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In a similar way that the Appell sequences of polynomials can be extended to the 
Dunkl context, where the ordinary derivative is replaced by Dunkl operator on the 
real line, and the exponential function is replaced by the so-called Dunkl kernel, 
one can expect that the discrete Appell sequences can be extended to the Dunkl 
context. In this extension, the role of the ordinary translation is played by the Dunkl 
translation, that is a much more intricate operator. In this paper, we define discrete 
Appell-Dunkl sequences of polynomials, and we give some properties and examples. 
In particular, we show which is the suitable definition for the Bernoulli polynomials 
of the second kind in the Dunkl context.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

An Appell sequence {Pk(x)}∞k=0 is a sequence of polynomials such that

d

dx
Pk(x) = kPk−1(x), k ≥ 1. (1.1)

If instead of the derivative we use the discrete operator Δf(x) = f(x + 1) − f(x), we say that a discrete 
Appell sequence {pk(x)}∞k=0 is a sequence of polynomials such that

pk(x + 1) − pk(x) = kpk−1(x), k ≥ 1. (1.2)

It is well known that Appell sequences can be defined by a Taylor generating expansion
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A(t)ext =
∞∑
k=0

Pk(x) t
k

k! , (1.3)

where A(t) is a function analytic at t = 0 with A(0) �= 0; similarly, discrete Appell sequences can be defined 
by a Taylor generating expansion

A(t)(1 + t)x =
∞∑
k=0

pk(x) t
k

k! , (1.4)

where A(t) is a function analytic at t = 0 with A(0) �= 0.
There is a wide mathematical literature studying families of Appell sequences. Typical examples are the 

trivial case {xk}∞k=0 whose generating function is (1.3) with A(t) = 1, as well as the Bernoulli polynomials 
that were used by Euler in 1740 to sum 

∑∞
n=1 1/n2k, and whose generating function is (1.3) with A(t) =

t/(et − 1).
In the case of discrete Appell sequences, the trivial case, obtained from (1.4) with A(t) = 1, is the family 

{xk}∞k=0 where

xk = x(x− 1) · · · (x− k + 1) =
k−1∏
j=0

(x− j) (1.5)

is the falling factorial (some other notations have been used for these polynomials, here we follow [20] or 
[17, § 2.6, p. 47]). The discrete counterpart to the Bernoulli polynomials are the now so-called Bernoulli 
polynomials of the second kind (see [6]), that we will denote by bk(x), that were independently introduced 
by Jordan [19] and Rey Pastor [29] in 1929. These polynomials, that have also been known with the name 
of Rey Pastor polynomials (see [5]), are now defined by a generating function as in (1.4) by means of

t

log(1 + t) (1 + t)x =
∞∑
k=0

bk(x) t
k

k! . (1.6)

For x = 0, the numbers bk(0) (or bk(0) · k!) appear, for instance, in Gregory’s method for numerical 
integration (see [28]), and are also called Bernoulli numbers of the second kind (see [13, § 24.16] or [37]), 
logarithmic numbers, Gregory coefficients, and Cauchy numbers of the first kind (see, for instance, [22,38]).

There are many kind of generalizations of Bernoulli polynomials that are defined by means of parameters 
in the function A(t) = t/(et − 1) (see, e.g., the classical papers [4,25] or the recent [1,24,33]). A complete 
different kind of generalization is obtained by replacing the operator d

dx in (1.1) instead of changing the 
function A(t).

This was done in [8], where the Dunkl operator on the real line (for the group Z2), namely

Λαf(x) = d

dx
f(x) + 2α + 1

2

(
f(x) − f(−x)

x

)
, (1.7)

where α > −1 is a fixed parameter (see [14,30]), was used instead of the ordinary derivative d
dx . In that 

setting, an Appell-Dunkl sequence {Pk,α}∞k=0 is a sequence of polynomials that satisfies

ΛαPk,α(x) =
(
k + (α + 1/2)(1 − (−1)k)

)
Pk−1,α(x) (1.8)

(instead of ΛαPk,α = kPk−1,α, the previous definition uses another multiplicative constant in the place of k
for convenience with the notation). Of course, in the case α = −1/2, the operator Λα is the ordinary deriva-
tive and Appell-Dunkl sequences become the classical Appell sequences. To give Appell-Dunkl sequences by 
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means of a generating function, some extra notation is required. Along all the paper, to clearly distinguish 
Dunkl cases from classical cases, we will always include α as subindex in the notation of the polynomials 
that come from the Dunkl case.

For α > −1, we consider the entire function

Iα(z) = 2αΓ(α + 1) Jα(iz)
(iz)α = Γ(α + 1)

∞∑
n=0

(z/2)2n

n! Γ(n + α + 1) = 0F1(α + 1, z2/4),

where Jα is the Bessel function of order α (the function Iα is a small variation of the so-called modified 
Bessel function of the first kind and order α, usually denoted by Iα, see [36] or [27]), and

Eα(z) = Iα(z) + z

2(α + 1) Iα+1(z), z ∈ C.

From the very definition,

Eα(z) =
∞∑

n=0

zn

γn,α

with

γn,α =
{

22kk! (α + 1)k, if n = 2k,
22k+1k! (α + 1)k+1, if n = 2k + 1,

(1.9)

and where (a)n denotes the Pochhammer symbol

(a)n = a(a + 1)(a + 2) · · · (a + n− 1) = Γ(a + n)
Γ(a)

(with n a non-negative integer). Notice that γn,−1/2 = n! and E−1/2(z) = ez. An important property is 
that, for any λ ∈ C, we have

ΛαEα(λx) = λEα(λx), (1.10)

which is a generalization of d
dxe

λx = λeλx.
The function Eα(z) is known as the Dunkl kernel because, in a similar way to the Fourier transform 

(which takes place for α = −1/2), we can define the Dunkl transform on the real line

Fαf(y) =
∫
R

Eα(−ixy)f(x) dμα(x), y ∈ R, (1.11)

where dμα denotes the measure

dμα(x) = 1
2α+1Γ(α+1) |x|

2α+1 dx

(in particular, dμ−1/2(x) = (2π)−1/2 dx). This operator has been widely studied in the mathematical lit-
erature (see, for instance, [18,30,31,35,3,26,10,12,11,21]); however, the goal of this paper is not the Dunkl 
transform, but some families of polynomials that are defined with the aid of the Dunkl kernel Eα.

As far as we are concerned, the entire function Eα is invariant under the Dunkl operator (1.7) in the 
same way that the exponential function is invariant under the ordinary derivative. Then, it is easy to check 
that, if we have an analytic function A(t) defined in a neighborhood of 0 with A(0) �= 0, and we take
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A(t)Eα(xt) =
∞∑
k=0

Pk,α(x) tk

γk,α
, (1.12)

then Pk,α(x) is a polynomial of degree k which satisfies (1.8). Thus, (1.12) is the characterization of Appell-
Dunkl sequences by means of a generating function.

The Appell-Dunkl polynomials had already appeared in the literature as generalizations of the Hermite 
polynomials (see for example [2,30]). The extension of Bernoulli polynomials to the Dunkl context was 
carried out in [8]; there, Bernoulli-Dunkl polynomials {Bk,α}∞k=0 are defined by a generating function via

Eα(xt)
Iα+1(t)

=
∞∑
k=0

Bk,α(x) tk

γk,α
, (1.13)

and it is shown that it represents a “genuine extension” because it is useful to extend many standard 
properties of the classical Bernoulli polynomials to the Dunkl context. In particular, how to use them to 
pose the series 

∑∞
n=1 1/n2k in the Dunkl context and to sum them. Some other Appell-Dunkl polynomials 

were studied in [15] and [9].
The goal of this paper is to provide a suitable definition of discrete Appell-Dunkl sequences, that is, to 

give an extension of (1.2) and (1.4) in the Dunkl context, and to give some representative examples and 
properties. In particular, we show how to define Bernoulli-Dunkl polynomials of the second kind.

We need to notice an important obstacle. The ordinary translation f(x) �→ f(x +1) is useless in the Dunkl 
context, so the definition (1.2) must be adapted taking it into account. There is, however, an analogue, the 
Dunkl translation operator τy which acts on a function f by

τyf(x) =
∞∑

n=0

yn

γn,α
Λn
αf(x), α > −1, (1.14)

where Λ0
α is the identity operator and Λn+1

α = Λα(Λn
α). When α = −1/2, Λn

α is the nth derivative, so (1.14)
is the Taylor expansion of f(x +y) around x. For the Dunkl transform, the translation τy plays the same role 
as the classical translation for the Fourier transform (that is, τyf(x) = f(x +y) for the case α = −1/2). Two 
useful properties of the translation operator are the commutativity τaτb = τbτa and the fact τaf(b) = τbf(a). 
Some other properties including an integral expression, can be found in [30], [32], and [34]. In particular, 
let us note the identity [30, formula (4.2.2)]

τy(Eα(t·))(x) = Eα(tx)Eα(ty), (1.15)

that is a Dunkl alternative to the formula et(x+y) = etxety (case α = −1/2).
Many properties of the Appell sequences of polynomials can be adapted to the Appell-Dunkl sequences 

using the Dunkl translation operator. For instance, in [8,9] we can see that the Appell-Dunkl polynomials 
satisfy

τy(Pk,α(·))(x) =
k∑

j=0

(
k

j

)
α

Pj,α(x)yk−j , (1.16)

with 
(
k
j

)
α

= γk,α/(γj,αγk−j,α); in the classical case α = −1/2, (1.16) becomes the well-known binomial 
formula

Pk(x + y) =
k∑(

k

j

)
Pj(x)yk−j (1.17)
j=0
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for Appell polynomials. Some other properties concerning the use of Dunkl translations for Appell-Dunkl 
polynomials can be found in [9].

The structure of this paper is as follows. In Section 2, we see how the definition (1.2) can be successfully 
adapted to the Dunkl context by using the Dunkl translation (1.14), and what generating expansion plays 
the role of (1.4). In Section 3 we extend the classical falling factorial polynomials (1.5) to the Dunkl context, 
and we found their expansion by means of a discrete Appell-Dunkl generating function; we will also see 
that these polynomials can be used to have a binomial formula that is analogous to (1.17) and (1.16) in 
the discrete Appell-Dunkl setting. In Section 4 we study some families of discrete Appell-Dunkl sequences 
than can be expressed in terms of the generalized Bernoulli-Dunkl polynomials that were defined in [9]. In 
Section 5 we show some relations between the families of polynomials defined in the Sections 3 and 4, and 
we prove some interesting results, in particular the Newton expansion in the Dunkl context. In Section 6
we define the Bernoulli-Dunkl polynomials of the second kind, as well as their corresponding generalization 
of order r, and prove some properties.

2. Discrete Appell-Dunkl polynomials

Let us start noticing that the Dunkl operator has a “symmetric flavor” due to the summand (f(x) −
f(−x))/x in (1.7); then, Appell-Dunkl polynomials must be defined in a symmetric way around x = 0. 
However, the “basic” interval for the classical Bernoulli polynomials {Bk(x)}∞k=0 is the interval [0, 1]. In this 
way, Bernoulli-Dunkl polynomials are defined with “basic” interval [−1, 1], and a slight change of variable 
is needed to recover the classical Bernoulli polynomials in the case α = −1/2. Particularly, we have

Bk,−1/2(2x− 1)
2k = Bk(x), (2.1)

see [8] or [9] for details.
The same adjustment happens in the discrete case. The definition (1.2) does not have a symmetric 

flavor, so it is not suitable for the Dunkl context. Then, instead of using the discrete operator Δf(x) =
f(x + 1) − f(x) (forward differences), it is convenient to consider the classical case with the central discrete 
operator Δf(x) = (f(x + 1) − f(x − 1))/2 (central differences), and the central discrete Appell sequences 
defined by means of the relation

pk(x + 1) − pk(x− 1)
2 = kpk−1(x), k ≥ 1. (2.2)

Although (1.2) is more usual in the classical case, discrete Appell sequences defined as in (2.2) have also 
been studied; see for instance [33, § 6].

In the same way that we have

f(x + 1, t) − f(x, t) = tf(x, t)

for f(x, t) = (1 + t)x, and this is the reason to the relation between (1.2) and (1.4), we have that

f(x + 1, t) − f(x− 1, t)
2 = tf(x, t) (2.3)

for

f(x, t) = (t +
√

1 + t2)x = exp
(
x log(t +

√
1 + t2)

)
. (2.4)

Then, the central discrete Appell sequences can also be defined by means of a generating function
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A(t)(t +
√

1 + t2)x =
∞∑
k=0

pk(x) t
k

k! , (2.5)

where A(t) is a function analytic at t = 0 with A(0) �= 0. (In particular, and among other examples, [33, 
§ 6] defines the central Bernoulli polynomials of the second kind, we will see it in the forthcoming sections.)

In what follows, we will sometimes denote the Dunkl operator Λα and the Dunkl translation τa by Λα,x

and τa,x, respectively, to emphasize that the involved variable is x. In fact, we will always use this notation 
when we apply these operators to a function with two variables. In addition, we will often use γk instead of 
γk,α.

To extend (2.2) to the Dunkl context, that is, by using the Dunkl translation, it is enough to take 
sequences of polynomials that, for some constants θk, satisfy the relation

(α + 1)(τ1 − τ−1)pk,α(x) = θkpk−1,α(x)

(that, in the case α = −1/2, recovers (2.2)). But, which is the generating function? How can one find 
examples? The key point is to give a suitable extension of (2.3) and (2.4) to the new scheme. We will often 
denote Δα = (α+1)(τ1− τ−1), and we will use Δα,x (as in the case of τ±1,x) if it is convenient to emphasize 
that the involved variable is x.

In the Dunkl setting, the function Eα plays the role of the exponential function. Then, let us take the 
equation

(α + 1)(τ1,x − τ−1,x)f(x, t) = tf(x, t) (2.6)

and let us look for a solution of the form f(x, t) = Eα(xh(t)); we want to find h(t).
Recall that Eα(xh(t)) =

∑∞
k=0 x

kh(t)k/γk and Λα,xEα(xh(t)) = h(t)Eα(xh(t)). Then,

(τ1,x − τ−1,x)Eα(xh(t)) = τ1,xEα(xh(t)) − τ−1,xEα(xh(t))

=
∞∑
k=0

Λk
α,xEα(xh(t))

γk
−

∞∑
k=0

(−1)kΛk
α,xEα(xh(t))
γk

=
∞∑
k=0

h(t)kEα(xh(t))
γk

−
∞∑
k=0

(−1)kh(t)kEα(xh(t))
γk

= 2
∞∑
k=0

h(t)2k+1Eα(xh(t))
γ2k+1

.

(2.7)

Therefore,

(α + 1)(τ1,x − τ−1,x)Eα(xh(t)) = tEα(xh(t))

becomes

∞∑
k=0

h(t)2k+1

γ2k+1
= t

2(α + 1) . (2.8)

Here we have the odd terms of Eα(z) =
∑∞

k=0 z
k/γk, and the odd part or Eα(z) is z

2(α+1)Iα+1(z). Hence, 
(2.8) can be written as h(t)

2(α+1)Iα+1(h(t)) = t
2(α+1) , or

h(t)Iα+1(h(t)) = t. (2.9)
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Now, let us take

Gα(z) = zIα+1(z) = z 0F1(α + 2, z2/4) = Γ(α + 1)
∞∑

n=0

z2n+1

22nn! Γ(n + α + 1) .

This function is odd, non-negative for z > 0, and increasing (for z > 0, the derivative term by term of the 
series is positive), so there exists the inverse function

h(t) = G−1
α (t), t ∈ R,

and this function satisfies (2.9). This implies that the function

f(x, t) = Eα(xh(t)) = Eα(xG−1
α (t))

is the solution of (2.6).
Then, we would like to define a discrete Appell-Dunkl sequence as {pk,α(x)}∞k=0 whose generating function 

is

A(t)Eα(xG−1
α (t)) =

∞∑
k=0

pk,α(x) tk

γk,α
, (2.10)

where A(t) is an analytic function in a neighborhood of 0 satisfying A(0) �= 0.
Let us now analyze the case α = −1/2 for a moment. It is easy to check that I1/2(z) = sinh(z)/z, so

G−1
−1/2(t) = arcsinh(t) = log(t +

√
1 + t2).

Then,

f(x, t) = E−1/2(xG−1
−1/2(t)) = exp(x log(t +

√
1 + t2)) =

(
t +

√
1 + t2)x,

and, as expected, (2.10) for α = −1/2 becomes the classical central discrete Appell sequences that appear 
in (2.5).

For general α > −1, the functions Iα(z) are related to Bessel functions, and thus G−1
α is the inverse of 

a function expressed in terms of them. As long as we know, this kind of inverse functions, that would be a 
generalization of the arcsinh function, has not been widely studied, and does not have a name. An example 
of a paper dealing with similar functions is [16]. Later in this paper, we will give the analytic expansion of 
the function G−1

α in terms of the generalized Bernoulli-Dunkl polynomials, see Theorem 5.2.
Finally, let us state the main result of this section:

Theorem 2.1. Let A(t) be an analytic function in a neighborhood of 0 with A(0) �= 0, and let {pk,α(x)}∞k=0
be the sequence obtained by means of the generating function expansion

A(t)Eα(xG−1
α (t)) =

∞∑
k=0

pk,α(x) tk

γk,α
, α > −1. (2.11)

Then, pk,α(x) is a polynomial of degree k, and it satisfies

(α + 1)(τ1,x − τ−1,x)pk,α(x) = θk,αpk−1,α(x), k = 1, 2, . . . , (2.12)

with θk,α = (k + (α + 1/2)(1 − (−1)k)) = γk,α/γk−1,α.
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Proof. Both functions A(t) and Eα(xG−1
α (t)) are analytic in a neighborhood of t = 0, so the expansion 

(2.11) exists. Furthermore, p0(x) = A(0)Eα(xG−1
α (0)) = A(0)Eα(0) = A(0) �= 0, a constant.

For brevity, let us denote Δα,x = (α+1)(τ1,x − τ−1,x); and we will use θk and γk in the place of θk,α and 
γk,α. By applying Δα,x to both sides of (2.11), we have

A(t)Δα,xEα(xG−1
α (t)) =

∞∑
k=0

Δα,xpk,α(x) t
k

γk
. (2.13)

By repeating the arguments in (2.7) and (2.8) with Gα(t) = tIα+1(t), we get

Δα,xEα(xh(t)) = (α + 1)(τ1,x − τ−1,x)Eα(xh(t)) = 2(α + 1)Eα(xh(t))
∞∑
k=0

h(t)2k+1

γ2k+1

= Eα(xh(t))h(t)Iα+1(h(t)) = Eα(xh(t))Gα(h(t)).

Then, taking h(t) = G−1
α (t), the left hand side of (2.13) is

Δα,xEα(xG−1
α (t)) = tEα(xG−1

α (t)).

For the right hand side of (2.13), let us observe that τ±1,xp0,α(x) = p0,α(x) (the translation of a constant 
is itself), so the term corresponding to k = 0 vanishes. We can then simplify t in both sides of (2.13) so, 
taking l = k − 1, (2.13) becomes

A(t)Eα(xG−1
α (t)) =

∞∑
l=0

Δα,xpl+1,α(x) tl

γl+1
.

But A(t)Eα(xG−1
α (t)) =

∑∞
l=0 pl,α(x)tl/γl, and, since the power expansion of an analytic function is unique, 

Δα,xpl+1,α(x) = θl+1pl,α(x) with θl+1 = γl+1/γl.
Finally, taking into account that p0,α(x) is constant (that is, a polynomial of degree 0), we easily get that 

pk,α(x) is a polynomial of degree k by induction. �
3. The factorial polynomials in the Dunkl context

As explained in the introduction, the classical discrete case A(t)(1 + t)x for A(t) = 1 with forward 
differences Δf(x) = f(x + 1) − f(x) gives

(1 + t)x =
∞∑
k=0

xk tk

k!

where xk is the falling factorial (1.5).
The classical case considering central differences Δf(x) = (f(x + 1) − f(x − 1))/2 and A(t) = 1 is

(t +
√

1 + t2)x =
∞∑
k=0

fk(x) t
k

k! .

In this case, the “central factorial” polynomials fk(x) have the following pattern:
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f0(x) = 1, f1(x) = x, f2(x) = x2,

f3(x) = (−1 + x)x(1 + x), f4(x) = (−2 + x)x2(2 + x),

f5(x) = (−3 + x)(−1 + x)x(1 + x)(3 + x),

f6(x) = (−4 + x)(−2 + x)x2(2 + x)(4 + x),

f7(x) = (−5 + x)(−3 + x)(−1 + x)x(1 + x)(3 + x)(5 + x).

(3.1)

For the Dunkl case, let us take (2.10) with A(t) = 1. Then, we can say that the Dunkl factorial (or Dunkl 
“central” factorial) are the polynomials {fk,α(x)}∞k=0 whose generating function is

Eα(xG−1
α (t)) =

∞∑
k=0

fk,α(x) tk

γk,α
. (3.2)

It is not difficult to check that the first Dunkl factorial polynomials are

f0,α(x) = 1, f1,α(x) = x, f2,α(x) = x2,

f3,α(x) = x3 − x, f4,α(x) = x4 − 4x2,

f5,α(x) = x5 − 6(α + 3)x3

α + 2 + (5α + 16)x
α + 2 ,

f6,α(x) = x6 − 12(α + 3)x4

α + 2 + 6(6α + 19)x2

α + 2

f7,α(x) = x7 − 15(α + 4)x5

α + 2 + 9(α + 4)(7α + 22)x3

(α + 2)2 − (7α + 26)2x
(α + 2)2 .

It is perhaps surprising that the polynomials fk,α do not have any recognizable pattern as in (3.1). But 
the same happens when the falling factorials are defined in other contexts; indeed, this is what happens in 
[7, § 18], where they are called factor polynomials (a more detailed explanation of the similarities and the 
differences between the context in [7] and our context can be found in [9, Remark 1]).

In the discrete Appell context, there is a binomial formula that is the discrete alternative to the binomial 
formula (1.17): if {pk(x)}∞k=0 is a discrete Appell sequence (that is, it is defined as in (1.4)), they satisfy

pk(x + y) =
k∑

j=0

(
k

j

)
pj(x)yk−j . (3.3)

Let us see how to adapt this expression in the discrete Appell-Dunkl setting, that is, how to obtain a discrete 
version of (1.16). Notice that the role of the factorial polynomials yk in (3.3) is now played by their Dunkl 
counterpart fk,α(y).

Theorem 3.1. Let α > −1 and {pk,α(x)}∞k=0 be a discrete Appell-Dunkl sequence of polynomials defined as 
in (2.11). Then, we have

τy(pk,α(·))(x) =
k∑

j=0

(
k

j

)
α

pj,α(x)fk−j,α(y),

where {fk,α(y)}∞k=0 are the Dunkl factorial polynomials defined in (3.2).

Proof. By using (1.15), we have

τy(Eα( ·G−1
α (t))(x) = Eα(xG−1

α (t))Eα(yG−1
α (t)).
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Then, if we apply τy to (2.11) we get

∞∑
k=0

τy(pk,α)(x) t
k

γk
= A(t)τy(Eα( ·G−1

α (t))(x) = A(t)Eα(xG−1
α (t))Eα(yG−1

α (t))

=
( ∞∑

k=0

pk,α(x) t
k

γk

)( ∞∑
k=0

fk,α(y) t
k

γk

)
=

∞∑
k=0

( k∑
j=0

pj,α(x)
γj

fk−j,α(y)
γk−j

)
tk

=
∞∑
k=0

( k∑
j=0

(
k

j

)
α

pj,α(x)fk−j,α(y)
)
tk

γk
.

By equating coefficients of tk, we get the result. �
Let us finally see that, in a similar way to what happens in the traditional settings, the role played by 

the monomials xk in the Appell-Dunkl case is assumed by the factorial polynomials fk,α(x) in the discrete 
Appell-Dunkl case. In [8,9] we saw that, if {Pk,α(x)}∞k=0 is a Appell-Dunkl sequence defined as in (1.12)
with 1/A(t) =

∑∞
k=0 akt

k, we have

xk = γn,α

k∑
j=0

Pj,α(x)
γj,α

ak−j .

For discrete Appell-Dunkl sequences, the corresponding result is as follows:

Theorem 3.2. Let α > −1 and {pk,α(x)}∞k=0 be a discrete Appell-Dunkl sequence of polynomials defined as 
in (2.11), with 1/A(t) =

∑∞
k=0 akt

k. Then, we have

fk,α(x) = γk,α

k∑
j=0

pj,α(x)
γj,α

ak−j .

Proof. Let us write (2.11) as

Eα(xG−1
α (t)) =

( ∞∑
k=0

pk,α(x) t
k

γk

)
1

A(t)

and express all the functions as their series,

∞∑
k=0

fk,α(x) t
k

γk
=

( ∞∑
k=0

pk,α(x) t
k

γk

)( ∞∑
k=0

akt
k

)
=

∞∑
k=0

( k∑
j=0

pj,α(x)
γj

ak−j

)
tk.

The result follows by identifying coefficients. �
4. Discrete Appell-Dunkl families defined in terms of generalized Bernoulli-Dunkl polynomials

For an arbitrary number r (we are mainly interested in the case of a non-negative integer, but it is not 
a restriction), the generalized Bernoulli polynomials of order r (also known as Nørlund polynomials) were 
defined by the first time in [25], and they satisfy

(
t

et − 1

)r

ext =
∞∑

B
(r)
k (x) t

k

k! .

k=0
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We point out that the case r = 1 corresponds to the ordinary Bernoulli polynomials, and the trivial case 
r = 0 corresponds to the polynomials {xk}∞k=0. It is well known that the polynomials B(r)

k (x) satisfy

B
(r+1)
k (x + 1) −B

(r+1)
k (x) = d

dx
B

(r)
k (x) = kB

(r)
k−1(x) (4.1)

(see, for instance, [6], [23, §§ 6.11 and 6.3] or [25]). Then, if we set

pk(x) = B
(k+1)
k (x), k = 0, 1, 2, . . . , (4.2)

we have pk(x + 1) − pk(x) = kpk−1(x), so (4.2) is an example of a discrete Appell sequence. Actually, also 
{B(k+s)

k (x)}∞k=0 is a discrete Appell sequence, but the case s = 1 that has been used in (4.2) is the most 
usual because the polynomials B(k+1)

k (x) have a well recognizable pattern (see [23, § 6.4, p. 130] or [25]), 
namely B(1)

0 (x) = 1 and

B
(k+1)
k (x) = (x− 1)(x− 2) · · · (x− k) = (x− 1)k (4.3)

(otherwise, even in the case s = 0, B(k+s)
k (x) does not have an easy factorizable expression). The generating 

function for the polynomials pk(x) = (x − 1)k in (4.2) is

1
1 + t

(1 + t)x = (1 + t)x−1 =
∞∑
k=0

(x− 1)k tk

k! .

This can also be done in the classical central case (the details are left to the reader). We can define the 
generalized central Bernoulli polynomials and proceed as in (4.2). Then, we get the polynomials

p0(x) = 1, p1(x) = x, p2(x) = (−1 + x)(1 + x),

p3(x) = (−2 + x)x(2 + x), p4(x) = (−3 + x)(−1 + x)(1 + x)(3 + x),

p5(x) = (−4 + x)(−2 + x)x(2 + x)(4 + x),

p6(x) = (−5 + x)(−3 + x)(−1 + x)(1 + x)(3 + x)(5 + x),

p7(x) = (−6 + x)(−4 + x)(−2 + x)x(2 + x)(4 + x)(6 + x),

(4.4)

that is a central discrete Appell sequence (i.e., they satisfy pk(x + 1) − pk(x − 1) = 2kpk−1(x)) whose 
generating function is

1√
1 + t2

(
t +

√
1 + t2

)x =
∞∑
k=0

pk(x) t
k

k! . (4.5)

A definition as in (4.2) can also be done in the Dunkl setting. In [9], the generalized Bernoulli-Dunkl 
polynomials {B(r)

k,α(x)}∞k=0 of order r (where r is an arbitrary real or complex parameter) are defined by 
means of the generating function

Eα(xt)
Iα+1(t)r

=
∞∑
k=0

B
(r)
k,α(x) tk

γk,α
. (4.6)

In addition (see [9, Theorem 8.2]), they satisfy

(α + 1)
(
τ1B

(r+1)(x) − τ−1B
(r+1)(x)

)
= Λα(B(r) )(x) = θk,αB

(r) (x). (4.7)
k,α k,α k,α k−1,α
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Then, if we take

pk,α(x) = B
(k+1)
k,α (x), k = 0, 1, 2, . . . , (4.8)

we have (α+1)(τ1,x−τ−1,x)pk,α(x) = θk,αpk−1,α(x), so {B(k+1)
k,α (x)}∞k=0 is a discrete Appell-Dunkl sequence.

Which is the generating function of this sequence? In the view of (4.5), one can guess that the generating 
function is (2.11) with A(t) = (1 + t2)α, but it is not true. In particular, this shows that a mere extension 
of the classical case to a more general with a parameter α in such a way that the value α = −1/2 recovers 
the classical case is not always a good Dunkl extension.

Actually, what happens is the following:

Theorem 4.1. Let α > −1 and B(r)
k,α(x) denote the generalized Bernoulli-Dunkl polynomials defined by means 

of (4.6). Then {B(k+s)
k,α (x)}∞k=0 is a discrete Appell-Dunkl sequence whose generating function is

(
t

G−1
α (t)

)1−s( d

dt
(G−1

α (t))
)
Eα(xG−1

α (t)) =
∞∑
k=0

B
(k+s)
k,α (x) tk

γk,α
, x ∈ R. (4.9)

In particular, for s = 1 we have

( d

dt
(G−1

α (t))
)
Eα(xG−1

α (t)) =
∞∑
k=0

pk,α(x) tk

γk,α
, x ∈ R. (4.10)

Proof. We have from (4.7) that {B(k+s)
k,α (x)}∞k=0 is a discrete Appell-Dunkl sequence. Let us prove that (4.9)

is the generating function.
It is well known that the zeros of Jα+1(x)/xα+1 are {sj,α}j∈Z\{0}, with sj,α > 0 and sj+1,α > sj for 

j > 0, and s−j,α = −sj,α (see [36, Chapter 15] or [27, § 10.21]). Moreover,

Iα+1(z) = 2α+1Γ(α + 2) Jα+1(iz)
(iz)α+1

so the function Eα(xt)/Iα+1(t)r (as a function of the variable t) is analytic in the disk D(0, s1,α) around 
t = 0. Then, by Cauchy’s integral formula for the derivatives applied to (4.6), we have

B
(r)
k,α(x)
γk

= 1
2πi

∫
C1

Eα(xt)
Iα+1(t)r

1
tk+1 dt,

where C1 is any circle centered at the origin with radius less than s1,α.
The function Gα(t) = tIα+1(t) is analytic in a neighborhood of t = 0, and satisfies Gα(0) = 0 and 

G′
α(0) �= 0. Then, there exists G−1

α (z) analytic in a neighborhood of z = 0, and, for C1 of radius small 
enough, C2 = Gα(C1) is a simple closed curve surrounding z = 0. Thus, with the change t = G−1

α (z) we 
have

B
(r)
k,α(x)
γk

= 1
2πi

∫
C2

Eα(xG−1
α (z))

zr

d
dz (G−1

α (z))
G−1

α (z)k+1−r
dz.

Taking r = k + s,



J.I. Extremiana Aldana et al. / J. Math. Anal. Appl. 507 (2022) 125832 13
B
(k+s)
k,α (x)
γk

= 1
2πi

∫
C2

Eα(xG−1
α (z))

zs−1(G−1
α (z))1−s

d

dz
(G−1

α (z)) dz

zk+1 ,

and consequently

(
t

G−1
α (t)

)1−s

Eα(xG−1
α (t)) d

dt
G−1

α (t) =
∞∑
k=0

B
(k+s)
k,α (x)
γk

tk. �

Finally, let us note that the first polynomials pk,α(x) = B
(k+1)
k,α (x) are

B
(1)
0,α(x) = 1, B

(2)
1,α(x) = x, B

(3)
2,α(x) = x2 − 3(α + 1)

α + 2 ,

B
(4)
3,α(x) = x3 − 4x, B

(5)
4,α(x) = x4 − 10x2 + 5(α + 1)(5α + 16)

(α + 2)(α + 3) ,

B
(6)
5,α(x) = x5 − 12(α + 3)x3

α + 2 + 6(6α + 19)x
α + 2 ,

B
(7)
6,α(x) = x6 − 21(α + 3)x4

α + 2 + 21(7α + 22)x2

α + 2 − 7(α + 1)(7α + 26)2

(α + 2)2(α + 4) ,

B
(8)
7,α(x) = x7 − 24(α + 4)x5

α + 2 + 24(α + 4)(8α + 25)x3

(α + 2)2 − 32(2α + 7)(8α + 31)x
(α + 2)2 .

Of course, (4.4) corresponds to the case α = −1/2 but, for general α > −1, they cannot be factorized in 
a similar way.

5. Relationships between families and applications

The classical falling factorial polynomials xk and the generalized Bernoulli polynomials B(r)
k are related 

by means of the formula

xk = x

k

d

dx
B

(k)
k (x), k ≥ 1.

This clearly follows from xk = xB
(k)
k−1 (see (4.3)) using (4.1).

In the Dunkl context, we have the following:

Theorem 5.1. The Dunkl factorial polynomials fk,α(x) defined in (3.2), and the generalized Bernoulli-Dunkl 
polynomials defined in (4.6) are related by

fk,α(x) = x

k

d

dx
B

(k)
k,α(x), k = 1, 2, . . . . (5.1)

Proof. Let us check that the sequences of polynomials {kfk,α(x)}∞k=0 and {x d
dxB

(k)
k,α(x)}∞k=0 have the same 

generating function.
For {kfk,α(x)}∞k=0 we have, from (3.2), that

t
d

dt

(
Eα(xG−1

α (t))
)

= t

∞∑
k=0

fk,α(x)
γk

ktk−1 =
∞∑
k=1

kfk,α(x)
γk

tk.

Moreover, let us notice that
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d

dt

(
Eα(xG−1

α (t))
)

= E′
α(xG−1

α (t))x d

dt
(G−1

α (t))

where E′
α is the ordinary derivative of the Dunkl kernel Eα. Then, we have the generating function

txE′
α(xG−1

α (t)) d
dt

(G−1
α (t)) =

∞∑
k=1

kfk,α(x)
γk

tk. (5.2)

On the other hand, let us use (4.9) with s = 0, that is,

t

G−1
α (t)

( d

dt
(G−1

α (t))
)
Eα(xG−1

α (t)) =
∞∑
k=0

B
(k)
k,α(x) t

k

γk
.

By differentiating this expression with respect to x, we have

t
( d

dt
(G−1

α (t))
)
E′

α(xG−1
α (t)) =

∞∑
k=0

d

dx
B

(k)
k,α(x) t

k

γk
,

so

tx
( d

dt
(G−1

α (t))
)
E′

α(xG−1
α (t)) =

∞∑
k=0

x
d

dx
B

(k)
k,α(x) t

k

γk
. (5.3)

The generating functions in (5.2) and (5.3) are the same, so the result follows. �
In the place of (5.1), another expansion can be found for fk,α(x), also in terms of generalized Bernoulli 

polynomials.
We showed in (1.16) that every Appell-Dunkl sequence {Pk,α(x)}∞k=0 satisfies the binomial property

Pk,α(x) =
k∑

j=0

(
k

j

)
α

Pj,α(0)xk−j

(recall that the Dunkl translation satisfies τyf(x) = τxf(y), and that τ0 is the identity operator). Then, for 
the generalized Bernoulli-Dunkl polynomials we have

B
(r)
k,α(x) =

k∑
j=0

(
k

j

)
α

B
(r)
j,α(0)xk−j .

If we differentiate this expression with respect to x, we obtain

d

dx
B

(r)
k,α(x) =

k−1∑
j=0

(
k

j

)
α

B
(r)
j,α(0)(k − j)xk−j−1. (5.4)

Using together (5.1) and (5.4) with r = k, we get

fk,α(x) =
k−1∑
j=0

(
k

j

)
α

B
(k)
j,α(0)

(
1 − j

k

)
xk−j . (5.5)

This expression allows us to give the analytic expansion for the function G−1
α :
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Theorem 5.2. For α > −1, the function G−1
α , inverse of Gα(z) = zIα+1(z), can be given as

G−1
α (t) =

∞∑
k=1

θk
k

B
(k)
k−1,α(0)
γk,α

tk = t
∞∑
k=0

B
(k+1)
k,α (0)
k + 1

tk

γk,α
.

Proof. Let us apply the Dunkl operator Λα to the function Eα(xG−1
α (t)). Using (1.10) and evaluating at 

x = 0 gives

Λα,x(Eα(xG−1
α (t)))

∣∣
x=0 = G−1

α (t).

Then, from (3.2) we have

G−1
α (t) =

∞∑
k=0

Λαfk,α(0) t
k

γk
. (5.6)

By applying Λα to (5.5), and using that Λαx
j = θjx

j−1, we get

Λαfk,α(x) =
k−1∑
j=0

(
k

j

)
α

B
(k)
j,α(0)

(
1 − j

k

)
θk−jx

k−j−1.

Evaluating at x = 0, all the summands vanish except j = k − 1, so

Λαfk,α(0) =
(

k

k − 1

)
α

B
(k)
k−1,α(0)

(
1 − k − 1

k

)
θ1 = θk

k
B

(k)
k−1,α(0).

Then, (5.6) proves the theorem. �
Let us finish this section giving an extension of the Newton expansion to the Dunkl setting. The Newton 

expansion consists of the terms of the Newton forward difference equation and, in essence, it is the Newton 
interpolation formula, first published in his Principia Mathematica in 1687. It is the discrete analog of the 
continuous Taylor expansion.

To our concerns (see, for instance [25, § 34, p. 191]), the classical formula is the expansion of a polynomial 
Qn(x) of degree less than or equal to n in terms of the falling factorials xk, namely

Qn(x) =
n∑

k=0

ΔkQn(0)
k! xk (5.7)

with Δ0f(x) = f(x), Δf(x) = f(x + 1) − f(x) and Δk+1f(x) = Δ(Δkf(x)).
In the Dunkl case, we must use, instead of forward differences, the operator (α + 1)(τ1,x − τ−1,x); and, 

instead of falling factorials xk, their Dunkl counterpart fk,α(x). Then, the Newton-Dunkl expansion formula 
is the following:

Theorem 5.3. Let α > −1 and fk,α(x) be the Dunkl factorial polynomials defined in (3.2). Any polynomial 
Qn(x) of degree less than or equal to n can be written as

Qn(x) =
n∑

k=0

Δk
αQn(0)
γk,α

fk,α(x), (5.8)

where Δk
α is the operator Δα = (α + 1)(τ1 − τ−1) applied k times.
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Proof. We know that f0,α(x) = 1 and fk,α(x) = x
k

d
dxB

(k)
k,α(x) (Theorem 5.1). Consequently,

f0,α(0) = 1 and fk,α(0) = 0 for k ≥ 1. (5.9)

The polynomials {fk,α(x)}nk=0 form a basis of the polynomials of degree ≤ n, so Qn(x) can be written as

Qn(x) = c0f0,α(x) + c1f1,α(x) + c2f2,α(x) + · · · + cnfn,α(x) (5.10)

for some coefficients ck. To compute the ck, let us successively apply the operator Δα to (5.10), and evaluate 
it at x = 0.

In the first place, taking x = 0 in (5.10) gives Qn(0) = c0. Secondly, applying Δα to (5.10) and using 
Δαfk,α = θkfk−1,α, gives

ΔαQn(x) = c1θ1f0,α(x) + c2θ2f1,α(x) + · · · + cnθnfn−1,α(x);

and evaluating at x = 0 gives ΔαQn(0) = c1θ1 = c1γ1 (recall (5.9)), so c1 = ΔαQn(0)/γ1. Applying Δα

again we have

Δ2
αQn(x) = c2θ2θ1f0,α(x) + c3θ3θ2f1,α(x) + · · · + cnθnθn−1fn−2,α(x);

and taking x = 0 gives Δ2
αQn(0) = c2θ2θ1 = c2γ2, so c2 = Δ2

αQn(0)/γ2. Following this process, we get

Δn
αQn(x) = cnθnθn−1 · · · θ1f0,α(x),

that evaluated at x = 0 gives Δn
αQn(0) = cnγn, so cn = Δn

αQn(0)/γn. �
Actually, the Newton expansion (5.7) is very often written in the slightly more general way

Qn(a + x) =
n∑

k=0

ΔkQn(a)
k! xk.

In the Dunkl setting, this can be written as

τxQn(a) = τaQn(x) =
n∑

k=0

Δk
αQn(a)
γk,α

fk,α(x). (5.11)

But this expression is a simple consequence of (5.8). To show it, let us first note that, as a consequence 
of τaτb = τbτa we have τaΔα = τaΔα, and τaΔk

α = τaΔk
α for every k. Then, if we take the polynomial 

Rn(x) = τaQn(x), we have Δk
αRn(x) = Δk

ατaQn(x) = τaΔk
αQn(x), that evaluated at x = 0 is

Δk
αRn(0) = τa(Δk

αQn)(0) = τ0(Δk
αQn)(a) = Δk

αQn(a).

Finally, (5.8) applied to Rn gives (5.11).

6. Bernoulli-Dunkl polynomials of the second kind

Recall that the Bernoulli polynomials of the second kind are defined by

t

log(1 + t) (1 + t)x =
∞∑

bk(x) t
k

k! ,

k=0
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and that they satisfy the relation bk(x + 1) − bk(x) = kbk−1(x). And, as explained in Section 2, instead 
of the forward differences, in the Dunkl context we must generalize classical cases with central differences. 
This already exists in the mathematical literature, see [33, § 6]: the so-called central Bernoulli polynomials 
of the second kind {bIIk (x)}∞k=0 are defined by

t

log(t +
√

1 + t2)
(
t +

√
1 + t2

)x =
∞∑
k=0

bIIk (x) t
k

k! , (6.1)

and they satisfy

1
2(bIIk (x + 1) − bIIk (x− 1)) = kbIIk−1(x). (6.2)

In our discrete Appell-Dunkl context, (6.2) is (2.12) for α = −1/2, so we must use (2.11) with a suitable 
A(t) that extends the function t/ log(t +

√
1 + t2) in (6.1). Since log(t +

√
1 + t2) = G−1

α (t) for α = −1/2, 
we define the Bernoulli-Dunkl of the second kind as

t

G−1
α (t)

Eα(xG−1
α (t)) =

∞∑
k=0

bk,α(x) tk

γk,α
, x ∈ R. (6.3)

The first of these polynomials are

b0,α(x) = 1, b1,α(x) = x, b2,α(x) = x2 + α + 1
α + 2 ,

b3,α(x) = x3, b4,α(x) = x4 − 2x2 − (α + 1)(3α + 10)
(α + 2)(α + 3) ,

b5,α(x) = x5 − (4α + 12)x3

α + 2 ,

b6,α(x) = x6 − 9(α + 3)x4

α + 2 + 3(5α + 16)x2

α + 2 + (α + 1)(25α2 + 190α + 364)
(α + 2)2(α + 4) ,

b7,α(x) = x7 − 12(α + 4)x5

α + 2 + 6(α + 4)(6α + 19)x3

(α + 2)2 .

Let us now see how to extend a classical formula, namely

bk(x) = xk − k!
k−1∑
j=0

bj(x)
j!

(−1)k−j

k + 1 − j
, k ≥ 1,

a relation that can be used to compute the Bernoulli polynomials of the second kind in a recursive way, and 
that, in particular, implies that

bk(0) = −k!
k−1∑
j=0

(−1)k−jbj(0)
(k + 1 − j)j! , k ≥ 1.

In the case of Bernoulli-Dunkl polynomials of the second kind, these recurrence relations are as follows:

Theorem 6.1. Let α > −1 and bk,α(x) be the Bernoulli-Dunkl polynomials of the second kind, and denote 
G−1

α (t) =
∑∞

akt
k (the coefficients ak are identified in Theorem 5.2). Then,
k=1



18 J.I. Extremiana Aldana et al. / J. Math. Anal. Appl. 507 (2022) 125832
bk,α(x) = fk,α(x) − γk,α

k−1∑
j=0

ak+1−jbj,α(x)
γj,α

, k = 1, 2, . . . ,

and, for x = 0,

bk,α(0) = −γk,α

k−1∑
j=0

ak+1−jbj,α(0)
γj,α

, k = 1, 2, . . . .

Proof. It is enough to use Theorem 3.2 with 1/A(t) = G−1
α (t) and G−1

α (0) = 0. �
Finally, in the same way than the generalized Bernoulli polynomials of the second kind and order r are 

defined by

(
t

log(1 + t)

)r

(1 + t)x =
∞∑
k=0

b
(r)
k (x) t

k

k!

(see, for instance, [6, § 2]), we define the generalized Bernoulli-Dunkl polynomials of the second kind and 
order r as

(
t

G−1
α (t)

)r

Eα(xG−1
α (t)) =

∞∑
k=0

b
(r)
k,α(x) tk

γk,α
. (6.4)

One might expect that Bernoulli-Dunkl polynomials of the second kind (and order r) would satisfy many 
identities and formulas corresponding to known properties of the classical Bernoulli polynomials of the 
second kind. Although the scope of this paper is not to look for these identities, we display here just a few 
of them to taste their flavor.

Let us start with a formula that relates the polynomials of order r with the polynomials of order r − 1.

Theorem 6.2. If we apply the Dunkl operator Λα to the Bernoulli-Dunkl polynomials of the second kind and 
order r, we have

Λαb
(r)
k,α(x) = θk,αb

(r−1)
k−1,α(x), k = 1, 2, . . . ;

in particular, for r = 1,

Λαbk,α(x) = θk,αfk−1,α(x), k = 1, 2, . . . ,

where fk,α(x) are the Dunkl factorial polynomials defined in (3.2).

Proof. Let us see the case r = 1; to do it, let us apply Λα,x to both sides of (6.3). Then, by using (1.10) we 
have

tEα(xG−1
α (t)) =

∞∑
k=0

(Λαbk,α)(x) t
k

γk
, x ∈ R.

Since Λαb0,α = 0, we can write

Eα(xG−1
α (t)) =

∞∑
(Λαbk,α)(x) t

k−1

γk
=

∞∑
(Λαbk+1,α)(x) tk

γk+1
.

k=1 k=0
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Comparing to (3.2), using θk+1 = γk+1/γk, and by the unicity of the analytic expansions, we get Λαbk+1,α =
θk+1fk,α. The generalized case for arbitrary r is completely similar but starting from (6.4). �

The values at 0 and 1 of the classical Bernoulli polynomials of the second kind are related by means of

bk+1(1) − bk+1(0) = (k + 1)bk(0).

In the Dunkl setting, also the value at −1 is involved in the corresponding relation. Stated for the Bernoulli-
Dunkl polynomials of the second kind, this property is as follows:

Theorem 6.3. Let α > −1 and b(r)k,α(x) be the Bernoulli-Dunkl polynomials of the second kind and order r. 
Then,

(α + 1)
(
b
(r)
k,α(1) − b

(r)
k,α(−1)

)
= θk,αb

(r)
k−1,α(0), k = 1, 2, . . . . (6.5)

Proof. Multiplying (6.4) by t and evaluating at x = 0 we have

tr+1

(G−1
α (t))r

=
∞∑
k=1

θkb
(r)
k−1,α(0) t

k

γk
. (6.6)

Now, by evaluating Eα(xG−1
α (t)) at x = −1 and x = 1,

(α + 1)
(
Eα(G−1

α (t)) − Eα(−G−1
α (t))

)
= 2(α + 1)

∞∑
k=0

(G−1
α (t))2k+1

γ2k+1
.

But, by the construction of G−1
α in Section 2,

(α + 1)
(
Eα(G−1

α (t)) − Eα(−G−1
α (t))

)
= t,

so the left hand side of (6.6) becomes

tr+1

G−1
α (t)r

= (α + 1)
(

t

G−1
α (t)

)r(
Eα(G−1

α (t)) − Eα(−G−1
α (t))

)

= (α + 1)
∞∑
k=0

b
(r)
k,α(1) − b

(r)
k,α(−1)

γk
tk.

Equating coefficients with the right hand side of (6.6) we obtain (6.5). �
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