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Abstract
An efficient modification of the Chebyshev method is constructed from approx-
imating the second derivative of the operator involved by combinations of the
operator in different points and it is used to locate, separate, and approximate
the solutions of a Chandrasekhar integral equation from analysing its global
convergence.
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1 INTRODUCTION

A large number of problems in applied mathematics and engineering are solved by finding the solutions of nonlinear
systems of equations, differential equations, boundary value problems, integral equations, and so forth. Rarely, the solu-
tions of these equations can be found in closed form,1-3 so that we often follow a procedure for modeling the equations
and obtain equations of the form F(x) = 0, which are usually solved by iterative processes that approximate their solu-
tions. Iterative processes start from one or several initial approximations and a sequence is constructed that converges to
a solution of an equation.

So, for a general situation, we consider the equation F(x) = 0, where F is a nonlinear operator defined on a non-empty
open convex domain Ω of a Banach space X with values in a Banach space Y , and a one-point iterative process of
the form

xn+1 = Ψ(xn), n ≥ 0, for given x0, (1)

where Ψ ∶ X → X , to approximate a solution of F(x) = 0. For this, we need to see that the solution exists and the
sequence (1) converges to this solution.

As we can see in Reference 4, it is well-known that the efficiency index of an iterative method in the scalar case is
EI = q1∕q2

1 , where q1 is the order of convergence and q2 the number of new computations of F and its derivatives per
iteration, and represents a good measure of the efficiency of the iterative method.

For one-point iterative methods of order q2, it is imposed in Reference 4 the restriction of depending explicitly on
the first q2 − 1 derivatives of the function involved. Moreover, for these kind of methods, we know that q2 = q1 (q1 ∈ N)
and EI = q1∕q1

1 , so that the best situation is obtained for q1 = 3, namely, for third-order one-point iterative methods. The
best known one-point iterative methods are the Chebyshev method,5 the Halley method,6 and the Super-Halley method.7
However, for nonlinear systems, third-order methods are not considered as the most favorable, rather the Newton method
is, although its efficiency index EI = 21∕2 is worse. This is due to the fact that the efficiency index does not consider other
determinants.

For example, if we consider the case of solving nonlinear systems of dimension n, F(x1, x2, … , xn) = 0, where F ∶
Ω ⊆ Rn → Rn is a nonlinear function and F ≡ (F1,F2, … ,Fn) with Fi ∶ Ω ⊆ Rn → R, i = 1, 2, … ,n, it is necessary to
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compute the n functions Fi (i = 1, 2, … ,n) for computing F. Moreover, for x = (x1, x2, … , xn), the computation of F′,

F′(x) =

⎛⎜⎜⎜⎜⎜⎝

(F1)1(x) (F1)2(x) … (F1)n(x)
(F2)1(x) (F2)2(x) … (F2)n(x)

⋮ ⋮ ⋱ ⋮

(Fn)1(x) (Fn)2(x) … (Fn)n(x)

⎞⎟⎟⎟⎟⎟⎠
,

requires the computations of the n2 partial derivatives of first order, and the computation of F′′,

F′′(x) =

⎛⎜⎜⎜⎜⎜⎝

(F1)11(x) (F1)12(x) … (F1)1n(x) (Fn)11(x) (Fn)12(x) … (Fn)1n(x)
(F1)21(x) (F1)22(x) … (F1)2n(x) (Fn)21(x) (Fn)22(x) … (Fn)2n(x)

⋮ ⋮ ⋱ ⋮ … ⋮ ⋮ ⋱ ⋮

(F1)n1(x) (F1)n2(x) … (F1)nn(x) (Fn)n1(x) (Fn)n2(x) … (Fn)nn(x)

⎞⎟⎟⎟⎟⎟⎠
,

requires the computations of the n2(n + 1)∕2 partial derivatives of second order. In addition, the application of Newton’s
method,

⎧⎪⎨⎪⎩
x0 given in Ω,
F′(xn) 𝛿n = −F(xn), n ≥ 0,
xn+1 = xn + 𝛿n,

(2)

to solve the nonlinear system of n equations requires n2 + n evaluations of functions per iteration, whereas a one-point
third-order method, as for example the Chebyshev method (which is possibly the most used, since its algorithm is the
most simple),

⎧⎪⎪⎨⎪⎪⎩

x0 given in Ω,
F′(xn) 𝛿n = −F(xn), n ≥ 0,
F′(xn) 𝛾n = (−1∕2) F′′(xn) 𝛿2

n,

xn+1 = xn + 𝛿n + 𝛾n,

requires n2(n + 1)∕2 evaluations of functions per iteration more than the Newton method. Therefore, it is better to use
the Newton method than the Chebyshev method for solving nonlinear systems of n equations with n ≥ 2, see Figure 1.

Another important point to bear in mind when choosing an iterative method is the number of operations (products
and divisions) needed to apply it, which we define as computational cost of doing an iteration of the algorithm. So, the
Newton method requires

(n3 + 6n2 − 4n)∕3

operations to do an iteration (see (2)), whereas the Chebyshev method requires us to do the same operations plus the
products (−1∕2) F′′(xn) 𝛿2

n (n3 + n2 + n operations) and the solution of the linear system

F′(xn) 𝛾n = (−1∕2) F′′(xn) 𝛿2
n

(2n2 − n operations). Therefore, the computational cost per iteration of the Chebyshev method is

4n3 + 15n2 − 4n
3

,

which is higher than that of the Newton method. As a consequence, it is clear that the application of the Newton method
is a better option than the Chebyshev method for solving nonlinear system of n equations, as we can see Table 1.
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n
4 6 8 10

1.02

1.04

1.06

1.08

1.1

1.12

Chebyshev

Newton

F I G U R E 1 Efficiency index of the Newton and the Chebyshev methods for nonlinear systems, respectively 21∕(n2+n) and 32∕(n3+3n2+2n)

T A B L E 1 Number of evaluations of functions and computational cost per iteration when the
Newton and the Chebyshev method are applied to solve nonlinear systems of n equations

The Newton method The Chebyshev method

n n2 + n (n3 + 6n2 − 4n)∕3 (n3 + 3n2 + 2n)∕2 (4n3 + 15n2 − 4n)∕3

10 110 520 660 1820

50 2550 46,600 66,300 1,79,100

100 10,100 3,53,200 5,15,100 13,83,200

From the above-mentioned, our interest is focused on constructing iterations from a modification of the Chebyshev
method which reduces the number of evaluations of functions and the computational cost. So, we consider an iterative
process, as a modification of the Chebyshev method, with cubical convergence which is more efficient that the Newton
and the Chebyshev methods. This iterative process is given by the following algorithm:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x0 given in Ω,

yn = xn − [F′(xn)]−1F(xn),

zn = xn + p (yn − xn), p ∈ (0, 1] ,

xn+1 = xn − 1
p2 [F′(xn)]−1 ((p2 + p − 1)F(xn) + F(zn)

)
, n ≥ 0,

(3)

which is constructed in Reference 8 from the Chebyshev method by using a slight modification of a technique developed
in Reference 9 to obtain iterative processes of the form (1). The idea used in Reference 8 is to approximate the second
Fréchet derivative of the operator F in the Chebyshev method by means of only combinations of F in different points,
so that F′′ is not used and F′ is only evaluated in xn. With this modification of the Chebyshev method, the number of
evaluations of functions and the computational cost are considerably reduced, the efficiency is improved and the order
of convergence is kept, see Reference 8. Notice that, for p = 1, the iterative process (3) correspond to the two-step frozen
Newton method.10

The aim of this work is to justify an important feature that the iterative process (3) has relative to the qualitative study
that can be carried out of a nonlinear equation: the location and separation of the solutions of the nonlinear equation. In
our case, we use the Chandrasekhar integral equation to carry out this qualitative study.

The article is organized as follows. In Section 2, we obtain an efficient modification of the Chebyshev method by using
a technique developed in Reference 8 that consists of approximating the second derivative of the operator involved by
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T A B L E 2 Number of evaluations of
functions and computational cost per iteration
when family (4) are applied to solve nonlinear
systems of n equations

Iterations (4)

n 2n2 + n (n3 + 15n2 − n)∕3

10 210 830

50 5050 54,150

100 20,100 3,83,300

combinations of the operator in different points and study the number of evaluations of functions, the computational cost
per iteration, and the efficiency index when the method is applied to solve nonlinear systems of equations. In Section 3,
we give a qualitative study of a Chandrasekhar integral equation where the solutions are located and separated. For the
last, we rely on the well-known Fixed Point Theorem and use a new technique based on using auxiliary points.

Throughout the article, we denote B(x, 𝜚) = {y ∈ X ∶ ||y − x|| ≤ 𝜚} and B(x, 𝜚) = {y ∈ X ∶ ||y − x|| < 𝜚} and the set of
bounded linear operators from Y to X by (Y ,X).

2 PRELIMINARIES

First, from the Chebyshev method, Hernández obtains in Reference 9 the following family of third-order multipoint
iterations which does not require the computation of F′′:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x0 given in Ω and p ∈ (0, 1],
F′(xn) 𝛿n = −F(xn), n ≥ 0,
zn = xn + p 𝛿n,

F′(xn) 𝛾̂n = − 1
2p
(F′(zn) − F′(xn)) 𝛿n,

xn+1 = xn + 𝛿n + 𝛾̂n.

(4)

To obtain the last family of iterations, the expression F′′(xn) 𝛿2
n of the Chebyshev method is approximated by the expres-

sion (1∕p)(F′(zn) − F′(xn)) 𝛿n, so that the number of evaluations of functions and the computational cost per iteration is
reduced to 2n2 + n and (n3 + 15n2 − n)∕3, respectively. Therefore, the choice of family (4) to solve nonlinear systems of n
equations is better than the Chebyshev method, although worse than the Newton method. See Table 2 and Figure 2.

Second, by using a slight modification of the technique used in Reference 9 by Hernández, we then obtain a family
of third-order iterations, which reduces even more the number of evaluations of functions and the computational cost,
so that these values are close to those of the Newton method. So, our next aim is to construct new iterations from family
(4) that converge when they start at the same points as the Newton method. For this, we construct some iterations from
the Chebyshev method that reduce the number of necessary values of the function involved and the computational cost,
while preserving cubical convergence.

To construct iterations from the Chebyshev method, we use a slight modification of the technique developed in Ref-
erence 9 to obtain family (4). The idea is now to approximate the expression F′′(xn)𝛿2

n in the algorithm of Chebyshev by
means of only combinations of F in different points, so that F′′ is not used and F′ is only evaluated in xn. For this, we
consider

yn = xn − [F′(xn)]−1F(xn)

and

zn = xn + p(yn − xn)
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4 6 8 10
n

1.02

1.04

1.06

1.08

1.1

1.12

Iterations (4)

Chebyshev

Newton

F I G U R E 2 Efficiency index of the Newton and the Chebyshev methods and family (4) for nonlinear systems, respectively 21∕(n2+n),
32∕(n3+3n2+2n), and 31∕(2n2+n)

with p ∈ (0, 1] and Taylor’s formula as follows:

F(zn) = F(xn) + pF′(xn)(yn − xn) +
p2

2
F′′(xn)(yn − xn)2 + 1

2∫
zn

xn

F′′′(x)(zn − x)2 dx,

so that

F(zn) − F(xn) − pF′(xn)(yn − xn) =
p2

2
F′′(xn)(yn − xn)2 + 1

2∫
zn

xn

F′′′(x)(zn − x)2 dx.

Now, as yn = xn − [F′(xn)]−1F(xn), we can then consider the following approximation

F′′(xn)(yn − xn)2 ≈ 2
p2 ((p − 1)F(xn) + F(zn)),

and the Chebyshev method is then written as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x0 given in Ω and p ∈ (0, 1] ,
F′(xn) 𝛿n = −F(xn), n ≥ 0,
zn = xn + p 𝛿n,

F′(xn) 𝛾̃n = − 1
p2 ((p − 1)F(xn) + F(zn)) ,

xn+1 = xn + 𝛿n + 𝛾̃n,

(5)

which can also be written as in (3).
With this modification of the Chebyshev method, we have reduced the computational cost from n3 + n2 + n operations

for computing

(−1∕2) F′′(xn) 𝛿2
n

to 2n operations for computing

(−1∕p2) ((p − 1)F(xn) + F(zn)) ,

which is a considerable reduction.
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T A B L E 3 Number of evaluations of
functions and computational cost per iteration
when iterations (5) are applied to solve nonlinear
systems of n equations

Iterations (5)

n n2 + 2n (n3 + 12n2 + 2n)∕3

10 120 740

50 2600 51,700

100 10,200 3,73,400

4 6 8 10
n

1.02

1.04

1.06

1.08

1.1

1.12

Newton

Iterations (5)

F I G U R E 3 Efficiency index of the Newton method and family (5) for nonlinear systems, respectively 21∕(n2+n) and 31∕(n2+2n)

Moreover, observe that the efficiency is also improved, since the number of evaluations of functions per iteration is
also reduced from

n3 + 3n2 + 2n
2

to n2 + 2n, see Table 3.
Observe in Figure 3 that the efficiency of the Newton method is improved by iterations of family (5), even for high

values of n. As a consequence, family (5) is a better choice to solve nonlinear system F(x1, x2, … , xn) = 0, since the number
of computations of functions is similar.

3 A QUALITATIVE STUDY FOR A PARTICULAR NONLINEAR EQUATION

In this section we do a qualitative study of the Chandrasekhar integral equation that consists of locating a solution and sep-
arating it from other possible solutions, along with approximate its numerical solution. So, we start considering restricted
domains of existence and uniqueness of fixed points, which is based on the Fixed Point Theorem. This theorem provides
global convergence for the method of successive approximations, since the method can be started at any point in the full
space, but it does not allow us to locate the fixed point in a concrete domain. This is our first aim. Moreover, as the speed
of convergence of the method of successive approximations is linear, our second aim is to improve it by applying the
iterative process given in (3).
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3.1 Motivation

Let the Chandrasekhar equation,

x(s) = 1 + 𝜛0

2
s x(s)∫

1

0

x(t)
s + t

dt, s ∈ [0, 1], (6)

arise in theory of radiative transfer;11 where 𝜛0 is the albedo for single scattering and x(s) is the unknown function which
is sought in [0, 1]. The physical background of this equation is fairly elaborate. It was developed by Chandrasekhar11 to
solve the problem of determination of the angular distribution of the radiant flux emerging from a plane radiation field.
This radiation field must be isotropic at a point, that is the distribution in independent of direction at that point. Explicit
definitions of these terms may be found in the literature.11 It is considered to be the prototype of the equation,

x(s) = 1 + s x(s)∫
1

0

𝜑(s)
s + t

x(t) dt, s ∈ [0, 1],

for more general laws of scattering, where 𝜑(s) is an even polynomial in s with

∫
1

0
𝜑(s) ds ≤ 1

2
. (7)

Integral equations of the above form also arise in many other studies.12,13

In general, we use numerical methods to solve it, since we cannot do it exactly. We can start locating a solution and
separating it from other possible solutions. For this, we consider restricted domains of existence and uniqueness of fixed
points, which is based on the well-known Fixed Point Theorem:14

If the operator  ∶ [0, 1] → [0, 1] is a contraction, then  has a unique fixed point in [0, 1] that can be
approximated from the method of successive approximations xn+1 = (xn), n ≥ 0, with x0 given in [0, 1].

Recall also that operator  is a contraction if ||(x) − (y)|| < 𝜃||x − y|| with 𝜃 < 1, for all x, y ∈ [0, 1]. As operator 
is derivable, condition || ′(x)|| < 1, for all x ∈ [0, 1], is sufficient to see that  is a contraction.

Then, if we consider the operator  ∶ [0, 1] → [0, 1] such that

[(x)](s) = 1 + 𝜛0

2
s x(s)∫

1

0

x(t)
s + t

dt, s ∈ [0, 1], (8)

it is clear that a fixed point of operator (8) is a solution of integral Equation 6. In addition, if we choose 𝜛0 = 1
4
, which

satisfies (7), we observe that

||(x) − (y)|| ≤ ln 2
8

(||x|| + ||y||) ||x − y||, with x, y ∈ [0, 1],
so that the first problem is to locate a domain that contains a fixed point of the operator  ; namely, a solution of (6) with
𝜛0 = 1

4
. For this, we consider the following property that the fixed points x∗ of  have. From (8), it follows

||x∗|| − 1 − ln 2
8

||x∗||2 ≤ 0,

which is satisfied if

||x∗|| ≤ 𝜌1 = 1.1059 …

or

||x∗|| ≥ 𝜌2 = 10.4356 … ,
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so that we can consider domains of the form B(0, 𝜌) with 𝜌 ≥ 𝜌1, where 0 is the zero function, and x∗ is in B(0, 𝜌) if there
exists.

In the last case, we look for uniqueness results of the fixed point in restricted domains. For this, we use the following
modification of the above Fixed Point Theorem to establish a result on fixed points in a set Ω of [0, 1] instead of in the
full space [0, 1]:

If Ω is a convex and compact set of [0, 1] and the operator  ∶ Ω → Ω is a contraction, then the operator  has
a unique fixed point in Ω that can be approximated by the method of successive approximations, xn+1 =  (xn),
n ≥ 0, from any x0 ∈ Ω.

Note that the previous location of fixed points does not guarantee the existence of a fixed point of  in the set chosen.
Taking into account this, we study when the chosen set contains a fixed point of  and it is unique, what allows locating
and separating fixed points.

In this case, it follows that

||(x) − (y)|| ≤ ln 2
4

𝜌||x − y||, x, y ∈ B(0, 𝜌),

and  is then a contraction operator if

𝜌 <
4

ln 2
= 5.7707 …

In addition, from

||T(x)|| ≤ 1 + ln 2
8

||x||2,
we have

||T(x)|| ≤ 1 + ln 2
8

𝜌2 ≤ 𝜌,

provided that 𝜌 ∈ [𝜌1, 𝜌2].
As a consequence, we have that (x) ∈ B(0, 𝜌) and  ∶ B(0, 𝜌) → B(0, 𝜌) is a contraction and, from the modifica-

tion of the Banach Fixed Point Theorem given previously, there exists a unique fixed point x∗ of  in B(0, 𝜌) with
𝜌 ∈ [1.1059 … , 5.7707 …). So, the last procedure allow us to establish a location of a fixed point x∗ of  and a separation
of other possible fixed points given by the ball B(0, 𝜌), with 𝜌 ∈ [1.1059 … , 5.7707 …), for the Chandrasekhar integral
equation given in (6) with 𝜛0 = 1

4
. In particular, the best location of the fixed point x∗ is the ball B(0, 1.1059 …), since it

is the smallest ball of convergence that contains the fixed point. Besides, we can also obtain the best separation between
x∗ and other possible fixed point by choosing B(0, 5.7707 …), that is the largest ball of convergence that contains x∗ as
the unique fixed point.

Notice that the dependence of the zero function makes the location of fixed points by balls centered on zero function is
not the most appropriate. In our study we consider ball centered on a function x̃ ∈ [0, 1] different from the zero function,
which leads to better locations of the fixed points.

3.2 Location and separation of solutions

Observe that solving the Chandrasekhar equation with 𝜛0 = 1
4

is equivalent to solving F(x) = 0, where F ∶ [0, 1] →
[0, 1] and

[F(x)](s) = x(s) − 1 − s
8

x(s)∫
1

0

x(t)
s + t

dt, s ∈ [0, 1]. (9)

Now, we introduce the conditions under which the restricted global convergence of the iterative process (3) is obtained
in balls of the form B(x̃,R) (see Reference 15):
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(C1) For some x̃ ∈ Ω, there exists Γ̃ = [F′(x̃)]−1 ∈ (Y ,X) with ||Γ̃|| ≤ 𝛽 and ||Γ̃F(x̃)|| ≤ 𝜂.
(C2) There exists a constant K ≥ 0 such that ||F′(x) − F′(y)|| ≤ K||x − y||, for all x, y ∈ Ω.

If we observe the condition (C2), it is easy to follow that

||F′(x) − F′(x̃)|| ≤ K̃||x − x̃||, for all x ∈ Ω,

with K̃ ≤ K, once x̃ ∈ Ω is fixed. Moreover, we denote

d = 𝛽

1 − K̃𝛽R
and e = 2𝜂 + 2R + K̃𝛽R2

2(1 − K̃𝛽R)
,

for R > 0. So, the restricted global convergence of the iterative process (3) follows now from the next result.

Theorem. Let F be a once continuously differentiable operator defined on a non-empty open convex domain Ω of a Banach
space X with values in a Banach space Y . Assume that the conditions (C1) and (C2) hold and the existence of R > 0
satisfying

2𝜂 + K𝛽R2

2(1 − K̃𝛽R)
+ e

2
a0 ≤ R

and such that B(x̃,R) ⊂ Ω. If conditions

K𝛽R < 1

and

a0 = Kde < 0.7064 …

are satisfied, then the iterative process (3) is well-defined and converges to a solution x∗ of the equation F(x) = 0 in the domain
B(x̃,R) from every point x0 belonging to B(x̃,R). Moreover, the solution x∗ of the equation F(x) = 0 is unique in B(x̃, 𝜀) ∩ Ω,
where 𝜀 is a positive root of

K̃𝛽(R + 𝜀) − 2 = 0. (10)

Note that this way of analyzing the global convergence of the iterative process (3) allows locating the solution x∗ in
the ball B(x̃,R) and defining the ball of global convergence B(x̃,R).

Next, from the Equation 6 with 𝜛0 = 1
4
, we obtain x(0) = 1 and, as a consequence, we can select the auxiliary function

x̃(s) = 1. Moreover,

[F(x0)](s) = − s
8 ∫

1

0

dt
s + t

= − s
8

ln
(1 + s

s

)
, s ∈ [0, 1],

so that

||[F(x0)](s)|| = ln 2
8

.

Furthermore,

[F′(x)y](s) = y(s) − s
8

x(s) ∫
1

0

y(t)
s + t

dt − s
8

y(s)∫
1

0

x(t)
s + t

dt, s ∈ [0, 1],

and

||I − F′(x0)|| ≤ ln 2
4

.
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Now, from the Banach lemma, we have

𝛽 = 4
4 − ln 2

≈ 1.2096 … and 𝜂 = ln 2
2(4 − ln 2)

≈ 0.1048 …

Next, it is easy to check that K = K̃ = ln 2
4

≈ 0.1732 … Then, the condition

2𝜂 + K𝛽R2

2(1 − K̃𝛽R)
+ e

2
a0 ≤ R

of the theorem is satisfied for all

R ∈ [0.1142 … , 1.4518 …]

and

K𝛽R < 1

is also satisfied.
In addition, the condition

a0 =< 0.7064 …

is satisfied for

R ∈ [0.1142 … , 1.3878 …].

So, the three conditions are satisfied and, as a consequence, the iterative process (3) converges to a solution x∗ of the
equation F(x) = 0 in the domain

B(1,R)

for

R ∈ [0.1142 … , 1.3878 …].

Therefore, the best ball of location of solution is

B(1, 0.1142 …)

and the best ball of global convergence is

B(1, 1.3878 …).

Note that the location of the solution of (6) with 𝜛0 = 1
4

improves significantly that obtained previously in Section 3.1.

3.3 Approximation of a solution

To obtain a numerical solution of the Chandrasekhar equation given in (6) with 𝜛0 = 1
4
, we first discretize the problem

and approach the integral by a Gauss–Legendre numerical quadrature with eight nodes

∫
1

0
f (t) dt ≈

8∑
j=1

wjf (tj),

where the nodes and weights are given in Table 4.
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T A B L E 4 Nodes and weights of Gauss–Legendre numerical
quadrature

j tj wj

1 0.01985507175123188… 0.050614268145188129…

2 0.10166676129318663… 0.111190517226687235…

3 0.23723379504183550… 0.156853322938943643…

4 0.40828267875217509… 0.181341891689180991…

5 0.59171732124782490… 0.181341891689180991…

6 0.76276620495816449… 0.156853322938943643…

7 0.89833323870681336… 0.111190517226687235…

8 0.98014492824876811… 0.050614268145188129…

T A B L E 5 Solution of
the nonlinear system (11)

j x∗
j

1 1.0101781…

2 1.0329569…

3 1.0547234…

4 1.0719797…

5 1.0844979…

6 1.0930361…

7 1.0984086…

8 1.1012071…

If we denote xi = x(ti), i = 1, 2, … , 8, the Chandrasekhar equation is transformed into the following nonlinear
system:

xi = 1 + xi

8

8∑
j=1

aijxj, i = 1, 2, … , 8, (11)

where, aij =
tiwj

ti+tj
. Take into account the previous continuous study, we use the initial choice

x0 = (1, 1, 1, 1, 1, 1, 1, 1)T .

If we take p = 1, we obtain the two-step frozen Newton method and after three iterates and a tolerance of 10−30,
iterative process (3) with p = 1 converges to the numerical solution x∗ of the nonlinear system of Equation 11 given in
Table 5.

Notice that the efficiency index of iterations (3) is 31∕80 = 1.0138 … , which is the best with respect to those
of the Newton method (21∕72 = 1.0096 … ), the Chebyshev method (31∕360 = 1.0030 … ) and iterations (4) (31∕136 =
1.0081 … ), so that the choice of iteration (3) with p = 1 to solve the discrete Chandrasekhar equation with 𝜛0 = 1

4
is the

best one.
Finally, once the solution x∗ is obtained, we construct a function xint (see Figures 4 and 5) by an interpolating proce-

dure to use the values obtained from the numerical solution of the arithmetic problem {(tj, x∗j )}
8
j=1 and observe that the

interpolated approximation xint lies within the ball of existence and the ball of global convergence of solutions obtained
in the above continuous study.
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F I G U R E 4 Interpolation polynomial xint (dotted line) and ball of existence of solution (blue line)

F I G U R E 5 Interpolation polynomial xint (dotted line), ball of existence of solution (blue line) and ball of global convergence (red line)

ORCID
Ángel Alberto Magreñán https://orcid.org/0000-0002-6991-5706

REFERENCES
1. Argyros IK, Regmi S. Undergraduate Research at Cameron University on Iterative Procedures in Banach and Other Spaces. New York, NY:

Nova Science Publisher; 2019.
2. Regmi S. Optimized Iterative Methods with Applications in Diverse Disciplines. New York, NY: Nova Science Publisher; 2021.
3. Regmi S, Argyros IK, George S. Direct comparison between two third convergence order schemes for solving equations. Symmetry.

2020;12:1080.
4. Traub JF. Iterative Methods for the Solution of Equations. Englewood Cliffs, NJ: Prentice Hall; 1964.
5. Argyros IK, Chen D. Results on the Chebyshev method in Banach spaces. Proyecciones. 1993;12(2):119-128.
6. Candela V, Marquina A. Recurrence relations for rational cubic methods I: the Halley method. Computing. 1990;44:169-184.
7. Amat S, Busquier S, Gutiérrez JM. Geometric constructions of iterative functions to solve nonlinear equations. J Comput Appl Math.

2003;157(1):197-205.
8. Ezquerro JA, Hernández-Verón MA. An optimization of Chebyshev’s method. J Complex. 2009;25:343-361.
9. Hernández MA. Chebyshev’s approximation algorithms and applications. Comput Math Appl. 2001;41:433-445.

10. Amat S, Busquier S, Bermúdez C, Plaza S. On two families of high order Newton type methods. Appl Math Comput. 2012;25:2209-2217.
11. Chandrasekhar S. Radiative Transfer. New York, NY: Dover Publications; 1960.
12. Argyros IK. On a class of nonlinear integral equations arising in neutron transport. Aequationes Math. 1988;36:99-111.
13. Deeba EY, Khuri SA. The decomposition method applied to Chandrasekhar H-equation. Appl Math Comput. 1996;77:67-78.

https://orcid.org/0000-0002-6991-5706
https://orcid.org/0000-0002-6991-5706


EZQUERRO et al. 13 of 13

14. Berinde V, Takens F. Iterative Approximation of Fixed Point. Berlin: Springer; 2007;1912:xvi+-322.
15. Ezquerro JA, Hernández-Verón MA, Magreñán ÁA. On global convergence for an efficient third-order iterative process. J Comput Appl

Math. 2021;113417.

AUTHOR BIOGRAPHIES

José Antonio Ezquerro received the B.S. degree from Universidad de Zaragoza and his Ph.D.
degree from Universidad de Zaragoza. Currently, he is Full Professor in the Department of Mathe-
matics and Computation, Universidad deLa Rioja, Logroño, Spain. His research interests include
iterative schemes for nonlinear equations, error bounds, convergence in Banach spaces, the study
of majorizing sequences and convergence domains

Miguel Ángel Hernández-Verón received the B.S. degree from Universidad de Zaragoza and
his Ph.D. degree from Universidad de Zaragoza. Currently, he is Full Professor in the Department
of Mathematics and Computation, Universidad deLa Rioja, Logroño, Spain. His research interests
include iterative schemes for nonlinear equations, error bounds, convergence in Banach spaces,
the study of majorizing sequences and convergence domains.

Ángel Alberto Magreñán received the M.S., B.S., and Ph.D. degrees in mathematics from
Universidad de La Rioja, Logroño, Spain, respectively. Currently, he is Professor at Universi-
dad de La Rioja, Logroño, Spain. His research interests include iterative schemes for nonlinear
equations and numerical approximation of differential equations, real and complex dynamical
study, nonlinear reconstructions, multiresolution, and wavelets algorithms.

How to cite this article: Ezquerro JA, Hernández-Verón MÁ, Alberto Magreñán Á. On an efficient
modification of the Chebyshev method. Comp and Math Methods. 2021;e1187. doi: 10.1002/cmm4.1187


