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Abstract
Brouwer’s solution to the artificial satellite problem is revisited. We show that the com-
plete Hamiltonian reduction is rather achieved in the plain Poincaré’s style, through a single
canonical transformation, than using a sequence of partial reductions based on von Zeipel’s
alternative for dealing with perturbed degenerate Hamiltonian systems. Beyond the theoret-
ical interest of the new approach as regards the complete reduction of perturbed Keplerian
motion, we also show that a solution based on a single set of corrections may yield compu-
tational benefits in the implementation of an analytic orbit propagator.

Keywords Brouwer’s solution · Perturbed Keplerian motion · Perturbation theory ·
Simplification · Analytic orbit propagator

1 Introduction

Brouwer’s (1959) analytical solution to the artificial satellite problem based on von Zeipel’s
(1965) partial reduction method for dealing with perturbed degenerate Hamiltonians fiercely
resists obsolescence sixty years after publication. Indeed, in spite of the spectacular increase
of the computational power, widespread software packages for approximate ephemeris pre-
diction still rely onBrouwer’s seminal results (Hoots andRoehrich 1980; Vallado et al. 2006).
Furthermore, the success of Brouwer’s closed-form solution among practitioners as well as
the reputation gained among theorists by Brouwer’s stepwise normalization makes that the
technique is designated these days as either “the Brouwer–von Zeipel method” (Vinti 1998)
or “the von Zeipel–Brouwer theory” (Ferraz-Mello 2007).

Since then, the merits of Brouwer’s decomposition of the solution of perturbed Keple-
rian motion into secular, long-, and short-period effects seem not to have been questioned.
Moreover, after the invention of Hamiltonian simplification methods (Deprit 1981), it was
suggested that carrying out additional decompositions, thus increasing the number of canoni-
cal transformations, could be the properway to success in the search for separable perturbation
Hamiltonians of celestial mechanics problems (Deprit and Miller 1989). Conversely, it has
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been recently pointed out that the use of Hamiltonian simplification procedures could be
merely optional in the construction of higher-order analytical approximations to the satellite
problem (Lara 2020). Then, it emerges the question of which is the real value of splitting a
normalization procedure, either partial or complete, into several different stages, a topic that
may well deserve additional study.

We walk a step in that direction and, in the classical style of Poincaré’s (1893) “new
method,” undertake the construction of Brouwer’s second-order completely reduced Hamil-
tonian of the main problem in the artificial satellite theory (the J2 problem) by means of a
single canonical transformation. The difficulties stemming from the degeneracy of the Kepler
Hamiltonian, who has two null frequencies, are easily overcome with the addition of suitable
integration constants to the generating function of the transformation that yields the complete
Hamiltonian reduction.

The use of arbitrary functions in the construction of perturbation solutions is not new
at all (Morrison 1966). In fact, it can be traced back to Poincaré’s efforts in approaching
degenerate perturbation problems (Poincaré 1893, Chap. XI). They also play a fundamental
role in a reverse partial normalization process in which the angular momentum is normalized
in first place (Alfriend and Coffey 1984; San-Juan et al. 2013; Lara et al. 2014; Lara 2020).
On the other hand, in spite of average perturbation Hamiltonians do not exist in general
(Ferraz-Mello 1999), the use of arbitrary constants to guarantee the purely periodic nature of
the generating function became customary in attempts to bring the mean elements dynamics
as close as possible to the true average dynamics (Métris and Exertier 1995; Steichen 1998;
Lara et al. 2011).

To the first order, the construction of Brouwer’s closed-form solution by means of a
single transformation amounts to the direct sum of the two transformations computed by
Brouwer for the short- and long-period elimination. This is due to the linearization provided
by the first-order truncation of a perturbation theory. In view of no differences arise between
Brouwer’s and the current approach when the periodic corrections are constrained to first-
order effects, we feel compelled to supplement Brouwer’s analytical solution with second-
order periodic corrections, yet limited to the J2 contribution. We compare our results with
corresponding corrections obtained in the traditional way, in which the normalization is
split into the elimination of the parallax, the elimination of the perigee, and the Delaunay
normalization (Coffey and Alfriend 1984; Lara 2019b).

At the second order the single transformation is no longer the addition of the different
canonical transformations. As expected, the (single) periodic corrections are nowmuchmore
involved than those corresponding to each of the partial reductions or simplifications and are
also more intricate than the sequence formed by of all of them. However, the length of
the series defining the solution is only a part of the whole picture, and we found clear
computational advantages in the evaluation of the single transformation. The improvements
stem from the fact that many inclination polynomials pertaining to the periodic corrections
admit factorization. Because common factors repeat many times throughout the corrections,
the compiler is able to perform a higher optimization of the code in the case of the single
transformation than in the case in which the transformation is split in different stages.

In addition, when used in the implementation of an analytic orbit propagator, the new
approach shows additional merits derived from the Poisson series structure of the periodic
corrections. Indeed, in the case of a single set of periodic corrections, the eccentricity and
inclination polynomials defining the coefficients of the trigonometric terms of the Poisson
series remain constant in mean elements. Therefore, they only need to be evaluated once,
which is done immediately after the initialization of the constants of the perturbation theory.
Hence, repeated ephemeris evaluation only requires the update of the trigonometric terms

123



Brouwer’s satellite solution redux Page 3 of 22 47

and, therefore, is radically simplified. On the contrary, the sequence of periodic corrections in
which traditional methods rely requires the update of all orbital elements at each evaluation
step.

Because of the algebraic properties of Lie transforms (Henrard 1970), there is no doubt
that the periodic corrections provided by our approach are the same as those that would be
obtained if properly composing the different transformations involved in any of the schemes
in the literature based on the traditional splitting. This property has been used to check
that the periodic terms of our single-transformation approach are free from errors. That the
new approach provides comparable accuracy to previous published solutions for the same
truncation orders becomes then evident. It could not be otherwise save for programming
errors or numerical evaluation issues stemming for the different arrangement of the periodic
corrections in the variety of available solutions, or for the use of different sets of canonical
or non-canonical variables. Nonetheless, these computational aspects may have in practice
actual effects regarding the implementation of an analytic orbit propagator.

In the process of computing the second-order corrections, we will recognize how artificial
the controversy created about the integration of the equation of the center was. Indeed,
difficulties confronted by researchers involved in the automatization of celestial mechanics
computations were, in fact, derived from their own programming strategies (Deprit and Rom
1970; Jefferys 1971). On the contrary, the trouble had been easily sidestepped by celestial
mechanicians relying on traditional hand computations (Kozai 1962b; Aksnes 1971). We
will show that standard integration by parts reduces the equation of the center issue to the
well known integration of cosine functions in elliptic motion (Deprit and Ferrer 1987; Kelly
1989; Ahmed 1994). We hasten to say that the controversy was in no way futile since it
provoked the appearance of Hamiltonian simplification methods and led to the development
of sophisticated computational strategies (Healy 2000).1

To fully determine the second-order term of the generating function of Brouwer’s theory,
the third-order term of the completely reduced Hamiltonian needs to be previously specified.
The use of higher-order secular terms should improve further the long-term performance of
Brouwer’s solution. However, to be effective in the propagation of an initial state vector, the
initialization constants of the analytical solution, and, in particular, the secular frequencies,
must be computed within comparable accuracy to that of the secular terms. Rather than
carrying out the long and tedious computations required in the determination of the third-order
generating function, we take the clever shortcut proposed by Breakwell and Vagners (1970).
That is, we limit the computation of third-order corrections to the case of the secular mean
motion, which, besides, is directly obtained from the secular Hamiltonian.With this effortless
procedure, the addition of third-order secular terms clearly improves the performance of
Brouwer’s solution.

Beyond the J2 perturbation term that we took as a toy model for the description of the new
method, Brouwer’s theory incorporates the first few zonal harmonics of the Geopotential.
These additional terms produce quantitative variations that are clearly observed in short-term
propagations of circumterrestrial orbitswith rotating periapsis. Higher-order zonal harmonics
produce also qualitativemodifications in the artificial satellite problemdynamics (Coffey et al.
1994; Lara 2018), yet these modifications basically affect the perigee-oscillation regime, a
region of phase space in which Brouwer’s solution does not apply. Therefore, these terms
need to be mandatorily included in an analytic orbit propagator program. From the nature of
Legendre polynomials, the higher-order harmonics can be arranged formally in the sameway

1 A brief review of the history of Hamiltonian simplification methods can be found in the Introduction of Lara
(2019a).
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as we discuss here for the second zonal harmonic to ease integration by parts. Based on the
single periodic corrections approach, the implementation of an analytical orbit propagator
dealing with the full Brouwer’s solution has been undertaken by the author. Initial results are
promising and seem to support the advantages observed in the much simpler main problem.
If confirmed, results in this regard will be published elsewhere.

2 Brouwer’s complete reduction at once

Constraining the dynamical model of the artificial satellite problem to the J2 perturbation
(main problem), Brouwer’s (1959) gravitational Hamiltonian takes the form

H = − μ

2a
+ μ

r

R2⊕
r2

1

2
C2,0

[
1 − 3

2
s2 + 3

2
s2 cos(2 f + 2ω)

]
, (1)

where the Earth’s gravitational field is materialized by the physical constants μ, the gravita-
tional parameter, R⊕, the equatorial radius, andC2,0 = −J2, the non-dimensional oblateness
coefficient.2 The symbols a, r , f and ω stand for semi-major axis, radius from the Earth’s
center of mass, true anomaly, and argument of the perigee, respectively, whereas s ≡ sin I
abbreviates the sine of the inclination I . Since we are dealing with Hamiltonian mechanics,
these symbols must be understood as functions of some set of canonical variables. In par-
ticular we assume, with Brouwer, that the Hamiltonian is written in terms of the Delaunay
coordinates �, the mean anomaly, g = ω, and h, the longitude of the ascending node, and
their conjugate momenta L = √

μa, G = L(1 − e2)1/2, with e denoting the eccentricity,
and H = G cos I , standing for the Delaunay action, the total angular momentum, and the
projection of the angular momentum vector along the Earth’s rotation axis, respectively.
That H is an integral of Eq. (1) becomes evident from the cyclic character of h. Besides, the
Hamiltonian itself is constant because the time does not appear explicitly in it.

The small value of the Earth’s J2 coefficient identifies Eq. (1) like a case of perturbed Kep-
lerian motion, which, therefore, can be reduced to a separable Hamiltonian by perturbation
methods. This is achieved by finding a canonical transformation T : (�, g, h, L,G, H , ε) �→
(�′, g′, h′, L ′,G ′, H ′), from osculating to mean variables, depending on the small parameter
ε ∼ J2, such that the transformed Hamiltonian in mean (prime) variables becomes a function
of only the momenta, namely H ◦ T = K(−,−,−, L ′,G ′, H ′; ε). The transformation T ,
we learned from Poincaré (1893), is derived from a determining function that is solved in the
form of a Taylor series up to some truncation order of the small parameter ε.

Brouwer, for his part, after introducing themethodof solution, seems to refuse approaching
the direct computation of the transformation T since the beginning, by simply declaring that

“[…] it is more convenient to choose a determining function in such a manner that the
mean anomaly is not present in the transformed Hamiltonian while the argument of
the perigee is permitted to appear.”

Next, after invoking von Zeipel, he proceeded stepwise by partial reduction, first computing
a canonical transformation that only removes the short-period terms from the Hamiltonian,
and then carrying out a second canonical transformation that removes the long-period terms.
In this way Brouwer outstandingly achieves the complete Hamiltonian reduction in closed
form.

2 Note that k2 = − 1
2C2,0R

2⊕ in Brouwer’s notation.
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Conversely, we ignore the presumed convenience of Brouwer’s procedure and approach
the perturbation problem searching for a single determining function in the original style of
Poincaré, yet we better rely on the equivalent but more functional method of Lie transforms
(Hori 1966; Deprit 1969; Deprit and Deprit 1999). Thus, we write Eq. (1) in the usual form
of a perturbation Hamiltonian H = ∑

m≥0(ε
m/m!)Hm,0, with

H0,0 = − μ

2a
,H1,0 = −μ

r

R2⊕
r2

1

2

[
1 − 3

2
s2 + 3

2
s2 cos(2 f + 2ω)

]
,

Hm,0 = 0 for m ≥ 2, and ε ≡ J2 = −C2,0. Recall that all the symbols are functions of
the Delaunay canonical variables, in which the Lie operator L0 = { ;H0,0}, where the
curly brackets stand for the Poisson brackets operator, takes the simple form L0 = n∂/∂�,
where n = μ2/L3 is the mean motion. This allows us to compute the determining function
W = ∑

m≥0(ε
m/m!)Wm+1 from the sequence given by the homological equation

Wm = 1

n

∫
(H̃0,m − H0,m)d� + Cm . (2)

At each stepm, terms H̃0,m in Eq. (2) are known, coming either from the original Hamiltonian
or stemming from intermediate computations at previous orders. TermsH0,m are selected in
such a way that they cancel those terms of H̃0,m pertaining to the kernel of the Lie operator.
Finally, the integration “constants” Cm—arbitrary functions of the Delaunay variables fulfill-
ing the condition ∂Cm/∂� = 0—will be chosen like such trigonometric functions of g that
they prevent the appearance of purely long-period terms at the next order of the perturbation
approach, in this way making feasible the complete normalization at once. The method is
standard these days, and the required details can be found in textbooks as, for instance (Meyer
et al. 2009; Boccaletti and Pucacco 2002).

In preparation of the solution, the equivalence

1

r j
= 1

r2

(
1 + e cos f

p

) j−2

, (3)

where p = aη2 is the orbit parameter and η = (1− e2)1/2, is applied to the instances j > 2
in H̃0,1 = H1,0, which is then written in the convenient form

H̃0,1 = H0,0
R2⊕
r2

1

η2

1∑
i=0

Bi (s)
2i+1∑
j=i

(2 − j�)i e| j−2i | cos( j f + 2ig), (4)

where B0 = 1 − 3
2 s

2, B1 = 3
4 s

2, and we abbreviate j� ≡ j mod 2. On account of j ≥ i in
Eq. (4), we immediately verify that H̃0,1 is not affected of purely long-period terms. Then,
the complete reduction is achieved at the first order by choosing the new Hamiltonian term
H0,1 like the average of H1,0 over the mean anomaly.

The average is obtained in closed form with the help of the Keplerian differential relation
between the true and mean anomalies ηa2d� = r2d f . It is equivalent to removing all the
terms with j > 0 from Eq. (4) after multiplied by the factor r2/(a2η). We trivially obtain
the usual result

H0,1 = 〈H̃0,1〉� ≡ H0,0
R2⊕
p2

η

(
1 − 3

2
s2

)
, (5)
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which is, of course, the same expression obtained by Brouwer. Then, Eq. (2) is rearranged
in the form

W1 = 1

n

[
H0,1φ +

∫ (
H̃0,1

r2

a2η
− H0,1

)
d f

]
+ C1, (6)

where φ = f − � denotes the equation of the center, and the integrand in Eq. (6) only
embraces periodic functions of f . We obtain

W1 = −G
R2⊕
p2

1

2

[
B0φ +

1∑
i=0

Bi

2i+1∑
j=1

(2 − j�)i

j
e| j−2i | sin( j f + 2ig)

]
+ C1, (7)

where the first term of the right-hand member is the same as Brouwer’s first order deter-
mining function of the short-period elimination, and C1 is an integration constant that is left
undetermined by the time being.

On account of H2,0 ≡ 0, the known terms at the second order of the Lie transforms
approach are H̃0,2 = {H1,0;W1} + {H0,1;W1}, from which the terms pertaining to the
kernel of the Lie operator must be canceled by the adequate selection of H0,2. The usual
choice is H0,2 = 〈H̃0,2〉�, yet additional terms could be left in the new Hamiltonian in
particular cases (Deprit 1981; Lara 2019a). However, this process would leave purely long-
period terms in the newHamiltonian in addition to the secular terms, both certainly pertaining
to the kernel of the Lie operator. Since this is against the total normalization criterion, purely
long-period terms should vanish identically in H̃0,2, a requirement that is achieved with the
proper selection of C1, whose partial derivatives with respect to g, G, and L appear formally
in H̃0,2.

We attack the computation of the second order of the perturbation theory by parts. To
that effect, we make H̃0,2 = H̃′

0,2 + H̃∗
0,2 with H̃′

0,2 = {H1,0 + H0,1;V1} and H̃∗
0,2 =

{H1,0 + H0,1; C1}. Straightforward evaluation of the Poisson brackets, followed by the use
of Eq. (3) and standard trigonometric reduction, yields

H̃′
0,2 = H0,0

R4⊕
p4

a2

r2
3

64

η2

1 + η

2∑
i=0

s2i
i+4∑

j=(−1)i i

3−|2i− j |∑
k=0

Bi, j,kη
ke| j−2i | cos( j f + 2ig)

+H0,0
R4⊕
p4

3

8
η

[
η(3s2 − 2)2 + 3(5s2 − 4)s2

3∑
j=1

2 − j�

j
e j

�

cos( j f + 2g)

]

+H0,0
R4⊕
p4

9

8

(
5s2 − 4

)
s2

p2

r2
1

η2
φ

3∑
j=1

(2 − j�)e j
�

sin( j f + 2g), (8)

where the needed coefficients Bi, j,k(s) are listed in Table 1.
We intentionally split H̃′

0,2 into three different blocks. Namely, all the terms on the first

row of Eq. (8) are free from the equation of the center and factored by a2/r2, hence being of
trivial integration in the true anomaly. Terms of the second row are free from both φ and r ; the
integration of terms of this type reduces to the well-known case of the integration of cosine
functions in elliptic motion (Deprit and Ferrer 1987; Kelly 1989; Ahmed 1994). Terms on
the third row are of the form (p/r)2φ sin(m f +α), withm integer, and are readily integrated
by parts. That is, on account of d(cosm f )/d� = −(m/η3)(p/r)2 sinm f ,

m

η3

∫
p2

r2
φ sinm f d� = −φ cosm f + sinm f

m
−

∫
cosm f d�, (9)
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Table 1 Inclination polynomials Bi, j ,k in Eq. (8)

B0,0,0 = B0,0,1 B1,1,0 = 3(37s2 − 38) B2,2,0 = B2,2,1

B0,0,1 = 10(7s4 − 16s2 + 8) B1,1,1 = 12(7s2 − 8) B2,2,1 = 5

B0,0,2 = B0,0,3 B1,1,2 = B1,5,0 B2,3,0 = B2,3,1

B0,0,3 = 2(5s4 + 8s2 − 8) B1,2,0 = B1,2,1 B2,3,1 = 6

B0,1,0 = 2(57s4 − 124s2 + 60) B1,2,1 = −16(4s2 − 1) B2,3,2 = B2,5,2 = 0

B0,1,1 = 4(15s4 − 44s2 + 24) B1,2,2 = B1,2,3 B2,4,0 = B2,4,1

B0,1,2 = B0,3,0 B1,2,3 = −8(s2 − 2) B2,4,1 = −6

B0,2,0 = 2(31s4 − 56s2 + 24) B1,3,0 = 150 − 221s2 B2,4,2 = B2,4,3

B0,2,1 = −2(5s4 + 8s2 − 8) B1,3,1 = −4(35s2 − 24) B2,4,3 = −2

B0,3,0 = 2(3s2 − 2)2 B1,3,2 = 2 − 3s2 B2,5,0 = B2,5,1

B1,−1,0 = B1,3,2 B1,4,0 = −4(31s2 − 22) B2,5,1 = −10

B1,0,0 = B1,0,1 B1,4,1 = −4(13s2 − 10) B2,6,0 = B2,6,1

B1,0,1 = 4(15s2 − 14) B1,5,0 = −5(3s2 − 2) B2,6,1 = −3

in this way leading to the previous case of integration of cosine functions. Particularization
for definite integration follows from the fundamental theorem of calculus. Alternatively, the
needed quadratures can be obtained from known expressions (Brouwer 1959; Kozai 1962a;
Tisserand 1889).

On the contrary, it is worth noting that unnecessary complications may arise if the third
row of Eq. (8) is organized in the form of a Fourier series. Indeed, if we replace r by the
conic equation in the third row of Eq. (8), we obtain

H0,0
R4⊕
p4

9

8
(5s2 − 4)s2φ

5∑
j=−1

q| j−2|e| j−2| sin( j f + 2g),

with q0 = 3e2 + 2, q1 = 3
4 (e

2 + 4), q2 = 3
2 , and q3 = 1

4 , then the equation of the center
shows as an isolated function of the mean anomaly when the summation index takes the
value j = 0. This arrangement brings no problem in the computation of definite integrals,
which can be carried out using the general rules for computing 〈φ sinm f 〉� and 〈φ cosm f 〉�
provided by Métris (1991). On the contrary, while indefinite integration is still possible, it
requires the sophisticated use of special functions, which could make notably difficult to
progress in the perturbation approach (Osácar and Palacián 1994).

On the other hand, the evaluation of the Poisson brackets involving the integration constant
C1 yields

H̃∗
0,2 = H0,0

R2⊕
p2

1

L

∂C1
∂g

3

2

[
4 − 5s2 + a2η

r2

1∑
i=0

2i+3∑
j=−i

j�∑
k=0

bi, j,kη
2ke j

′
cos( j f + 2ig)

]

−H0,0
R2⊕
p2

∂C1
∂G

3

2
ηs2

a2η

r2

3∑
j=1

[1 + ( j + 1)�]e j� sin( j f + 2g)

+H0,0
R2⊕
p2

∂C1
∂L

3

16η2
a2η

r2

1∑
i=0

bi

2i+3∑
j=−i

qi, j e
j� sin( j f + 2ig), (10)
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Table 2 Non-null inclination bi, j ,k and eccentricity polynomials qi, j in Eq. (10)

b0,0,0 = 4 − 5s2 b1,−1,0 = 1
8 s

2 q0,1 = e2 + 4

b0,1,0 = − 1
4 (29s2 − 22) b1,1,0 = 11

8 s2 − 1 q0,2 = 4e2

b0,1,1 = 1
4 (17s2 − 14) b1,1,1 = 1 − 15

8 s2 q0,3 = q1,−1 = e2

b0,2,0 = 2 − 3s2 b1,2,0 = 5s2 − 2 q1,1 = −3q0,1

b0,3,0 = − 1
4 (3s2 − 2) b1,3,0 = 47

8 s2 − 1 q1,2 = −8(3e2 + 2)

b1,3,1 = 1 − 19
8 s2 q1,3 = −9q0,1

b1,4,0 = 3s2 q1,4 = −24e2

b1,5,0 = 5
8 s

2 q1,5 = −5e2

where j ′ = (| j − 2i | − 2) j�, ( j + 1)� ≡ ( j + 1) mod 2, and the inclination polynomials
bi, j,k(s) and the eccentricity polynomials qi, j (e) are provided in Table 2.

In the sameway aswedid in the first order,we chooseH0,2 = 〈H̃0,2〉� = 〈H̃′
0,2〉�+〈H̃∗

0,2〉�
to guarantee that it cancels all the terms of H̃0,2 pertaining to the kernel of the Lie derivative.
Firstly, we compute 〈H̃′

0,2〉� as follows. To average the first row of Eq. (8) over the mean

anomaly, it is first multiplied by the factor r2/(a2η) to carry out the integration in the true
anomaly, and then those terms that are free from f , which are those with j = 0, are selected.
The term free from f in the second row averages to itself while the remaining terms in this
row are averaged using the rule

1

2π

∫ 2π

0
cos(m f + α) d� =

( −e

1 + η

)m

(1 + mη) cosα, (11)

cf. Kozai (1962a). Finally, the terms on the third row of Eq. (8) are averaged by parts with
the help of Eqs. (9) and (11). We finally obtain,

〈H̃′
0,2〉� = H0,0

R4⊕
p4

3

32
η

[
5(7s4 − 16s2 + 8) + η(6s2 − 4)2 + η2(5s4 + 8s2 − 8)

]

+H0,0
R4⊕
p4

3

16
η(15s2 − 14)s2e2 cos 2g, (12)

which is precisely Brouwer’s second-order Hamiltonian after the elimination of short-period
terms. The average of Eq. (10) is readily obtained with analogous procedures, to obtain

〈H̃∗
0,2〉� = −H0,0

R2⊕
p2

3(5s2 − 4)
1

L

∂C1
∂g

. (13)

Visual inspection of Eqs. (12) and (13) immediately shows that if we complete the compu-
tation of the first-order term of the generating function in Eq. (7) choosing

C1 = G
R2⊕
p2

15s2 − 14

32(5s2 − 4)
s2e2 sin 2g, (14)

then Eq. (13) turns into the opposite of the term in the last row of Eq. (12), the only one that
depends on g, thus mutually canceling out. Hence,

H0,2 = H0,0
R4⊕
p4

3

32
η

[
5(7s4 − 16s2 + 8) + η(6s2 − 4)2 + η2(5s4 + 8s2 − 8)

]
, (15)
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which is the same as the second-order term of Brouwer’s Hamiltonian after the elimination
of long-period terms. In this way we have achieved Brouwer’s total Hamiltonian reduction
of the main problem at once, with a single canonical transformation.

It is not a big surprise that C1 is the same integration constant obtained in the so-called
elimination of the perigee (Alfriend and Coffey 1984; Lara et al. 2014) or in the author’s
reverse normalization of the angular momentum (Lara 2020), because the motion in the
orbital plane is decoupled from the rotation of that plane in each case.

The computation of first-order periodic corrections is now straightforward from the simple
evaluation of Poisson brackets, namely ξ − ξ ′ = J2�ξ , where �ξ ≡ {ξ,W1} and ξ denotes
either a canonical variable or some wanted function of the canonical variables (Deprit 1969).
For instance, for the first-order periodic corrections to the semi-major axis we obtain

�a = a
R2⊕
p2

1

4η2

1∑
i=0

Bi (s)
3+2i∑
j=−i

Ai, j (η)e| j−2i | cos( j f + 2ig), (16)

where A0,0 = 10 − 6η2 − 4η3, A0,1 = A1,1 = A1,3 = 15 − 3η2, A0,2 = A1,0 = A1,4 = 6,
A0,3 = A1,−1 = A1,5 = 1, and the coefficients Bi are the same as those in Eq. (4). Recall that
Eq. (16) must be evaluated in mean (prime) variables in the direct transformation from mean
elements to osculating ones, and in original (unprimed) variables in the inverse transformation
from osculating to mean variables.

3 Second-order periodic corrections

The second-order term of the generating function is now computed makingm = 2 in Eq. (2).
Namely

W2 = V2 + C2, with V2 = 1

n

∫
(H̃0,2 − H0,2)d�.

In view of Eqs. (8), (10), and (15), the needed integrals in the computation of V2 are either
trivial, solved with the help of Eq. (9) for those terms involving the equation of the center,
or using the differential relation between the mean and true anomalies for those other that
are free from φ but depend on trigonometric functions of f . Straightforward computations
yield

V2 = G
R4⊕
p4

3

64
φ

[
− η2(5s4 + 8s2 − 8) − 5(7s4 − 16s2 + 8)

− (15s2 − 14)e2s2 cos 2g + 12s2(5s2 − 4)
3∑
j=1

2 − j�

j
e j

�

cos( j f + 2g)

]

+G
R4⊕
p4

1

512

2∑
i=0

jmax∑
j= jmin

3∑
k=0

βi, j,k(s)ηks2i e j
�
sin( j f + 2ig)

(5s2 − 4)2−i� (1 + η)� 1
2 (3−i)� , (17)

where jmin = 2(i + 1)� − 1, jmax = 4 + i + � 1
2 (i − 1)�, and the inclination polynomials

βi, j,k are listed in Table 3.
It is worth to remark that, in spite of V2 is made only of short-period terms, the appearance

of the critical divisor 5s2 − 4 in Eq. (17) makes more than evident the important differences
between V2 and the second-order generating function of Brouwer’s short-period elimination.
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47 Page 10 of 22 M. Lara

Table 3 Non-null inclination polynomials βi, j ,k in Eq. (17)

0,1,0 : −15(3s2 − 2)(805s6 − 2448s4 + 2400s2 − 768) 1,2,3 : 12(−25s4 + 16s2 + 4)

0,1,1 : −3(3s2 − 2)(2225s6 − 8160s4 + 8928s2 − 3072) 1,3,0 : 2(1855s4 − 2700s2 + 972)

0,1,2 : 3(−825s8 + 3030s6 − 4064s4 + 2368s2 − 512) 1,3,1 : 2(1045s4 − 1512s2 + 540)

0,1,3 : 3s2(975s6 − 2250s4 + 1728s2 − 448) 1,3,2 : −2(3s2 − 2)(5s2 − 6)

0,2,0 : −β0,2,2 1,3,3 : −2(3s2 − 2)(15s2 − 14)

0,2,1 : −β0,2,3 1,4,0 : −β1,4,2

0,2,2 : 6(1925s8 − 6210s6 + 7452s4 − 3936s2 + 768) 1,4,1 : −β1,4,3

0,2,3 : 6(125s8 − 930s6 + 1660s4 − 1120s2 + 256) 1,4,2 : −12(5s2 − 4)(31s2 − 22)

0,3,0 : −β0,3,2 1,4,3 : −12(5s2 − 4)(13s2 − 10)

0,3,1 : −β0,3,3 1,5,0 : −β1,5,2

0,3,2 : 2625s8 − 7270s6 + 7408s4 − 3264s2 + 512 1,5,2 : −12(3s2 − 2)(5s2 − 4)

0,3,3 : s2(825s6 − 1990s4 + 1616s2 − 448) 2,1,0 : −β2,1,2

1,−1,0 : −β1,−1,2 2,1,2 : 3(225s4 − 430s2 + 208)

1,−1,1 : −β1,−1,3 2,2,0 : −β2,2,2

1,−1,2 : 6(135s4 − 232s2 + 100) 2,2,2 : 60(50s4 − 87s2 + 38)

1,−1,3 : 6(7s2 − 6)(15s2 − 14) 2,3,0 : −20(165s4 − 284s2 + 122)

1,1,0 : −24(495s4 − 850s2 + 364) 2,3,2 : 8(75s4 − 135s2 + 61)

1,1,1 : −12(855s4 − 1502s2 + 656) 2,4,0 : −180(s2 − 1)(5s2 − 4)

1,1,2 : 48(5s2 − 4) 2,4,2 : 12(5s2 − 4)(25s2 − 23)

1,1,3 : −12(5s2 − 4)(15s2 − 14) 2,5,0 : 3(5s2 − 4)(25s2 − 18)

1,2,0 : 12(−95s4 + 240s2 − 132) 2,5,2 : 3(5s2 − 4)(15s2 − 14)

1,2,1 : β1,2,0 2,6,0 : −β2,6,2

1,2,2 : β1,2,3 2,6,2 : −6(5s2 − 4)2

As it is well known, there are no offending divisors in Brouwer’s approach for the removal
of short-period terms, and the critical inclination divisors only stem with the elimination of
long-period terms.

On the other hand, the attentive readerwill have noticed that the exponents of the offending
divisors are exactly the same as those of equivalent solutions in the literature. So, in theory,
the fact that they now affect both the short- and long-period terms of the periodic corrections
should not harm the new formulation. In this regard, differences between the variety of
existing formulations should remain below the accuracy expected from the truncation of the
series that comprise the perturbation solution. Extensive numerical computations would be
required to fix accurately the bounds of specific regions of the rotating-perigee phase space
in which any of the existing theories—basically, the current approach, Brouwer’s method,
reverse normalization, and Hamiltonian simplification alternatives based on the elimination
of the parallax—present the higher accuracy. This kind of numerical campaign falls out of
the scope of the current investigation. If this challenging endeavor is eventually attacked, it
should take into account the effect that may have in different regions of phase space the use
of the variety of canonical or non-canonical, singular or non-singular variables, in which the
periodic corrections can be formulated. The fact that a single winner of the contest is not
expected should not be of worry for a practitioner. At the end, beyond the simplified model
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Table 4 Inclination polynomials βi,k in Eq. (18)

β0,0 = −5(28700s10 − 107205s8 + 158960s6 − 118492s4 + 45152s2 − 7168)

β0,1 = −60(3s2 − 2)(5s2 − 4)2(7s4 − 16s2 + 8)

β0,2 = 2(28675s10 − 98005s8 + 130852s6 − 87164s4 + 30176s2 − 4608)

β0,3 = −20(3s2 − 2)(5s2 − 4)2(5s4 + 8s2 − 8)

β0,4 = s2(15s2 − 14)(450s6 − 925s4 + 590s2 − 112)

β1,0 = 525s6 − 3930s4 + 5632s2 − 2256

β1,1 = 5925s6 − 16170s4 + 14848s2 − 4560

β1,2 = (14 − 15s2)(75s4 − 212s2 + 120)

β1,3 = (15s2 − 14)(45s4 + 36s2 − 56)

β2,0 = (15s2 − 14)2(15s2 − 13)

used in this paper to illustrate the author’s findings, actual analytical orbit propagators are
composed of different solutions, each of which applying to different orbital regimes—like
SGP4 best exemplifies (Hoots and Roehrich 1980; Vallado et al. 2006); see also Coffey et al.
(1996) .

As before, the integration constant C2 will be determined by imposing to the known terms
of the next order

H̃0,3 = {H0,2 + H1,1,W1} + {H0,1 + 2H1,0,W2},
whereH1,1 = H0,2+{H0,1,W1}, the condition of being free from pure long-periodic terms.
Again, the known terms are split into terms directly computable and those depending on the
arbitrary function C2. That is, H̃0,3 = H̃′

0,3 + H̃∗
0,3, where

H̃′
0,3 = {H0,2 + H1,1,W1} + {H0,1 + 2H1,0,V2},

H̃∗
0,3 = {H0,1 + 2H1,0, C2}.

It follows the customary computation of H0,3 so that it cancels the terms of H̃0,3 pertaining
to the kernel of the Lie operator; namely

H0,3 = 〈H̃0,3〉� = 〈H̃′
0,3〉� + 〈H̃∗

0,3〉�.
After straightforward evaluation of the Poisson brackets, we obtain

〈H̃′
0,3〉� = H0,0

R6⊕
p6

9

512
η

2∑
i=0

4−2i+i�∑
k=0

βi,k(s)ηks2i e2i

(5s2 − 4)2−i� (1 + η)i
� cos 2ig, (18)

where i� = i mod 2 and the inclination polynomials βi,k are given in Table 4. Analogously,

〈H̃∗
0,3〉� = −H0,0

R2⊕
p2

9

2
(5s2 − 4)

1

L

∂C2
∂g

. (19)

In this process, we only found integrals of the same type as we did at the second order, and
hence, there were no special difficulties in solving them, yet in this case we needed to deal
with notably longer series than in previous orders.
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47 Page 12 of 22 M. Lara

Once more, the simple inspection of Eqs. (18) and (19) shows that if we now choose3

C2 = G
R4⊕
p4

1

256

2∑
i=1

4−2i+i�∑
k=0

βi,k(s)ηks2i e2i

(5s2 − 4)i+1(1 + η)i
�

sin 2ig

2i
, (20)

then Eq. (19) cancels the terms of Eq. (18) depending on the argument of the perigee out, to
yield

H0,3 = H0,0
R6⊕
p6

9

512

η

(5s2 − 4)2

4∑
k=0

β0,k(s)η
k, (21)

which is completely reduced as desired.
Equations (5), (15), and (21) show that differentiation of the secular Hamiltonian with

respect to L brings the mean motion n as a coefficient with power 1 at each order. That this
kind of coefficient also appears at higher orders of the secular terms is expected, and has been
confirmed at least up to the order 6 using reverse normalization [see Lara 2020, Eqs. (45)–
(47)]. Therefore, it may be expected that am-th-order truncation of the perturbation approach
would yield an error� ≈ nJm+1

2 t in the computation of the secular terms after a propagation
time t .

As verification of our solution, we checked that the secular terms obtained with the
new approach match those provided by alternative solutions in the literature. In particu-
lar, up to third-order terms, we found the expected full agreement with the secular terms
of our own implementations of Brouwer’s classical algorithm (Brouwer 1959), Deprit’s
parallax–Delaunay–perigee approach (Coffey and Deprit 1982), Alfriend and Coffey’s
parallax–perigee–Delaunay variant (Coffey and Alfriend 1984), and the author’s reverse
normalization (Lara 2020). Besides, we also checked that the proper composition (Henrard
1970) of the separate Lie transformations involved in each of these perturbation theories
relying in a sequential partial reduction, either without or with additional Hamiltonian sim-
plifications, yields corresponding generating functions that match term for term the generator
of the new single Lie transformation constructed in Poincaré’s original style.

Beyond the first order, direct and inverse transformations are no longer opposite. At
the second order, the direct transformation is given by ξ = ξ ′ + J2�ξ + 1

2 J
2
2 δ′ξ , where

δ′ξ = {�ξ,W1}+{ξ,W2} is evaluated in prime variables. The inverse transformation is ξ ′ =
ξ − J2�ξ + 1

2 J
2
2 δξ , where δξ = {�ξ,W1}+{ξ,−W2} is evaluated in the original variables.

For instance, replacing ξ by a we obtain the inverse second-order periodic correction to the
semi-major axis

δa = a
R4⊕
p4

1

44η4

[
24η7(5s4 + 8s2 − 8) + 48η5(152 − 14)s2e2 cos 2g

+
2∑

i=0

6+2i∑
j=−i−3i�

6−| j−2i |∑
k=0

(3s2 − 2)i
�

s2i Ai, j,k(s)η
ke| j−2i | cos( j f + 2ig)

]
, (22)

where the inclination coefficients Ai, j,k are provided in Table 5.

3 By the request of a reviewer, the difference between C2 in Eq. (20) and the second-order generating function
B2 ofBrouwer’s long-period elimination is explicitly provided.Namely,C2−B2 = 1

128GC2
2,0(R⊕/p)4(2η2+

5η + 5)(1 − η)(45s4 − 72s2 + 28)(5s2 − 4)−1s2 sin 2g.
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Table 5 Non-null inclination coefficients Ai, j ,k in Eq. (22)

2,−2,0 : 9 2,7,0 : 1980 1,2,0 : −11088 0,0,0 : 462A0,6,0
2,−1,0 : 108 2,7,2 : −540 1,2,2 : 15120 0,0,2 : −630A0,6,0

2,0,0 : 594 2,8,0 : 594 1,2,3 : 480 0,0,3 : 10A0,3,3
2,0,2 : −54 2,8,2 : −54 1,2,4 : −5040 0,0,4 : 210A0,6,0
2,1,0 : 1980 2,9,0 : 108 1,2,5 : − 288(13s2−10)

3s2−2 0,0,5 : 24(71s4 − 128s2 + 56)

2,1,2 : −540 2,10,0 : 9 1,2,6 : 240 0,0,6 : −4(63s4 − 24s2 + 8)

2,2,0 : 4455 1,−4,0 : −12 1,3,0 : −9504 0,1,0 : 792A0,6,0
2,2,2 : −2430 1,−3,0 : −144 1,3,2 : 8640 0,1,2 : −720A0,6,0

2,2,4 : 135 1,−2,0 : −792 1,3,3 : 360 0,1,3 : 15A0,3,3
2,3,0 : 7128 1,−2,2 : 72 1,3,4 : −1440 0,1,4 : 120A0,6,0
2,3,2 : −6480 1,−1,0 : −2640 1,3,5 : − 24(49s2−38)

3s2−2 0,1,5 : −3A0,3,3

2,3,4 : 1080 1,−1,2 : 720 1,4,0 : −5940 0,2,0 : 495A0,6,0
2,4,0 : 8316 1,−1,3 : 24 1,4,2 : 3240 0,2,2 : −270A0,6,0

2,4,2 : −11340 1,0,0 : −5940 1,4,3 : 144 0,2,3 : 6A0,3,3
2,4,4 : 3780 1,0,2 : 3240 1,4,4 : −180 0,2,4 : 15A0,6,0
2,4,6 : −180 1,0,3 : 144 1,5,0 : −2640 0,3,0 : 220A0,6,0
2,5,0 : 7128 1,0,4 : −180 1,5,2 : 720 0,3,2 : −60A0,6,0

2,5,2 : −6480 1,1,0 : −9504 1,5,3 : 24 0,3,3 : −16(3s2 − 2)2

2,5,4 : 1080 1,1,2 : 8640 1,6,0 : −792 0,4,0 : 66A0,6,0
2,6,0 : 4455 1,1,3 : 360 1,6,2 : 72 0,4,2 : −6A0,6,0

2,6,2 : −2430 1,1,4 : −1440 1,7,0 : −144 0,5,0 : 12A0,6,0
2,6,4 : 135 1,1,5 : − 72(43s2−34)

3s2−2 1,8,0 : −12 0,6,0 : 2(27s4 − 24s2 + 8)

Eventual divisors in terms Ai, j ,5 do not exist in fact and result from our arrangement of the summation

4 Initialization of the secular constants and performance tests

Soon after Brouwer’s solution appeared in print, different reports pointed out an apparent
contradiction between the accuracy expected from the series truncation order and the com-
paratively large in-track errors obtained in a variety of tests against numerical integrations
(Bonavito et al. 1969). The issue, however, did not happen when fitting Brouwer’s solution
to observational data.4 Hence, the apparent discrepancy was easily identified with an incon-
sistency in the use of Brouwer’s theory. Indeed, to get the expected accuracy provided by the
secular terms, the initialization of the constants of Brouwer’s solution should be done with
comparable accuracy. However, Brouwer only provided the periodic corrections up to the
first order of J2, and hence, the direct initialization of the secular mean motion for given ini-
tial conditions yields equivalent accuracy. The trouble is, of course, solved when the inverse
periodic corrections are computed up to the same order of the secular terms.

On the other hand, since the trouble arises from an inaccurate computation of the secular
mean motion, the theory can be patched by supplementing Brouwer’s first-order corrections
only with the inverse second-order correction to the semi-major axis, either using Eq. (22) or

4 Interested readers may find worthwhile reading analogous remarks in Kozai (1962b) regarding the use of
Kozai’s second-order solution.
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in the different much shorter formulation given by Lyddane and Cohen (1962). Alternatively,
the errors in the initialization procedure can be palliated by fitting the secular frequencies
to data obtained from a preliminary numerical integration over several revolutions, or by a
calibration of the secular mean motion n′ = μ2/L ′3 from the energy equation (Breakwell
and Vagners 1970).

The latter approach is particularly appealing because it totally avoids the need of carrying
out additional computations to those already carried out by Brouwer. Thus, for given initial
conditions (�0, g0, h0, L0,G0, H0), the initial Hamiltonian in osculating elements evalu-
ates to H(�0, g0,−, L0,G0, H0) = E0. On the other hand, after the complete Hamiltonian
reduction

E0 = − μ2

2L ′2 +
k∑

m=1

Jm2
m! H0,m(L ′,G ′, H) + O(J k+1

2 ). (23)

However, the constants L ′ andG ′ are computed from the osculating initial conditions through
the inverse periodic corrections only up to O(J k−1

2 ). While this fact does not compromise
the accuracy of Eq. (23) in what respects to the terms H0,m (m ≥ 1) because they are
multiplied by corresponding factors Jm2 , it certainly does in the case of the Keplerian term.
What Breakwell and Vagners (1970) propose is then to replace L ′ by the calibrated value

L̂ = μ

√
2

[
−E0 + ∑k

m=1(J
m
2 /m!)H0,m(L ′,G ′, H)

]1/2 , (24)

obtained by solving the Keplerian term from Eq. (23). If now L ′ is replaced in Eq. (23) by
the calibrated value L̂ then the energy equation will remain certainly accurate to O(J k+1

2 ).
Therefore, the initialization of the secular frequencies is notably improved using the values

n� = μ2

L̂3
+

k∑
m=1

Jm2
m!

∂H0,m

∂L ′ , ng =
k∑

m=1

Jm2
m!

∂H0,m

∂G ′ , nh =
k∑

m=1

Jm2
m!

∂H0,m

∂H
.

Obviously, the use of Breakwell and Vagners’ calibration procedure is not constrained to
the second order of Brouwer’s theory and also applies to any truncation order. In our partic-
ular case, in which we had already computed the second-order direct and inverse periodic
corrections of Brouwer’s theory, the calibration of the (mean) Delaunay action allowed us
to improve the accuracy of Brouwer’s secular terms to the third order of J2 without need of
computing the long series that comprise the third-order term of the generating function.

The accuracy obtained with different truncations of both the single-transformation
approach and the classical parallax + perigee + Delaunay is illustrated in Fig. 1 for three
test cases. The first is a TOPEX-type orbit with approximate orbital elements a = 7707.270
km, e = 0.0001, I = 66.04◦, � = 180◦, ω = 270◦, and �0 = 90◦, which is close to, yet far
away enough from the critical inclination (top row of Fig. 1). The second is a PRISMA-type
orbit with a = 6878.14 km, e = 0.001, I = 97.42◦, � = 168.2◦, ω = 20◦, and �0 = 30◦
(center row of Fig. 1). The third is a GTO orbit with a = 24460 km, e = 0.73, I = 30◦,
� = 170.1◦, ω = 280◦, and �0 = 0 (bottom row of Fig. 1). The exact initial conditions
in polar variables used in the simulations are given in Table 6, where corresponding mean
elements obtained after second-order corrections of the different theories are also provided.
In the latter, “Brouwer at once” denotes the theory of this paper, and “Hamiltonian simplifi-
cation” that constructed by successive eliminating the parallax and the perigee, and carrying
out the final Delaunay normalization. The units of length and time are km and s, respectively.

We remark that both analytical solutions were derived by the author in Delaunay variables.
This includes the computation of Deprit’s elimination of the parallax as well as Alfriend and
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Fig. 1 Root sum square error of the Cartesian coordinates (in m) provided by different truncations {I , S, D}
(for Inverse, Secular, Direct) of the two tested versions of Brouwer’s J2 solution; numbers on the right side of
the labels denote the maximum error. From top to bottom: TOPEX, PRISMA, and GTO orbits. Abscissas are
days

Coffey’s elimination of the perigee (cf. Lara et al. 2014). However, to avoid possible singu-
larities in the propagation of almost-circular orbits, the secular terms have been reformulated
in the semi-equinoctial elements that materialize the eccentricity vector in the nodal frame
(Cook 1966; Deprit and Rom 1970; Konopliv 1991). For the same reason, but also for effi-
ciency purposes, the required direct and inverse transformations have been computed in polar
variables (Izsak 1963; Aksnes 1972; Lara 2015a, b).

Needless to say that different perturbations solutions to the same problem must present
comparable accuracy level for the same truncation order of the solution series, independently
of the approach used in their computation. As expected, it was certainly the current case.

Each plot of Fig. 1 depicts the time history of the root sum square (RSS) of the position
errors of the analytical solution. The RSS errors are computed for different truncations of the
analytical solutions when compared with the “true” solution along one-month propagation.
To guarantee the accuracy of the latter, the reference orbits were obtained from the numerical
integration of the differential equations of the main problem in Cartesian coordinates using
extended precision. The integrations were carried out with the reputed, public code DOPRI
853 of Hairer et al. (2008), which implements an explicit Runge–Kutta method of order
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Table 6 Osculating elements and corresponding mean elements after second-order corrections

TOPEX: osculating Brouwer at once Hamiltonian simplification

r 7.70727262434496 × 103 7.70391429494769 × 103 7.70391430286207 × 103

θ 1.73592763452501 × 10−4 1.73587603817717 × 10−4 1.73587598778812 × 10−4

ν 3.14160265358979 3.14160270665569 3.14160270666115

R 6.24194801114698 × 10−4 6.24850855485935 × 10−4 6.24850846289337 × 10−4

� 5.54267284307527 × 104 5.54009922486875 × 104 5.54009922449211 × 104

N 2.25087580656509 × 104

PRISMA: osculating Brouwer at once Hamiltonian simplification

r 6.87218205842936 × 103 6.86789987257577 × 103 6.86789987043315 × 103

θ 8.73665709392111 × 10−1 8.73565572376332 × 10−1 8.73565572110343 × 10−1

ν 2.9349734000392 2.93506195909611 2.93506195918883

R 3.81292632369856 × 10−3 7.25187316357516 × 10−3 7.25187318275416 × 10−3

� 5.23605355759396 × 104 5.23668326099122 × 104 5.23668326116542 × 104

N −6.76232984664786 × 104

GTO: osculating Brouwer at once Hamiltonian simplification

r 6.6042 × 103 6.60695130592552 × 103 6.60695130571208 × 103

θ 4.88692190558412 4.88683135836769 4.88683135834805

ν 2.9688050576423546 2.96893929101947 2.96893929101385

R 0 −1.67987010626928 × 10−4 −1.67987077066973 × 10−4

� 6.7484191273623 × 104 6.74914399196842 × 104 6.74914399200858 × 104

N 5.84430239968057 × 104

The integral N of the J2 problem remains unchanged. Units of length and time are km and s, respectively

8(5, 3) due to Dormand and Prince (1980). The code was compiled in Fortran quadruple
precision, and the propagations were performed with tolerance 10−22 in order to guarantee
that the reference orbits preserve at least 16 exact digits. Additionally, it has been checked
that the 16-digit truncation of the reference orbits preserves both the energy integral and the
third component of the angular momentum with a minimum of 14 digits (most commonly
15 digits).

Labels {I:S:D} in the plots denote the truncation order of the Inverse corrections, Secular
terms, and Direct corrections of the orbital theory. The notation {I+:S:D} means that the
inverse corrections are improved in Breakwell and Vagners’ style. Thus, the label {1:2:1}
denotes the truncations of the original Brouwer’s approach. At the end of one month, the
{1:2:1} theory accumulates a RSS error of about 2.5 km for TOPEX, about 13 km in the case
of PRISMA, and ∼ 50 km for the GTO. The simple calibration of the secular mean motion
using Eq. (24) clearly bends the RSS errors curve toward the meter level with a negligible
increase of the computational burden. Thus, at the end of the propagation period, the RSS
errors of the {1+:2:1} solution reach about 15 m for TOPEX, or ∼ 50 m for both PRISMA
and the GTO. Figures are further improved when the orbit is propagated with the full second-
order theory, in which the second-order transformation is used both in the initialization of
the constants of Brouwer’s secular terms (inverse periodic corrections) and in the ephemeris
computation (direct periodic corrections). Now, RSS errors fall to about 10 m at day 30 for
TOPEX and the GTO, or 30 m for PRISMA, curve labeled {2:2:2}, yet the computational
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burden increases by about one third due to the evaluation of second-order direct corrections,
contrary to the lighter first-order corrections. Finally, supplementing Brouwer’s theory with
third-order secular terms and the consequent calibration of the secular mean motion, case
{2+:3:2}, keeps the RSS errors of all the cases tested to the level of just a few cm along
the whole propagation interval, with negligible increase of the computational burden with
respect to the {2:2:2} case.

The accuracy of the results obtained in our tests is in clear agreement with which one may
expect from the nature of a perturbation solution. Thus, a truncation errorO(Jm2 ) of the series
comprising the perturbation solution is expected to yield an errorO(Jm+1

2 ) in the evaluation
of these series. More precisely, absolute errors of O(Jm+1

2 ) in radians are expected for the
angle variables,whereas relative errors of the action variables should be proportional to Jm+1

2 .
Analogously, the proper initialization of the constants of the perturbation theory would yield
errors in the secular frequencies proportional to their values. In particular, �n = n × Jm+1

2
radians per unit of time for the secular mean motion. The estimation of corresponding errors
in a different set of variables is obtained from the usual properties of the propagation of
errors. For instance, errors in the eccentricity must be divided by the eccentricity value itself,
thus being notably increased in the case of low-eccentricity orbits; analogously, inclination
errors are divided by the sine of the inclination and hence are more apparent in the case of
low-inclination orbits. Expanded discussions on the topic may be consulted in §6.5 of Lara
(2021).

Thus, for instance, the initialization of the secular constants of the {2+:3:2} theory would
yield an error of O(J 42 ) in the secular terms, which, on account of J2 = 1.082634 × 10−3

for the Earth, yields ≈ 1.37 × 10−12. In the case of TOPEX, with a period of 112 minutes,
this truncation error would produce a concomitant error�n ≈ (2π/6720)×1.37×10−12 =
1.3 × 10−15 rad/s in the secular mean motion. Then, after one-month propagation of the
secular terms t = 2.592 × 106 s, and the error in the mean anomaly due to the truncation of
the perturbation solution would reach roughly�nt = 3.3×10−9 radians. Due to the almost-
circular character of the TOPEX orbit, this error will result in an in-track error of 7707.270×
�nt km—or about 3 cm. In addition, the truncation of the direct periodic corrections to the
second order would yield an errorO(J 32 ) ≈ 1.27× 10−9 radians in the periodic corrections,
which for TOPEXmeans position errors of amplitude�r ≈ 7707.270×1.27×10−9 km—or
about one cm. The combination of both errors still constrains the total error at the end of the
one-month propagation to the cm level. And this is exactly what we have obtained, as clearly
noted in the two upper plots of Fig. 1.

Analogous rough estimations for the different truncations and orbits provide figures that
are consistent with the observed errors displayed in Fig. 1. Nevertheless, one should be
aware that the actual errors may depend on the particular orbital configuration to which
the perturbation solution is applied. However, in those regions of phase space in which the
perturbation theory is expected to converge, the actual errors should be of the order of the
forecasted value. In this respect one should not be confused by the apparent high value
of a single coefficient of some inclination polynomial. On the contrary, the whole double
summation comprising the coefficient of the men motion term (see Eqs. (45) and (17) of Lara
(2020), for reference) should be evaluated instead. We illustrate these facts in Fig. 2 for the
third-order coefficient of the mean motion and the orbital parameters of the TOPEX orbit.
As shown in the left plot of Fig. 2, except for the vicinity of the critical inclination, where the
perturbation theory does not apply, the worst case happens for the lower inclination orbits.
Still, the size of the coefficient that multiplies nJ 32 is roughly of order 1. The right plot of
Fig. 2 shows that this coefficient also remains bounded for the TOPEX orbit inclination and
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Fig. 2 Evolution of the mean motion coefficient multiplying nJ32 for the TOPEX orbital configuration. Left:
e = 0.001. Right: I = 66.04◦

variations of the eccentricity. While the error estimator is based on the higher-order term,
which is not computed, it seems reasonable to assume that it will also remain of order one.
Needless to say that these considerations apply to any perturbation solution and are not a
particular feature of the new approach.

Avariety of additional test cases have been carried out for other orbit configurations finding
always analogous accuracy levels, which, besides, agree with previous reported results using
other perturbation solutions of the J2 problem (Lara 2020).

For efficiency in the evaluation of perturbation solutions, arrangement of the series that
comprise the periodic corrections for optimal evaluation is an important consideration (Coffey
and Deprit 1980; Healy and Travisano 1998). In this task, we limited our efforts to minor
arrangements of the code, like the factorization of the inclination polynomials involved in
the different summations and the following use of Horner’s algorithm, and left the code
optimization job to the compiler. Because we did the same for both analytical solutions
(Brouwer’s with single periodic corrections, and the traditional parallax–perigee–Delaunay
solution), even if optimal evaluation is not achieved, the comparisons are not expected to be
biased toward a particular theory.

After repeated evaluation of the periodic corrections for a variety of initial conditions,
we found that the evaluation of the periodic corrections of the traditional analytical solution
spends roughly twice the time needed by the single-transformation approach in the evaluation
of the periodic corrections. This result was a priori unexpected because the series comprising
the corrections of the new approach, which only involves a single transformation, are clearly
longer than the combination of those involved in the three transformations needed in the
traditional approach. The improved evaluation efficiency is then attributed to the fact that
the compiler is able to carry out a better optimization of the code in the case of the single-
transformation approach. This fact may be understood when taking into account that, for
instance, the coefficient (5s2−4) appears about 300 times in our arrangement of the periodic
corrections of the single transformation, but only 73 times in the classical parallax–perigee–
Delaunay transformation arranged with the same factorization criterion, where, in particular,
this factor only appears in the corrections related to the elimination of the perigee. Thus,
canceling this common factor by the compiler is roughly four times more efficient in the first
case.

The original code was developed in WolframMathematica 12 programming environment
and compiled with the option CompilationTarget → “C.” In this computing system,
calling three compiled functions by the interpreter, contrary to just one, might be penalizing
the classical parallax–perigee–Delaunay approach. Hence, we exported the Wolfram Math-
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ematica code to Fortran and performed additional tests using 64-bit compiled code and the
robust -O2 optimization of the Absoft Pro Fortran 16.0.2 compiler. In spite of the execu-
tion time now balances significantly, the new, single transformation approach always ran
at least 6% faster than the classical parallax–perigee–Delaunay implementation in all our
tests. Execution times were obtained after averaging the repeated evaluation of the mean to
osculating transformations. The DO loops were iterated up to one million times in the case of
Wolfram Mathematica 12 and up 100 million times in the Fortran simulations. For Wolfram
Mathematica 12 simulations, the user’s time was obtained through the Timing[] function,
which includes only CPU time spent in the Wolfram Language kernel. The UNIX’s time
command was used in the case of Fortran runs.

Undeniably, making a smarter organization of the code before sending it to the compiler
might modify the reported figures. The author’s periodic corrections of the single mean to
osculating transformation are available upon request for those programming wizards inter-
ested in further digging in this issue.

On the other hand, improvements achieved with the single-transformation approach
becomemore relevantwhen the new analytical solution is implemented in a typical ephemeris
generator. Indeed, in that case the eccentricity and inclination polynomials of the mean to
osculating transformation remain constant along the whole mean elements propagation. In
consequence, they only need to be evaluated once,which is done at the same time of the initial-
ization of the constants of the analytical theory. Therefore, the mean to osculating corrections
reduce to extremely simple expressions that only need the update of the angle variables at
each ephemeris evaluation. Obviously, analogous simplifications apply when the orbit prop-
agator is based on equivalent solutions obtained by the stepwise elimination of the different
periodic effects. However, the simplification level achieved with this strategy is shallower in
the latter case. For instance, when using the classical parallax–perigee–Delaunay theory, the
eccentricity polynomials only remain constant in the transformation of the Delaunay normal-
ization. The inclination polynomials remain constant in the transformation equations of both
the Delaunay normalization and the elimination of the perigee, but neither the eccentricity
nor the inclination polynomials remain constant in the elimination of the parallax transfor-
mation. In consequence, the action variables must be updated at each ephemeris evaluation
in addition to the angles. This fact furnishes the single-transformation approach with an addi-
tional advantage. In particular, for a dense output of 3000 points, our simulations of the J2
problem showed that the formulation based on a single set of periodic corrections always ran
at least 20% faster than the parallax–perigee–Delaunay competitor. Similar advantages are
expected with respect to the other formulations based on splitting the periodic corrections in
different stages.

5 Conclusions

Experience gained through the use of Hamiltonian simplification methods prompted us to
question Brouwer’s splitting normalization strategy. The convenience of dividing a normal-
ization process into different stages has been taken for granted since the initial efforts in
fully automatizing the computation of perturbation theories. Needless to say that we agree in
which this way of proceeding may ease the construction of the perturbation solution. How-
ever, what is not so obvious is that the evaluation of the solution constructed this way must
necessarily yield the less computational burden. On the contrary, results in this paper seem
to point in the direction that the claimed benefits of partial normalization as well as Hamil-
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tonian simplification procedures can be counterbalanced by other type of considerations, at
least for the lower orders of normalization that suffice in many practical cases. Prospective
application of the strategy proposed here to other instances of perturbed Keplerian motion, or
to the computation of higher orders of the main problem of artificial satellite theory, should
contribute to make clear the issue.

Brouwer’s closed-form approach and full automatization of the computation of pertur-
bation theories seem two legitimate aims in this epoch of computational plenty. However,
as demonstrated by the equation of the center controversy, rather than running perturbation
algorithms in batch processes, one should not disregard the power of modern hand compu-
tations carried out with the help of existing software tools. Indeed, as far as mathematical
simplification remains in the category of arts, inspection of intermediate expressions turns
into a convenient practice that may eventually lead the user to straightforward simplifications
that make feasible or just simpler the next step of a partially automated procedure. Like chess
players, celestial mechanicians are rarely able to anticipate more than a few moves in the
outcome of a perturbation approach. On the contrary, they need to wait for the opponent’s
reaction in order to implement a winning strategy, which, in addition, is most times settled
on an empirical basis. It was, in particular, the case of the current research, in which the help
provided by the computer algebra system converted into a simple task the critical inspection
of the seminal solution provided by Brouwer.

Acknowledgements Partial support by the Spanish State Research Agency and the European Regional Devel-
opment Fund (Project PID2020-112576GB-C22, AEI/ERDF, EU) is recognized. The author acknowledges
with pleasure the help of Sylvio Ferraz-Mello in finding particular passages of volume 2 of Poincaré’sMéthodes
Nouvelles.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations

Conflict of interest The author declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmed, M.K.M.: On the normalization of perturbed Keplerian systems. Astron. J. 107, 1900–1903 (1994)
Aksnes, K.: A note on ‘The main problem of satellite theory for small eccentricities, by A. Deprit and A. Rom,

1970’. Celest. Mech. 4(1), 119–121 (1971)
Aksnes, K.: On the use of the Hill variables in artificial satellite theory. Astron. Astrophys. 17(1), 70–75 (1972)
Alfriend, K.T., Coffey, S.L.: Elimination of the perigee in the satellite problem. Celest. Mech. 32(2), 163–172

(1984)
Boccaletti, D., Pucacco, G.:Theory of Orbits. Volume 2: Perturbative and Geometrical Methods. Astronomy

and Astrophysics Library, 1st edn. Springer, Berlin, Heidelberg, New York (2002)

123

http://creativecommons.org/licenses/by/4.0/


Brouwer’s satellite solution redux Page 21 of 22 47

Bonavito, N.L., Watson, S., Walden, H.: An accuracy and speed comparison of the Vinti and Brouwer orbit
prediction methods. Technical Report NASA TN D-5203, Goddard Space Flight Center, Greenbelt,
Maryland (1969)

Breakwell, J.V., Vagners, J.: On error bounds and initialization in satellite orbit theories. Celest. Mech. 2,
253–264 (1970)

Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959)
Coffey, S., Alfriend, K.T.: An analytical orbit prediction program generator. J. Guid. Control. Dyn. 7(5),

575–581 (1984)
Coffey, S., Deprit, A.: Fast evaluation of Fourier series. Astron. Astrophys. 81, 310–315 (1980)
Coffey, S.L., Deprit, A.: Third-order solution to the main problem in satellite theory. J. Guid. Control. Dyn.

5(4), 366–371 (1982)
Coffey, S.L., Deprit, A., Deprit, E.: Frozen orbits for satellites close to an earth-like planet. Celest. Mech. Dyn.

Astron. 59(1), 37–72 (1994)
Coffey, S.L., Neal, H.L., Segerman, A.M., Travisano, J.J.: An analytic orbit propagation program for satellite

catalog maintenance. In: Alfriend, K.T., Ross, I.M., Misra, A.K., Peters, C.F. (eds.) AAS/AIAAAstrody-
namics Conference 1995. Volume 90 of Advances in the Astronautical Sciences. American Astronautical
Society, Univelt, Inc., San Diego, pp. 1869–1892 1(996)

Cook, G.E.: Perturbations of near-circular orbits by the Earth’s gravitational potential. Planet. Space Sci. 14,
433–444 (1966)

Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969)
Deprit, A.: The elimination of the parallax in satellite theory. Celest. Mech. 24(2), 111–153 (1981)
Deprit, A., Ferrer, S.: Note on Cid’s radial intermediary and the method of averaging. Celest. Mech. 40(3–4),

335–343 (1987)
Deprit, A., Miller, B.: Simplify or perish. Celest. Mech. 45, 189–200 (1989)
Deprit, A., Rom, A.: The main problem of artificial satellite theory for small and moderate eccentricities.

Celest. Mech. 2(2), 166–206 (1970)
Deprit, E., Deprit, A.: Poincaré’s méthode nouvelle by skew composition. Celest. Mech. Dyn. Astron. 74(3),

175–197 (1999)
Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1),

19–26 (1980)
Ferraz-Mello, S.: Do average Hamiltonians exist? Celest. Mech. Dyn. Astron. 73, 243–248 (1999)
Ferraz-Mello, S.: Canonical Perturbation Theories—Degenerate Systems and Resonance. Volume 345 of

Astrophysics and Space Science Library. Springer, New York (2007)
Hairer, E., Nørset, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Non-stiff Problems, 2nd edn.

Springer, Berlin, Heidelberg, New York (2008)
Healy, L.M.: The main problem in satellite theory revisited. Celest. Mech. Dyn. Astron. 76(2), 79–120 (2000)
Healy, L.M., Travisano, J.J.: Automatic rendering of astrodynamics expressions for efficient evaluation. J.

Astron. Sci. 46(1), 65–81 (1998)
Henrard, J.: On a perturbation theory using Lie transforms. Celest. Mech. 3, 107–120 (1970)
Hoots, F.R., Roehrich, R.L.: Models for Propagation of the NORAD Element Sets. Project SPACETRACK,

Rept. 3, U.S. Air Force Aerospace Defense Command, Colorado Springs, CO (1980)
Hori, G.-I.: Theory of general perturbation with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18(4),

287–296 (1966)
Izsak, I.G.: A note on perturbation theory. Astron. J. 68(8), 559–561 (1963)
Jefferys, W.H.: Automated, closed form integration of formulas in elliptic motion. Celest. Mech. 3, 390–394

(1971)
Kelly, T.S.: A note on first-order normalizations of perturbed Keplerian systems. Celest. Mech. Dyn. Astron.

46, 19–25 (1989)
Konopliv, A.: A third order of J2 solution with a transformed time. Interoffice Memorandum IOM 314.3-970,

Jet Propulsion Laboratory, Pasadena (1991)
Kozai, Y.: Mean values of cosine functions in elliptic motion. Astron. J. 67, 311–312 (1962a)
Kozai, Y.: Second-order solution of artificial satellite theory without air drag. Astron. J. 67, 446–461 (1962b)
Lara, M.: Efficient formulation of the periodic corrections in Brouwer’s gravity solution. Math. Prob. Eng.

2015, 1–9 (2015a)
Lara, M.: LEO intermediary propagation as a feasible alternative to Brouwer’s gravity solution. Adv. Space

Res. 56(3), 367–376 (2015b)
Lara,M.: Exploring sensitivity of orbital dynamicswith respect tomodel truncation: the frozen orbits approach.

In: Vasile, M., Minisci, E., Summerer, L., McGinty, P. (eds.) Stardust Final Conference. Astrophysics
and Space Science Proceedings, vol. 52, pp. 69–83. Springer, Cham (2018)

123



47 Page 22 of 22 M. Lara

Lara, M.: A new radial, natural, higher-order intermediary of the main problem four decades after the elimi-
nation of the parallax. Celest. Mech. Dyn. Astron. 131(9), 1–20 (2019a)

Lara,M.: Review of analytical solutions for low earth orbit propagation and study of the precision improvement
in the conversion of osculating to mean elements. Technical Report CM 2019/SER0023, Universidad de
La Rioja, Logroño, La Rioja (2019b)

Lara, M.: Solution to the main problem of the artificial satellite by reverse normalization. Nonlinear Dyn.
101(2), 1501–1524 (2020)

Lara, M.: Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction. The Method of Lie Transforms.
Volume 54 of De Gruyter Studies in Mathematical Physics, 1st edn. De Gruyter, Berlin/Boston (2021)

Lara, M., San-Juan, J.F., Folcik, Z.J., Cefola, P.: Deep resonant GPS-dynamics due to the geopotential. J.
Astron. Sci. 58(4), 661–676 (2011)

Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Delaunay variables approach to the elimination of the perigee
in Artificial Satellite Theory. Celest. Mech. Dyn. Astron. 120(1), 39–56 (2014)

Lyddane, R.H., Cohen, C.J.: Numerical comparison between Brouwer’s theory and solution by Cowell’s
method for the orbit of an artificial satellite. Astron. J. 67, 176–177 (1962)

Métris, G.: Mean values of particular functions in the elliptic motion. Celest. Mech. Dyn. Astron. 52, 79–84
(1991)

Métris, G., Exertier, P.: Semi-analytical theory of the mean orbital motion. Astron. Astrophys. 294, 278–286
(1995)

Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem.
Volume 90 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2009)

Morrison, J.A.: Generalized method of averaging and the Von Zeipel method. In: Duncombe, R.L., Szebehely,
V.G. (eds.) Methods in Astrodynamics and Celestial Mechanics. Volume 17 of Progress in Astronautics
and Rocketry, pp. 117–138. Elsevier (1966)

Osácar, C., Palacián, J.F.: Decomposition of functions for elliptical orbits. Celest. Mech. Dyn. Astron. 60(2),
207–223 (1994)

Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Tome 2. Gauthier-Villars et Fils (Paris) (1893)
San-Juan, J.F., Ortigosa, D., López-Ochoa, L.M., López, R.: Deprit’s elimination of the parallax revisited. J.

Astron. Sci. 60(2), 137–148 (2013)
Steichen, D.: An averaging method to study the motion of lunar artificial satellites II: averaging and applica-

tions. Celest. Mech. Dyn. Astron. 68(3), 225–247 (1998)
Tisserand, F.: Traité de mécanique céleste. In: Tome I: Perturbations des Planètes D’aprés la Méthode de la

Variation des Constantes Arbitraries. Gauthier-Villars et fils, Quai des Grands-Augustins, Paris (1889)
Vallado, D.A., Crawford, P., Hujsak, R., Kelso, T.S.: Revisiting spacetrack report #3 (AIAA 2006-6753). In:

AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Guidance, Navigation, and Control and
Co-located Conferences, pp 1–88. American Institute of Aeronautics and Astronautics, USA (2006)

Vinti, J.P.: Orbital and celestial mechanics. In: Der, G.J., Bonavito, N.L. (eds.) Volume 177 of Progress in
Astronautics and Aeronautics. American Institute of Aeronautics and Astronautics, Reston (1998)

Zeipel, H.V.: Research on the motion of minor planets. NASA TT F-9445 (NASA Translation of: recherches
sur le mouvement des petites planètes, Arkiv för matematik, astronomi och fysik, vol. 11, 1916, vol. 12,
1917, vol. 13, 1918) (1965)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Brouwer's satellite solution redux
	Abstract
	1 Introduction
	2 Brouwer's complete reduction at once
	3 Second-order periodic corrections
	4 Initialization of the secular constants and performance tests
	5 Conclusions
	Acknowledgements
	References




