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Abstract: Kung and Traub (1974) proposed an iterative method for solving equations defined on the
real line. The convergence order four was shown using Taylor expansions, requiring the existence
of the fifth derivative not in this method. However, these hypotheses limit the utilization of it to
functions that are at least five times differentiable, although the methods may converge. As far as we
know, no semi-local convergence has been given in this setting. Our goal is to extend the applicability
of this method in both the local and semi-local convergence case and in the more general setting of
Banach space valued operators. Moreover, we use our idea of recurrent functions and conditions
only on the first derivative and divided difference, which appear in the method. This idea can be
used to extend other high convergence multipoint and multistep methods. Numerical experiments
testing the convergence criteria complement this study.

Keywords: Kung–Traub method; Banach space; convergence criterion

1. Introduction

We consider approximating a solution x∗ of equation

F(x) = 0, (1)

where F : Ω ⊂ V1 −→ V2 is an operator acting between Banach spaces V1 and V2 with
Ω 6= ∅. Kung and Traub, in [1], introduced a fourth-order iterative method for solv-
ing nonlinear equations on the real line. This method in Banach space is defined for
n = 0, 1, 2, . . . by

yn = xn − F′(xn)
−1F(xn)

xn+1 = yn − [yn, xn; F]−1F′(xn)[yn, xn; F]−1F(yn). (2)

Here [., .; F] : Ω ×Ω −→ L(V1, V2) is a divided difference of order one [2]. The con-
vergence order was obtained using Taylor expansions and hypotheses on the derivative of
F of order up to five. Note that the method involves also the derivative of order one, so the
assumptions on the fifth derivative reduce the applicability of the method [1,3–5].

For example: Let V1 = V2 = R, Ω = [−0.5, 1.5]. Define λ on Ω by

λ(t) =
{

t3 log t2 + t5 − t4 i f t 6= 0
0 i f t = 0.
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Then, we have t∗ = 1,

λ′′′(t) = 6 log t2 + 60t2 − 24t + 22.

Obviously λ′′′(t) is not bounded on Ω. Therefore, the convergence of method (2) is
not guaranteed by the analysis in [1]. In order to avoid Taylor series expansions but still
obtain the fourth order of convergence for method (2), we use the computational order
of convergence and the approximate computational order of convergence, which do not
require more than one derivative (see Remark 1.2b).

In this paper, we introduce a majorant sequence and use our idea of recurrent functions
to extend the applicability of method (2). Our analysis includes error bounds and results
on uniqueness of x∗ based on computable Lipschitz constants not given before in [1] and
in other similar studies using Taylor series [3–13]. The advantages of the extended method
include: Applications for solving nonlinear Banach space valued equations are not limited
to systems of finite dimensional Euclidean space. Local convergence includes computable
upper error bounds not given before. Moreover, the semi-local convergence not given
before is proved. The motivation for writing this paper is the extension of the applicability
of method (2), as already illustrated by the example. The novelty of the paper includes the
extension of the convergence domain in both the local as well as the semi-local convergence
case and the introduction of the recurrent functions proving technique, which can be used
in other methods too [14–27].

The rest of the paper is set up as follows: In Section 2, we present results on majorizing
sequences. Sections 3 and 4 contain the semi-local and local convergence, respectively,
where in Section 5, the numerical experiments are presented. Concluding remarks are
given in Section 6.

2. Majorizing Sequences

We present results on majorizing sequences.

Definition 1. Let {un} be a sequence in a Banach space. Then, a nondecreasing scalar sequence
{mn} is called majorizing for {un} if

‖un+1 − un‖ ≤ mn+1 −mn for each n = 0, 1, 2, . . . . (3)

By this definition, we can use sequence {mn} to study the convergence of {un}.
Let η > 0, ` > 0, `i > 0, i = 0, 1, 2, . . . , 5 be the given parameters. Define scalar

sequences {sn}, {tn} for each n = 0, 1, 2, . . . by t0 = 0, s0 = η

t1 = s0 +
`0(s0 − t0)

2

2(1− `1s0)2 ,

sn+1 = tn+1 +
αn+1

1− `0tn+1
, (4)

tn+2 = sn+1 +
``4tn+1(sn+1 − tn+1)

2

2(1− `1(sn+1 + tn+1))2 ,

where αn+1 =
(
`3(tn+1 − tn) +

`3(1+`1(sn+tn))(sn−tn)
1−`0tn

)
(tn+1 − sn).

Lemma 1. Suppose:
`1η < 1, (5)

for each n = 0, 1, 2, . . . ,

tn+1 <
1
`0

(6)

and
sn+1 + tn+1 <

1
`1

. (7)
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Then, sequences {sn}, {tn} are nondecreasing, bounded from above by 1
` and as such they

converge to their unique least upper bound t∗ ∈ [η, 1
`0
]. Moreover, the following hold for each

n = 0, 1, 2, . . .
tn ≤ sn ≤ tn+1.

Proof. It follows from the definition of sequence {sn}, {tn} and hypotheses (5)–(7).

Remark 1. Hypotheses (6) and (7) are verified only in special cases. That is why we introduce
stronger hypotheses implying those of Lemma 1 but not necessarily vice versa.

It is convenient for us to define sequences of functions and functions on the interval
M = [0, 1) for each n = 1, 2, . . . as follows:

fn(t) = `5(t2n + t2n−1)η + `1t2n−1η

+`1`2t2n−1(t2n + 2(1 + t + . . . + t2n−1))η2

+`0η(t2n + t2n+1 + 2(1 + t + . . . + t2n−1))− `2
0η2 − 1,

f (t) = a7t7 + a6t6 + a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0,

f∞(t) = −
(

1− `0η

1− t

)2

gn(t) =
``4η2

2
t2n+2(1 + t + . . . t2n+1)

+2`1η(t2n+2 + 2(1 + t + . . . + t2n+1))

−`2
1η2(t2n+2 + 2(1 + t + . . . + t2n+1))2 − 1,

g(t) =
``4

2
η(t7 + t6 + t5 + t4 − t− 1) + 2`1η(1 + t)2

+`2
1η(1 + t + t2)(

4
1− t

+ 3t5 + 2t4 + t6),

and

g∞(t) = −
(

1− 2`1η

1− t

)2
,

where

a0 = −(`1 + `5 + 2`1`
2
2η),

a1 = −(`5 + 2`1`2η),

a2 = `0 + `1 + `1`2η + `5,

a3 = `0 + `5 + 2`1`2η,

a4 = `0 + 2`1`2η,

a5 = `0 + 2`1`2η,

a6 = 2`1`2η

and
a7 = `1`2η.
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By these definitions we have

f (0) = −(`1 + `5 + 2`1`2η) < 0,

f (1) = 2(2`0 + 3`1`2η) > 0,

g(0) = − ``4η

2
< 0

and
g(t) −→ +∞ as t −→ 1−.

It then follows by the intermediate value theorem that functions f and g have zeros in
the interval (0, 1). Denote the smallest such zero by b1 and b2, respectively. Moreover, we
have for each t ∈ M

f∞(t) ≤ 0 (8)

and
g∞(t) ≤ 0. (9)

Furthermore, define scalar sequences {γn} and {δn} by

γn =
`3(tn+1 − tn)(1− `0tn) + `2(1 + `1(sn + tn))(sn − tn)

(1− `0tn)(1− `0tn+1)

and

δn =
``4tn+1(sn+1 − tn+1)

291− `1(tn+1 + sn+1))2 .

µ0 = max{γ0, δ0}, µ1 = min{b1, b2}. (10)

Next, we present a second auxiliary result on majorizing sequences.

Lemma 2. Suppose that there exists µ such that

µ0 ≤ µ ≤ µ1 < 1− 2`1η (11)

and (5) holds. Then, sequences {sn}, {tn} are well defined, nondecreasing, bounded from above by
t∗∗ = η

1−µ , and as such they converge to their unique least upper bound t∗ ∈ [η, t∗∗]. Moreover,
the following estimates hold for each n = 1, 2, . . .

0 ≤ tn+1 − sn ≤ µ(sn − tn) ≤ µ2n+1η, (12)

0 ≤ sn − tn ≤ µ(tn − sn−1) ≤ µ2nη, (13)

and
0 ≤ tn − sn ≤ tn+1. (14)

Proof. Estimates (12)–(14) hold if
0 ≤ γk ≤ µ, (15)

0 ≤ δk ≤ µ, (16)

and
tk ≤ sk ≤ tk+1, (17)

are true for k = 0, 1, 2, . . . . Notice that by the definition of s0, t1 and (5), we have s0 ≤ t1.
We also have (15)–(17), which hold for k = 0 by (11). Suppose that estimates (15) and (16)
hold for k = 1, 2, . . . n. Then, we obtain
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sk ≤ tk + µ2kη ≤ sk−1 + µ2k−1η + µ2kη

≤ η + µη + . . . + µ2kη

=
1− µ2k+1

1− µ
η <

η

1− µ
= t∗∗,

and

tk+1 ≤ sk + µ2k+1η ≤ tk + µ2kη + µ2k+1η

≤ η + µη + . . . + µ2k+1η

=
1− µ2k+2

1− µ
η < t∗∗.

It follows by the induction hypotheses and (17) that sequences {sk} and {tk} are
nondecreasing. Estimates (15) holds if we instead show for `5 = `3(1− `0t1) that

`5(µ
2k+1 + µ2k)η + `1ηµ2k + `1`2η2µ2k

(
1− µ2k+1

1− µ
+

1− µ2k

1− µ

)

−µ

(
1− `0

(
1− µ2k

1− µ
+

1− µ2k+2

1− µ

)
η

)

+ `2
0
(1− µ2k)(1− µ2k+2)

(1− µ)2 η2

)
≤ 0

or
fk(t) ≤ 0 for t = µ. (18)

We need a relationship between two consecutive functions fk. By the definition of
function fk, we can write, in turn, by adding and subtracting fk

fk+1(t) = fk(t) + `5(t2k+2 + t2k+1 − t2k − t2k−1)η + `1η(t2k+1 − t2k−1)

+`1`2η2t2k−1[t2(1 + t + . . . + t2k+2) + (1 + t + . . . + t2k+3))

−((1 + t + . . . + t2k) + (1 + t + . . . + t2k+−1))]

+`0η[(1 + t + . . . + t2k+1) + (1 + t + . . . + t2k+3))

−((1 + t + . . . + t2k−1) + (1 + t + . . . + t2k+1))]

≤ fk(t) + [`5(t3 + t2 − t− 1) + `1(t2 − 1)

+(t7 + 2t6 + 2t5 + 2t4 + 2t3 + t2 − 2t− 2))`1`2η

+`0(t2 + t3 + t4 + t5)]t2k−1η

= fk(t) + f (t)t2k−1η, (19)

where we used tk ≤ t, k = 1, 2, . . . , since t ∈ (0, 1). Define f∞(t) = limk−→∞ fk(t).
Then, we can show instead of (18) that

f∞(µ) ≤ 0, (20)

which is true by (8). Set ck = t2k+2(1+ t+ . . .+ t2k+1) and dk = t2k+2 + 2(1 + t + . . . + t2k+1).
As in (15), estimate (16) holds if

gk(t) ≤ 0 for t = µ. (21)

Function gk(t) can be written as

gk(t) =
``4η2

2
t2k+2cn + 2`1ηdn − `2

1η2d2
n − 1.
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Then, we again need a relationship between two consecutive functions gk. Notice that

ck+1 − ck = t2k+4(1 + t + . . . + t2k+3)− t2k+2(1 + t + . . . + t2k+1)

= t2k+2(−1− t + t2k+2 + t2k+3 + t2k+4 + t2k+5),

dk+1 − dk = (1 + t + . . . + t2k+3) + (1 + t + . . . + t2k+4)

−(1 + t + . . . + t2k+1)− (1 + t + . . . + t2k+2)

= t2k+2 + 2t2k+3 + t2k+4,

and
dk+1 − dk = 4(1 + t + . . . + t2k+1) + 3t2k+2 + 2t2k+3 + t2k+4.

By adding and substracting gk from gk+1 we obtain

gk+1(t) = gk(t) +
``4η2

2
t2k+2(t2k+5 + t2k+4 + t2k+3 + t2k+2 − t− 1)

+2`1η(t2k+2 + 2t2k+3 + t2k+4) + `2
1η2(d2

k+1 − d2
k)

≤ gk(t) + g(t)t2k+2η.

Define g∞(t) = limk−→∞ gk(t). Then, we can show instead of (21) that

g∞(µ) ≤ 0,

which is true by (11). The induction for estimates (15)–(17) is completed. Hence, sequences
{sn}, {tn} are nondecreasing, bounded from above by t∗∗ so they converge to t∗.

3. Semi-Local Convergence

Let U(x0, r) = {x ∈ V1 : ‖x− x0‖ < r, r > 0} and U[x0, r] = {x ∈ V1 : ‖x− x0‖ ≤ r,
r > 0}. The semi-local convergence analysis of method (2) uses conditions (H1)–(H4).

Suppose:

(H1) There exists x0 ∈ Ω and η ≥ 0 such that F′(x0)
−1 ∈ L(V2, V1) and

‖F′(x0)
−1F(x0)‖ ≤ η.

(H2) For each x ∈ Ω
‖F′(x0)

−1(F′(x)− F′(x0))‖ ≤ `0‖x− x0‖.

Set Ω0 = U[x0, 1
`0
] ∩Ω.

(H3) For each x, y ∈ Ω0, the following holds

‖F′(x0)
−1(F′(y)− F′(x))‖ ≤ `‖y− x‖,

‖F′(x0)
−1([y, x; F]− F′(x0))‖ ≤ `1(‖y− x0‖+ ‖x− x0‖),

F′(x0)
−1([y, x; F]− F′(x))‖ ≤ `2‖y− x‖

‖F′(x0)
−1([z, y; F]− [y, x; F])‖ ≤ `3(‖z− y‖+ ‖y− x‖).

and
‖F′(x0)

−1F′(x)‖ ≤ `4‖x− x0‖.

(H4) U[x0, t∗] ⊂ Ω.

Then, we can show the main semi-local convergence result for method (2).

Theorem 1. Suppose that conditions (H1)–(H4) hold. Then, sequence {xn} generated by method (2)
is well defined in U[x0, t∗], remain in U[x0, t∗] for each n = 0, 1, 2, . . . and converge to a solution
x∗ ∈ U[x0, t∗] of equation F(x) = 0, so that



Mathematics 2021, 9, 2635 7 of 15

‖x∗ − xn‖ ≤ t∗ − tn.

Proof. Assertions

(Ak) ‖yk − xk‖ ≤ sk − tk
(Bk) ‖xk+1 − yk‖ ≤ tk+1 − sk

shall be proven using induction on k. It follows from the first substep of method (2) that

‖y0 − x0‖ = ‖F′(x0)
−1F(x0)‖ ≤ η = s0 − t0 = s0 ≤ t∗.

Hence, (A0) is true and y0 ∈ U[x0, t∗]. We can write by the first substep of method (2)
for n = 0 and (H2)

F(y0) = F(y0)− F(x0)− F′(x0)(y0 − x0),

so
‖F′(x0)

−1F(y0)‖ ≤
`0

2
‖y0 − x0‖2 ≤ `

2
(s0 − t0)

2.

Next, we show the invertability of linear operator [y0, x0; F]. Indeed, we have by (H2) that

‖F′(x0)
−1([y0, x0; F]− F′(x0)) ≤ `1(‖y0 − x0‖+ ‖x0 − x0‖)

≤ `1(s0 − t0) < 1,

so by the Banach lemma on linear invertible operators [20], [y0, x0; F]−1 exists,

‖[y0, x0; F]−1F′(x0)‖ ≤
1

1− `1‖y0 − x0‖
≤ 1

1− `1(s0 − t0)
(22)

and iterate x1 is well defined by the second substep of method (2) for n = 0. We can write

x1 − y0 = −[y0, x0; F]−1F′(x0)[y0, x0; F]−1F(y0)

leading to

‖x1 − y0‖ ≤ ‖[y0, x0; F]−1F′(x0)‖
×‖[y0, x0; F]−1F′(x0)‖‖F′(x0)

−1F(y0)‖

≤ `(s0 − t0)
2

2(1− `1s0)2 = t1 − s0,

showing (B0). We also obtain

‖x1 − x0‖ ≤ ‖x0 − y0‖+ ‖y0 − x0‖ ≤ t1 − s0 + s0 − t0 = t1 ≤ t∗,

so x1 ∈ U[x0, t∗]. Suppose that (Ak) and (Bk) hold, yk, xk+1 ∈ U[x0, t∗] and F′(xk)
−1,

[yk, xk; F]−1 exist for each k = 1, 2, . . . . We shall show they hold for k = n + 1. By the second
substep of method (2), we can write, in turn

F(xn+1) = F(xn+1)− F(yn)− [yn, xn; F]F′(xn)
−1[yn, xn; F](xn+1 − yn)

= ([xn+1, yn; F]− [yn, xn; F]F′(xn)
−1[yn, xn; F])(xn+1 − yn)

= [([xn+1, yn; F]− [yn, xn; F]) + [yn, xn; F]

−[yn, xn; F]F′(xn)
−1[yn, xn; F](xn+1 − yn)

= [([xn+1, yn; F]− [yn, xn; F]) + [yn, xn; F]

×(I − F′(xn)
−1[yn, xn; F])](xn+1 − yn)

= [([xn+1, yn; F]− [yn, xn; F]) + ([yn, xn; F]− F′(x0) + F′(x0))

×(F′(xn)− [yn, xn; F])](xn+1 − yn).
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Then, by conditions (H3) and the induction hypotheses, in turn, we obtain that

‖F′(x0)
−1F(xn+1)‖ ≤ [`3(‖xn+1 − yn‖+ ‖yn − xn‖) + (1 + `1(‖yn − x0‖+ ‖xn − x0‖))

× `2‖yn − xn‖
1− `0‖xn − x0‖

]‖xn+1 − yn‖

≤ [`3(tn+1 − tn) +
(1 + `1(sn + tn))`2(sn − tn)

1− `0tn
](tn+1 − sn)

= αn+1.

We must show F′(xn+1) is invertible. Indeed, we have by (H2)

‖F′(x0)
−1(F′(xn+1)− F′(x0))‖ ≤ `0‖xn+1 − x0‖ ≤ `0tn+1 < 1,

so
‖F′(xn+1)

−1F′(x0)‖ ≤
1

1− `0tn+1
.

Hence, we obtain by method (2) and the two preceding estimates that

‖yn+1 − xn+1‖ ≤ ‖F′(xn+1)
−1F′(x0)‖‖F′(x0)

−1F(xn+1)‖

≤ αn+1

1− `0tn+1
= sn+1 − tn+1,

showing (Ak) for k = n + 1. We also obtain

‖yn+1 − x0‖ ≤ ‖yn+1 − xn+1‖+ ‖xn+1 − x0‖
≤ sn+1 − tn+1 + tn+1 − t0

= sn+1 ≤ t∗,

so yn+1 ∈ U[x0, t∗]. In view of the first substep of method (2), we can write

F(yn+1) = F(yn+1)− F(xn+1)− F′(xn+1)(yn+1 − xn+1),

leading to

‖F′(x0)
−1F(yn+1)‖ ≤

`

2
‖yn+1 − xn+1‖2 ≤ `

2
(sn+1 − tn+1)

2

so

‖xn+2 − yn+1‖ ≤ ‖[yn+1, xn+1; F]−1F′(x0)‖2‖F′(x0)
−1F′(xn+1)‖‖F′(x0)

−1F(yn+1)‖

≤ ``4tn+1(sn+1 − tn+1)
2

2(1− `1(sn+1 + tn+1))2

= tn+2 − sn+1,

showing (Bk) for k = n + 1. Moreover, we obtain

‖xn+2 − x0‖ ≤ ‖xn+2 − yn+1‖+ ‖yn+1 − x0‖
≤ tn+2 − sn+1 + sn+1 − t0 = tn+2 ≤ t∗,

and

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖
≤ tn+1 − sn + sn − tn.

Hence, we deduce xn+2 ∈ U[x0, t∗] and sequence {tn} is Cauchy in a Banach space V1.
Hence, it converges to some x∗ ∈ U[x0, t∗]. By letting n −→ ∞ in the estimate

‖F′(x0)
−1F(xn+1)‖ ≤ αn+1,
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and the continuity of F, we obtain F′(x∗) = 0.

Concerning the uniqueness of the solution x∗ we have:

Proposition 1. Suppose: There exists

(i) A simple solution x∗ of equation F(x) = 0.
and

(ii) s̃ ≥ t∗ such that
`0(s̃ + t∗) < 2.

Set Ω1 = U[x0, s̃] ∩Ω. Then, the only solution of equation F(x) = 0 in the region Ω1 is x∗.

Proof. Let x̃ ∈ Ω1 with F(x̃) = 0. Set T =
∫ 1

0 F′(x̃ + θ(x∗ − x̃))dθ. Then, by (H2) and (ii),
we obtain

‖F′(x0)
−1(T − F′(x0))‖ ≤

∫ 1

0
ϕ0((1− θ)‖x̃− x0‖+ θ‖x∗ − x0‖)dθ

≤ `0

2
(s̃ + t∗) < 1,

leading to x̃ = x∗, where we used the identity T(x∗ − x̃) = F(x∗)− F(x̃) = 0− 0 = 0 and
the invertability of T.

4. Local Convergence

Let L, Lj, j = 0, 1, 2, 3, 4 be positive parameters. Set S = [0, 1
L0
). Define function ψ1 on

the interval S = [0, 1
L0
) by

ψ1(t) =
Lt

2(1− L0t)
.

Then, parameter r1 is defined by

r1 =
2

2L0 + L
(23)

solves equation
ψ1(t)− 1 = 0.

Moreover, define functions q, p on interval S by

q(t) = L0ψ1(t)t− 1 and p(t) = L1(1 + ψ1(t))t− 1.

Suppose that equations
q(t) = 0, p(t) = 0

have smallest solutions rq, rp ∈ S− {0}. Set S0 = [0, r0), where r0 = min{rq, rp}. Define
function ψ2 on S0 by

ψ2(t) =
L
2

ψ2
1(t)t

1− L0ψ1(t)t

+
L3L4(1 + ψ1(t))ψ1(t)t

(1− L0ψ1(t)t)(1− L1(1 + ψ1(t)t))

+
L2L4(1 + ψ1(t))ψ1(t)t
(1− L1(1 + ψ1(t)t))2 .

Suppose that equation
ψ2(t) = 0
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has the smallest solution r2 ∈ S0 − {0}. We shall prove that

r = min{ri}, i = 1, 2 (24)

is a convergence radius for method (2). Set S1 = [0, r). By these definitions, we have that
for each t ∈ S1

0 ≤ L0t < 1, (25)

0 ≤ q(t) < 1, (26)

0 ≤ p(t) < 1, (27)

and
0 ≤ ψi(t) < 1. (28)

As in the semi-local convergence case we develop the following conditions (C1)–(C4).
Suppose:

(C1) x∗ is a simple solution of equation F(x) = 0.
(C2) For each x ∈ Ω

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ L0‖x− x0‖.

Set Ω1 = U(x∗, 1
L0
) ∩Ω.

(C3) For each x, y ∈ Ω1

‖F′(x∗)−1(F′(y)− F′(x))‖ ≤ L‖y− x‖,

‖F′(x∗)−1([y, x; F]− F′(x∗))‖ ≤ L1(‖y− x∗‖+ ‖x− x∗‖),

‖F′(x∗)−1([y, x; F]− F′(x))‖ ≤ L2‖y− x‖

‖F′(x∗)−1([z, y; F]− F′(y))‖ ≤ L3‖y− x‖.

and
‖F′(x∗)−1F′(x)‖ ≤ L4‖x− x∗‖.

(C4) U[x∗, r] ⊂ Ω.

Then, we can show the local convergence result for method (2).

Theorem 2. Under conditions (C1)–(C4) further suppose that x0 ∈ U(x∗, r) − {x∗}. Then,
sequence {xn} generated by method (2) is well defined in U(x∗, r), remains in U(x∗, r) for each
n = 0, 1, 2, . . . and converges to x∗ so that

‖yn − x∗‖ ≤ ψ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r (29)

and
|xn+1 − x∗‖ ≤ ψ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖. (30)

Proof. Let z ∈ U(x∗, r)− {x∗}. Using (C1), (C2), (24) and (25) we obtain

‖F′(x∗)−1(F′(z)− F′(x∗))‖ ≤ L0‖z− x∗‖ ≤ L0r < 1,

so F′(z) is invertible with

‖F′(z)−1F′(x∗)‖ ≤ 1
1− L0‖z− x∗‖ . (31)

Iterate y0 is well defined from (31) for z = x0 and the first substep of method (2).
Using (24), (28) (for i = 1), (31) (for z = x0) and (C3), we obtain
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‖y0 − x∗‖ ≤ ‖F′(x0)
−1F′(x∗)‖

×‖
∫ 1

0
F′(x∗)−1(F′(x0 + θ(x0 − x∗))− F′(x0))dθ(x0 − x∗)‖

≤ L̄‖x0 − x∗‖2

2(1− L0||x0 − x∗‖)
≤ ψ1(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < r, (32)

showing (29) for n = 0 and y0 ∈ U(x∗, r). Next, we shall show that [u, v; F]−1 ∈ L(V2, V1)
for u, v ∈ U(x∗, r). Indeed, by (24), (26), (C3) and (32) we have

‖F′(x∗)−1([y0, x0; F]− F′(x∗))‖ ≤ L1(‖y0 − x∗‖+ ‖x0 − x∗‖)
≤ L1(ψ1(‖x0 − x∗‖) + 1)‖x0 − x∗‖
= p(‖x0 − x∗‖) ≤ p(r) < 1,

so
‖[y0, x0; F]−1F′(x∗)‖ ≤ 1

1− p(‖x0 − x∗‖) . (33)

We also have that (11) holds for z = y0. Hence, iterate x1 is well defined by the second
substep of method (2). Then, we can write in turn that

x1 − x∗ = y0 − x∗ − F′(y0)
−1F(x0)

+(F′(y0)
−1 − [y0, x0; F]−1F′(x0)[y0, x0; F]−1)F(y0).

However, we obtain

F′(y0)
−1 − [y0, x0; F]−1F′(x0)[y0, x0; F]−1

= F′(y0)
−1(I − F′(y0)[y0, x0; F]−1F′(x0)[y0, x0; F]−1)

= F′(y0)
−1([y0, x0; F]− F′(y0) + F′(y0)

−F′(y0)[y0, x0; F]−1F′(x0))[y0, x0; F]−1

and

[y0, x0; F]− F′(y0) + F′(y0)− F′(y0)[y0, x0; F]−1F′(x0)

= ([y0, x0; F]− F′(y0))

+F′(y0)[y0, x0; F]−1([y0, x0; F]− F′(x0)),

so

x1 − x∗ = y0 − x∗ − F′(y0)
−1F(y0)

+F′(y0)
−1([y0, x0; F]− F′(y0))[y0, x0; F]−1F(y0)

+[y0, x0; F]−1([y0, x0; F]− F′(x0))[y0, x0; F]−1F(y0),

(34)

In view of (24), (28) (for i = 2), (31) (for z = x0, y0) and (32)–(34), we obtain, in turn,

‖x1 − x∗‖ ≤ L‖y0 − x∗‖2

2(1− L0‖y0 − x∗‖)

+
L3‖y0 − x0‖L4‖y0 − x∗‖

(1− L0‖y0 − x∗‖)(1− L1(‖y0 − x∗‖+ ‖x0 − x∗‖))

+
L2||y0 − x0‖L4‖y0 − x∗‖

(1− L1(‖y0 − x∗‖+ ‖x0 − x∗‖))
≤ ψ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (35)
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showing (30) for n = 0 and x1 ∈ U(x∗, r). Moreover, exchange x0, y0, x1 by xj, yj, xj+1, in the
preceding calculations, respectively, to complete the induction for estimates (29) and (30).
Furthermore, from the estimate

‖xj+1 − x∗‖ ≤ c‖xj − x∗‖, (36)

where c = ψ2(‖x0 − x∗‖) ∈ [0, 1), we conclude limj−→∞ xj = x∗ and xj+1 ∈ U(x∗, r).

Remark 2. (a) The value r1 was given by us in [6] for the radius of convergence for Newton’s
method. It then follows from (24) that

r ≤ r1. (37)

Hence, the radius of convergence r for method (2) cannot be larger than Newton’s. Notice that
the radius of convergence given independently by Rheinboldt [7] and Traub [8] is ρ = 2

3K , where K
is the Lipschitz constant on Ω. We also have ρ ≤ r, since L0 ≤ K and L ≤ K.
(b ) We compute the computational order of convergence (COC) defined by

COC = ln
(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence (ACOC)

ACOC = ln
(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

Then, we obtain in practice the convergence order and avoid the existence of the higher order
Fréchet derivatives for operator F.

Next, we present a uniqueness of the solution result.

Proposition 2. Suppose:
(a) There exists a simple solution x∗ of equation F(x) = 0
(b) There exists r̄ ≥ r such that

r̄ <
2
L0

. (38)

Set Ω2 = Ω ∩U[x∗, r̄]. Then, the only solution of equation F(x) = 0 in the region Ω1 is x∗.

Proof. Let b ∈ Ω2 with F(b) = 0. Set Q =
∫ 1

0 F′(x∗ + θ(b − x∗))dθ. Then, using (C1)
and (38), we obtain

‖F′(x∗)−1(Q− F′(x∗))‖ ≤
∫ 1

0
L0θ‖b− x∗‖dθ

≤ L0

2
r̄ < 1,

leading to b = x∗, since Q−1 ∈ L(V2, V1) and A(b− x∗) = F(b)− F(x∗) = 0− 0 = 0.

5. Numerical Experiments

We provide some examples, with [x, y; F] =
∫ 1

0 F′(y + θ(x− y))dθ.

Example 1. Define function

ψ(x) = b0x + b1 + b2 sin b3x, x0 = 0,

where bj, j = 0, 1, 2, 3 are parameters. Then, clearly for b3 large and b2 small, `0
` can be small

(arbitrarily). Notice that `0
` −→ 0.
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Example 2. Consider V1 = V2 = C[0, 1], Ω = U[0, 1] and Q : Ω −→ V2 defined by

Q(ψ)(x) = ϕ(x)− 5
∫ 1

0
xθψ(θ)3dθ. (39)

We obtain

Q′(ψ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθψ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, since x∗ = 0, conditions (C1)–(C4) are verified for L0 = 7.5, L = L4 = K = 15,
L1 = L0

2 , L2 = L3 = L
2 . Then, the radii are:

r = r1 = 0.066667, r2 = 0.109818, and ρ =
2

3K
= 0.0667.

Example 3. Consider the motion system

G′1(x) = ex, G′2(y) = (e− 1)y + 1, G′3(z) = 1

with G1(0) = G2(0) = G3(0) = 0. Let G = (G1, G2, G3). Let V1 = V2 = R3,
Ω = Ū(0, 1), x∗ = (0, 0, 0)T . Define function G on Ω for w = (x, y, z)T by

G(w) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, we obtain

G′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

.

Hence, conditions (C1)–(C4) are verified for L0 = (e − 1), L = e
1

e−1 = L4, L1 = L0
2 ,

L2 = L3 = L
2 , K = e. Then, the radii are:

r = r1 = 0.382692, r2 = 0.417923 and ρ =
2

3K
= 0.2453.

Example 4. Let V1, V2 and Ω be as in the Example 2. It is well-known that the boundary value
problem [2]

ϕ(0) = 0, (1) = 1,

ϕ′′ = −ϕ− σϕ2

can be given as a Hammerstein-like nonlinear integral equation

ϕ(s) = s +
∫ 1

0
M(s, t)(ϕ3(t) + σϕ2(t))dt

where σ is a parameter. Then, define F : Ω −→ V2 by

[F(x)](s) = x(s)− s−
∫ 1

0
M(s, t)(x3(t) + σx2(t))dt.

Choose x0(s) = s and Ω = U(x0, ρ0). Then, clearly U(x0, ρ0) ⊂ U(0, ρ0 + 1), since
‖x0‖ = 1. Suppose 2σ < 5. Then, conditions (H1)–(H4) are verified for

`0 =
2σ + 3ρ0 + 6

8
, ` =

σ + 6ρ0 + 3
4

,

`1 = `0
2 , `2 = `

2 , `3 = `
2 and µ = 1+σ

5−2σ . Notice that `0 < `1.
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In general the radius of convergence decreases, when the order increases. However, notice
that in the local convergence Examples 2 and 3, the radii for the fourth-order method (2) compare
favorably to the ones given in [7,8] for Newton’s (see r and ρ).

6. Conclusions

The Kung–Traub method was revisited, and its applicability was extended in both
the semi-local and local convergence case from the real to the Banach space setting. Our
analysis includes error bounds and uniqueness on x∗ information not available before and
under weak conditions. This idea is very general and can be used to extend the applicability
of other methods.
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