 µg). ESBL, MBL, class A car-
bapenemase and inducible AmpC phenotypes were determined by double-disc synergy
tests [29].

4.3. Molecular Typing

The clonal relationship among the recovered isolates was determined by PFGE with
SpeI restriction enzyme [28]. PFGE patterns were analysed by the Java program GelJ using
the Dice coefficient [44].

MLST for P. aeruginosa was performed by PCR and sequencing [29,45]. Allelic profiles
and sequence types (STs) were assigned according to the PubMLST database (http://
pubmlst.org/paeruginosa/ accessed on April 2016). A maximum-likelihood phylogenetic
tree, relating the sequence types of the P. aeruginosa strains, was performed using IQTREE
v.1.6.1 [14], and visualised with iTol v.4 [15].

4.4. Serotyping

P. aeruginosa strains were serotyped by slide agglutination according to the Interna-
tional Antigenic Typing Scheme (IATS), using 16 type O monovalent antisera specific for
P. aeruginosa (O:1 to O:16) following the manufacturer’s protocol (Bio-Rad, Temse, Belgium).

4.5. Characterisation of Porin OprD

Amino acid changes of the porin OprD were analysed by PCR and sequencing in all
P. aeruginosa strains [29]. The mutations were determined by comparison with the sequence
of the control strain P. aeruginosa PAO1 (GenBank accession number AE004091).

The outer membrane proteins (OMPs) of selected strains were stained with Coomassie
Brilliant Blue and were visualised by SDS-PAGE (Sodium Dodecyl Sulphate-PolyAcrylamide
Gel Electrophoresis) in a Bio-Rad Mini-Protean II apparatus (Bio-Rad, Temse, Belgium) as

http://pubmlst.org/paeruginosa/
http://pubmlst.org/paeruginosa/
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previously described [46]. P. aeruginosa PAO1 and PAO1 lacking-OprD were included as
control strains.

4.6. Detection of Virulence Marker Genes

The presence of exoU, exoS, exoY, exoT, exlA, exoA, lasA, lasB, aprA, rhlAB, rhlC, rhlI, rhlR,
lasI, and lasR virulence and QS genes was analysed by PCR in P. aeruginosa strains [47].

4.7. Biofilm Quantification

The analysis of the total biofilm biomass was performed by crystal violet (CV) staining,
and the bacterial metabolic activity inside the biofilm structure by fluorescein diacetate
(FDA) assay among P. aeruginosa strains [47]. Both methods were carried out in flat-bottom
microtiter 96-well plates after 24 h of bacterial incubation in Müeller–Hinton broth at 37 ◦C.
For CV assay, 66% acetic acid and 10% CV were used, and the FDA working solution
concentration was 0.1 mg/mL. Measures were performed using a POLARstar Omega
microplate reader (BMG Labtech, Ortenberg, Germany). All assays were carried out in
triplicate, including P. aeruginosa PAO1 as control.

4.8. Motility

Swarming and swimming motilities were studied in P. aeruginosa strains [47], placing
4 µL of bacterial suspension (1 × 109 cells in Luria–Bertani (LB) broth) on the middle of
0.5% (swarming) and 0.3% (swimming) LB agar plates and subsequent incubation at 37 ◦C
overnight. The plates were imaged with Chemi Doc system (Bio-Rad, Temse, Belgium),
and processed with Image Lab software (version 6.0.1, Bio-Rad). The entire plate area
was 6400 mm2. All assays were performed in triplicate, including P. aeruginosa PAO1 as a
control strain.

4.9. Elastase and Pigment Production

Bacteria were grown overnight in LB broth at 37 ◦C with shaking at 120 rpm. Af-
ter centrifugation, 900 µL of supernatant was used to determine the elastase activity in
P. aeruginosa strains by the Elastin Congo Red assay as previously described [48].

The chloroform extract method was used to quantify pyocyanin and pyorubin phenazines
by measuring the absorbance of the corresponding solutions: the organic phase at 520 for
pyocyanin, and the aqueous phase at 525 nm for pyorubin, using a POLARstar Omega
microplate reader (BMG Labtech, Ortenberg, Germany) [49], and including P. aeruginosa
PAO1 as control.

4.10. Rhamnolipids Detection

The detection of P. aeruginosa biosurfactant producers was carried out by the Cetyl
Trimethylammonium Bromide–Methylene Blue (CTAB-MB) agar plates method [50–52].
One colony of each P. aeruginosa strain studied was inoculated in 3 mL of mineral salt
medium (MSM) broth and was incubated at 35 ◦C and 130 rpm during 48 h. Following
previous procedures, shallow wells of 6 mm were cut on the CTAB-MB agar plate surface.
Twenty microliters of the inoculum were added into each well. The plates were incubated
for 24–48 h at 35 ◦C, and then stored in the fridge for at least 24 h, to intensify the blue
colour of the plates to facilitate the recognition of the rhamnolipids production. The halo
was measured (mm). P. aeruginosa PAO1 was used as a positive control.

5. Conclusions

Pseudomonas strains contaminating fresh vegetables were found in this work, especially
in lettuce and chard. A variety of different Pseudomonas species, including pathogenic
to humans, such as P. aeruginosa, P. mendocina, P. monteilii or P. putida were detected.
P. aeruginosa was recovered from 26 (17.9 %) of the vegetable samples and belonged to
many different clones, comprising some international clones. Moreover, these strains
showed low resistance to antibiotics but high presence of virulence-related traits, as high
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biofilm, pigments and rhamnolipids production. P. aeruginosa is an opportunistic human
pathogen, and the food chain might be a source of transmission to humans. Identifying
the natural reservoirs of this important pathogen and elucidating its molecular biology
are crucial tasks in the pursuit of minimising its transmission. For all these reasons, the
application of proper hygiene practices along the food production/supply chain is essential,
not only for vegetable workers, but also for consumers.
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