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1. Introduction
Wireworms (Coleoptera: Elateridae) are common 
polyphagous soil-dwelling pests that are responsible for 
important economic losses (Jansson and Seal, 1994). They 
feed on roots and tubers of cereals, potatoes, sugarcane, and 
some ornamental plants (Parker and Howard, 2001). Even a 
low density of larvae can cause severe commercial damage 
(Furlan, 1989; Parker and Howard, 2001). Neonicotinoids 
coated on seeds were effective in controlling wireworms; 
however, they are now mostly banned from the European 
market. The few effective alternatives are costly or need to 
be used in multiple applications, with the corresponding 
cost for the farmer (Jactel et al., 2019) and environmental 
risks as well as the development of resistance. Several 
alternatives to pesticides have been proposed to control 
wireworms’ damage, including agricultural practices, 
microorganisms and semiochemicals (Traugott et al., 
2015; Barsics et al., 2017; la Forgia and Verheggen, 2019). 

Entomopathogenic nematodes (EPNs) belonging to 
the genera Steinernema (Rhabditida: Steinernematidae) 

and Heterorhabditis (Rhabditida: Heterorhabditidae) 
are widely distributed in the soil worldwide (Campos-
Herrera, 2015). They are able to kill their hosts rapidly, 
making them valid biocontrol agents in integrated pest 
management programs and organic production (Shapiro-
Ilan et al., 2012). EPNs are soil organisms able to parasite 
many insects (Lacey et al., 2015). Their infective juveniles 
(IJs) stage is the one responsible for the infection of 
the host (Koppenhöfer, 2007). The infective juveniles 
(IJs) penetrate hosts through natural openings (mouth, 
spiracles and anus) or through the cuticle (Campbell and 
Gaugler, 1991). Inside the host, IJs release their symbiotic 
bacteria (Xenorhabdus spp. for Steinernematidae and 
Photorhabdus spp. for Heterorhabditidae) that induce 
septicemia. The bacteria also support the nematodes in 
the suppression of microbial competitors (Hazir et al., 
2003) and in scavenging competition (Blanco-Pérez et 
al., 2017; 2019). Normally, the insect host dies within 
24–48 h (Burnell and Stock, 2000), making them excellent 
biological control agents that can be used against various 
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arthropods in annual and perennial agroecosystems 
(Campos-Herrera, 2015).

Despite great success in various systems against insect 
pests, EPNs show low efficiency in controlling wireworms 
(la Forgia and Verheggen, 2019). Indeed, previous studies 
have investigated the biocontrol potential of EPN against 
wireworms, but, overall, the success was less than 75% 
(Lacey et al. 2015), and in many cases, registering moderate 
to low efficiency (Ansari et al., 2009; Campos-Herrera 
and Gutiérrez, 2009; la Forgia et al., 2020). This limited 
ability to control wireworms might be due to the fact that 
wireworms have evolved defense mechanisms including an 
efficient immune system to cope with a pathogen infection 
(Rahatkhan et al., 2005). Their very thick cuticle prevents 
tunneling through the exoskeleton. This creates a strong 
physical barrier against EPNs that lower the chances of 
invasion in the haemolymph. In addition, other physical 
opening like biforate spiracles, strong anal musculature 
and narrow, densely-haired pre-oral cavities, prevent the 
entrance of EPNs and the subsequent infection (Eidt and 
Thurson, 1995; Lewis et al., 2015). All combined, these 
factors explain the current limited effectiveness of EPNs 
against wireworms (Esther and Huiting, 2007). 

To overcome these limitations, Schalk et al. (1993) 
suggested that EPNs could be associated with other 
control agents to compensate for their low efficiency in 
penetration in the host or overcoming the immune system 
under certain ecological scenarios. In fact, EPNs have 
difficulties to reach wireworms if they are not applied at 
the right depth. To overcome this limitation and improve 
EPNs’ efficiency, their association with attractants like 
semiochemicals has been suggested (Ansari et al., 2009; la 
Forgia and Verheggen, 2019). Indeed, it has been suggested 
to use plant roots extracts and volatiles that affect the 
orientation of wireworms (Barsics et al., 2017; Gfeller et 
al., 2013; Johnson and Gregory, 2006) in attract-and-kill 
stragegies.

In a previous study, we compared the efficiency of two 
EPN species against wireworm (la Forgia et al., 2020). 
The recorded mortality attained 8.3% with Steinernema 
carpocapsae B14 and 16.7% Heterorhabditis bacteriophora 
09.43 after 10 days exposure. Then, the ingestion of EPNs 
encapsulated with potato extract in alginate beads by 
Agriotes sordidus (Coleoptera: Elateridae) showed that 
the beads led to an increase in mortality of 16.7% and 
41.7%, for the S. carpocapsae B14 and H. bacteriophora 
09.43, respectively. In absence of the potato extract, 
mortality decreased only by 0% and 8.3%, respectively, 
demonstrating the importance of incorporating a feeding 
stimulant in such formulations.

The second limitation is that EPN formulations are 
mainly used on “classical spraying” of nematodes in the 
irrigation systems or similar inundative approaches 

(Shapiro-Ilan et al., 2015). New application approaches 
based on encapsulations of different nature might 
enhance the entrance and release of the EPN in the soil. 
Kaya and Nelsen (1985) were the first to encapsulate 
Heterorhabditis bacteriophora and Steinernema feltiae 
in calcium alginate beads. Progressively, several 
studies reported on the fight against the western corn 
rootworm Diabrotica virgifera virgifera (Coleoptera: 
Chrysomelidae) with EPNs formulations (Hiltpold et 
al., 2012; Kim et al., 2014; Jaffuel et al., 2020; Kim et al., 
2021). The treatments protected maize plants from  D. 
v. virgifera  damage, when applied at right time of the 
season.

To overcome the cited difficulties within a perspective 
to limit wireworm infestation, the aim of this case study 
was to investigate the possible attract-and-kill system 
by combining plant semiochemicals (as attraction cues) 
and EPNs (as the kill factor). We hypothesized that EPNs 
oral ingestion could increase wireworms’ mortality, and 
this ingestion will be increased when specific attractants 
are added to the bead. In order to test this, we compared 
treatments with EPNs infection through direct 
application on wireworms and infection through larval 
feeding on alginates beads with encapsulated nematodes.  

2. Materials and methods
2.1. Wireworms
Larvae of Agriotes obscurus (Coleoptera: Elateridae) were 
collected in maize and potato fields in France in 2019. 
Each larva was isolated in a single rearing box of 80 mL 
in order to avoid cannibalism. The rearing substrate 
consisted in a mixture of vermiculite and potting soil (1/1, 
moisturized at 16.5% w/v). Germinating meadow seeds 
(Hordeum vulgare and Triticum aestivum) were sown in 
each box (0.13–0.16 g, Prelac Bio, SCAR, Belgium) as a 
food source. The larvae selected for the behavioral assays 
were at least 10 mm in length (second instar), which 
corresponds to the most threatening instar to crops 
(Furlan, 2004). Four days before the bioassays, they were 
transferred to 80 mL vials filled with vermiculite and raw 
potting soil. Larvae exhibiting reduced activity, including 
larvae in the pre-molting phase (with lateral white stripes 
and scuffed mandibles) and post-molting phase (with a 
light-colored cuticle and soft and light-colored mouth-
appendages) were discarded (Furlan, 2004).
2.2. Potato extract preparation
Based on previous assays, we selected potato tuber 
extracts as a source of attractant inside alginate (la Forgia 
and Verheggen, 2017). A full tuber was cut and covered 
with aluminum foil, then squeezed by hand. The potato 
juice was collected and used right away in order to limit 
oxidative and bacterial degradations.
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2.3. Nematode populations 
Seven commercial and non-commercial EPNs populations 
were tested: three H. bacteriophora: H. bacteriophora 
(e-nema, Schwentinental, Germany), H. bacteriophora 
AM203 (Algarve, Portugal) and H. bacteriophora RM102 
(la Rioja, Spain); two S. carpocapsae: S. carpocapsae 
(e-nema, Schwentinental, Germany) and S. carpocapsae 
B14 (Barcelona, Spain); two S. feltiae: S. feltiae AM25 
(Algarve, Portugal), S. feltiae RM107 (la Rioja, Spain). 
The EPNs populations were first reproduced in waxworm 
larvae, Galleria mellonella L. (Lepidoptera: Pyralidae). 
Briefly, three G. mellonella larvae were placed on a filter 
paper inside a 55 diam. Petri dish. A EPNs solution of 
300 µL was applied on the larva. After four days, dead 
G. mellonella were transferred to individual white traps 
in order to collect the IJs progeny. The IJs were mixed 
from different cadavers. Ten days later, water was added 
in the white traps, and the first IJs were emerging within 
the next 24 h. The IJs were collected from the cadaver 
during a maximum time of four days in order to avoid the 
collection of the EPNs with a lower infectivity (Griffin, 
2015). Emerging nematodes were pooled into one cell-
culture flask and stored at 14 °C for further use. Each 
population was reproduced in G. mellonella before the new 
infection. Nematodes of < 14 days after emergence were 
employed in any of the experiments.
2.4. Feeding experiment
The EPNs populations were spread on each larva on a 
Petri dish of 55 mm diam. (VWR, Belgium) with a water 
suspension of 100 μL adjusted to 250 IJs (equivalent to 10.5 
IJs/cm2). Each larva was placed in a Petri dish with 15 g of 
sand and a slice of potato (var. Annabelle, 2 g weight, 4 cm 
length and 2 cm wide) and infected right after. Mortality 
was checked every week. All wireworm’s cadavers were 
individually placed in white traps (White, 1927) to check 
for the presence of EPNs inside the insects. After twenty 
days, cadavers with no emerging IJs were dissected in 
order to verify their occurrence. 

Twenty-four replicates per EPN population were 
carried out as well as 24 controls (larvae sprayed with 
water only). The larvae of A. obscurus were checked every 
week during eight weeks in order to register the number 
of holes or tunnel made on a potato, the molting and the 
potato slice consumption after EPNs infection. 
2.5. Attract-and-kill experiment
The protocol of the alginate beads was adapted from 
Hiltpold et al. (2012). We previously determined that a 
maximum of 10% of the potato extract could be added 
without significantly changing bead shape and structure. 
Then, a choice test was carried out under darkness to 
simulate soil conditions. Petri dishes 55 mm diam. were 
prepared with autoclaved washed sand with 10% humidity 
(Ø 1–4 mm, Hubo, Belgium) and with a single starved 

wireworm inside (starvation of one week). The stock 
solution was made with 1 g of alginate per 100 mL. This 
alginate solution was dropped in a CaCl2 solution (20 g 
of Calcium in 1 L of water). A syringe of 1 mL with a 4.5 
mm diameter (Henke Sass Wolf, Tuberkulin, Germany) 
was used to take the alginate and drop beads of 100 μL. 
The EPNs, when needed, were inserted in the alginate, and 
the EPNs solution was dropped in the CaCl2.  The beads 
were left polymerizing for 20 min. We determined that a 
maximum of 10% of the potato extract could be added 
without significantly changing the bead formation. One 
bead per petri dish was placed individually on a marked 
spot in the Petri dish and covered with sand to maintain 
humid conditions as long as possible. 

One single bead containing 1000 IJs was placed on a 
marked spot in the Petri dish and was covered with humid 
sand (16%) to maintain humidity. Based on the previous 
experiment (feeding activity), two EPNs populations were 
tested in this attract-and-kill experiment: the e-nema strain 
of S. carpocapsae and S. feltiae AM25. For each of the EPN 
populations, the experiment evaluated four treatments: (i) 
beads with EPNs and potato extract (n = 24), (ii) beads 
with EPNs only (n = 24), (iii) beads with extract only (n 
= 12), and (iv) control beads with water (n = 12). Larvae’s 
feeding activity (larva that eat) and vitality (larva able to 
move and displace) were checked once a week per eight 
weeks. The feeding activity was estimated by the counting 
of the number of holes on the food source. 
2.6. Statistical analyses
Statistical analyses were carried out using R (v. 0.98.1102). 
Wireworm’s mortality was assessed by recording the dead 
(value = 1) or alive (value = 0) status of each wireworm in 
each Petri dish. Data were analyzed using a chi-squared 
test for binomial distribution. Feeding activity (percentage 
of eating wireworms and number of holes in the potato) 
as well as mortality and molting were analyzed using 
generalized linear mixed-effects models (R package lme4) 
with the week of measurement as repetition unit and with 
the population of nematodes as factor. In the case of the 
screening with beads, the addition of potato extract was 
also added as a factor. To the exception of the number 
of holes that followed a normal distribution, the models 
were based on a binomial distribution. When relevant, a 
Tukey post-hoc test was performed to identify differences 
between treatments. We confirmed that the data of the two 
independent trials per experiment and species could be 
pooled by two ways ANOVA (data not shown). Statistical 
differences were assessed for p < 0.05. We used least square 
means ± S. E. as descriptive statistics.

3. Results
After direct application of EPN on wireworms, the EPNs 
populations reduced the proportion of actively eating 
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wireworms (χ2 = 24.89, p < 0.001) and increased their 
mortality (χ2 = 57.76, p < 0.001 – Figure 1). The populations 
of S. feltiae AM25 and S. carpocapsae e-nema were the 
ones inducing the highest mortality (after 8 weeks) in 
wireworms, with 50% and 28%, respectively. A Tukey 
post-hoc test revealed that S. feltiae AM25 was responsible 
for a mortality that is significantly higher than with any 
other populations. Mortality with S. carpocapsae e-nema 
population was the second highest observed, though the 
difference was not significant with the other S. carpocapsae 
population. The EPNs population did not have any 
significant effect on the number of holes made in the food 
source and on the proportion of molting wireworms (χ2 = 
12.06, p = 0.10 and χ2 = 0.02, p = 0.99, respectively).
3.1. Attract-and-kill experiment
The use of alginate beads with encapsulated nematodes 
affected the feeding behaviour of wireworms (χ2 = 56.77, 
p < 0.001). Both EPNs populations S. feltiae AM25 and S. 
carpocapsae e-nema, significantly reduced the wireworms 
feeding activity (Tukey: z = -6.12; p < 0.001 and z = –5.74; 
p < 0.001, respectively) (Figure 2), with S. carpocapsae 
e-nema showing a stronger effect than S. feltiae AM25 
(Tukey: z = –2.42; p = 0.04). The addition of potato 
extract increased the effects observed with S. feltiae AM25 
population (Tukey: z = 3.91; p < 0.001), but did not impact 
those observed with S. carpocapsae e-nema.

The association of nematodes and potato extracts 
reduced the number of holes made by wireworms in 
the potato that was given as food source (S. carpocapsae 
e-nema: χ2 = 73.62, p < 0.001; S. feltiae AM25: χ2 = 5.03, 

p = 0.02, respectively – Figure 3). The two strains of 
nematodes significantly reduced the food consumption by 
wireworms compared to the control (Tukey: z = –8.32; p 
< 0.001 and z = –7.12; p < 0.001, respectively) but did not 
differ from each other (Tukey: z = –1.46; p = 0.31).

Exposing wireworms to alginate beads with nematodes 
but without attractants did not impact wireworms’ 
mortality (χ2 = 0.96; p = 0.62 – Figure 4). The addition 
of potato extracts to the EPN-containing beads increased 
wireworms’ mortality (χ2 = 6.50; p = 0.01 – Figure 4). 

The molting of wireworms was neither affected by 
nematodes (χ2 = 0.17, p = 0.92 – Fig. (5) nor by the addition 
of potato extract (χ2 = 0.10, p = 0.75 – Figure 5).

4. Discussion
Wireworms have strong natural barriers that allow them 
to resist EPNs’ infection. Here, we have demonstrated 
combining EPN-containing alginate beads with a plant 
extract can enhance the killing power of EPN against 
wireworms, most likely by facilitating the ingestion of EPN. 
Identifying specific plant-derived compounds that serve as 
feeding stimulants may further enhance the infection and 
killing potential of this formulation (la Forgia et al., 2020). 
The EPNs exit from the infected wireworms is also very 
hard. Usually, infected cadavers presented an important 
swelling in their ventral side, suggesting that the cuticle 
prevented them from exiting. Because of the particularly 
tough cuticle, we hypothesized that EPNs will have to find 
specific weak spots to enter wireworms. In this context, the 
size of EPNs may be an important factor to be taken into 
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consideration as well. Spiracular openings are sensitive 
entry points for IJs in many insect species (Forschler and 
Gardner, 1991), and they should be considered as a possible 
entry points into wireworms as well. The oral and anal 
openings are the most vulnerable (Mráček and Růžička, 
1990), but the size of the mouth, the crushing action of 
mandibles, the sclerotized foregut and the peritrophic 
membrane may still prevent successful infections (Eidt 
and Thurston, 1995).  

The populations S. feltiae AM25 and S. carpocapsae 
e-nema led to the highest mortality rate. A very recent 
study by Sandhi et al. (2020) compared ten different EPNs 
against the wireworm Limonius californicus, and showed 
that S. carpocapsae (All and Cxrd populations) and S. 
riobrave (355 and 7–12 populations) killed 60%–70% of L. 
californicus larvae in four weeks with a charge of 700 IJs 
(25 IJs/cm2), 1400 IJs (50 IJs/cm2), 2800 IJs (100 IJs/cm2), 
and 5600 IJs (200 IJs/cm2) in laboratory conditions. On the 
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Figure 2. Proportion of eating wireworms over time after the application of two different nematode strains (χ2 = 56.77, p 
< 0.001). Light bars correspond to the treatments without potato extract, and the dark bars correspond to the treatments 
with addition of potato extract. Error bars represent 95% confidence intervals. 

Figure 3. Mean number of holes in the potato food source after infection according to nematode populations across time 
((S. carpocapsae e-nema: χ2 = 73.62, p < 0.001; S. feltiae AM25: χ2 = 5.03, p = 0.02, respectively). Light bars correspond to the 
treatments without potato extract, and the dark bars correspond to the treatments with addition of potato extract. Error bars 
represent the standard error of the mean. 
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contrary, Campos-Herrera and Gutiérrez (2009) found that 
a Spanish EPN isolate (S. feltiae) killed <10% A. sordidus 
in 12 days, confirming results of previous studies (Eidt 
and Thurston, 1995; Zhao et al., 1996). Relatively strong 
virulence has been found for H. bacteriophora (strain 
UWS1), causing a 67% mortality of A. lineatus larvae 
three weeks after inoculation (Ansari et al., 2009). Morton 
and Garcia-Del-Pino (2016) tested the susceptibility of 

A. obscurus to S. carpocapsae (B14) and found that initial 
EPN concentration is critical, observing 13.3% mortality 
at the rate of 50 IJs/cm2, and increasing to 75.6% when 
the concentration of IJs were 100 IJs/cm2. It is noteworthy 
that we had <50% mortality, but the concentration of 10 
IJs/cm2 were 5 and 10 times lower than those tested by 
Morton and García del Pino (2016) with the same EPN 
population.
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Figure 4. Proportion of dead wireworms according to nematode populations across time. Light bars correspond to the 
treatments without potato extract (χ2 = 0.96; p = 0.62), and the dark bars correspond to the treatments with addition of 
potato extract (χ2 = 6.50; p = 0.01). Error bars represent 95% confidence intervals. 

Figure 5. Proportion of molting wireworms according to nematode population across time (χ2 = 0.17, p = 0.92). Light bars 
correspond to the treatments without potato extract, and the dark bars correspond to the treatments with addition of potato 
extract. Error bars represent 95% confidence intervals.
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Encapsulating EPNs in alginate beads may increase 
their shelf life as well as their survival in the field by offering 
them shelter and protection against environmental stress 
such as drought, UV or pathogens (Kim et al., 2014; 2021).  
Longer living nematodes will result in a longer lasting 
effect on wireworm mortality and feeding activity. 

The formulations with only EPNs did not impact the 
number of holes on the food source during the feeding 
damage experiment, suggesting a constant feeding even 
after EPNs infection. The difficulty of penetrating the 
wireworms through the physical barriers of the cuticula, 
combined with a strong immune system of the host, may 
have resulted in very low rates of successful infections 
by the directly applied nematodes and, consequently, 
allowed the wireworms to maintain a high feeding activity. 
It would be important to confirm this observation with 
future studies. In fact, a low infection rate may not affect 
the feeding capacity of the wireworm population. This may 
be different if the wireworms ingest the EPNs, and it may 
result in a decrease of the feeding performance, possibly 
limiting the damage to the crop.

None of the nematode populations by themselves 
significantly increased mortality, but the addition of potato 
extracts did. In addition to attracting the wireworms, it is 
possible that the extract also put the nematodes in a state of 
quiescence, an additional factor to take into consideration. 
Quiescence slows down EPN metabolism and increases 
their longevity with a minimum loss of infectivity (Grewal, 
2000; Kim et al., 2021). Indeed, plant exudates can induce 
reversible quiescence in EPNs while favoring long-term 
storage of EPNs (Hiltpold et al., 2015). Hence, a potential 
quiescence effect of the potato extract could explain long 
term wireworm mortality, as it would make the nematodes 
less active. It would also explain the higher mortality of 
wireworms during the last week of the assays, confirming 
a longer EPNs survival when quiescent. 

The cost-efficiency of EPNs within an attract-and-kill 
system was evaluated by Shapiro-Ilan et al. (2002). The 
factors that could affect the commercial success, for aerial 
application, will depend on the plant model and other 
biological and ecological factors but also abiotic factors 
like temperature, soil moisture and UV exposure. All these 
factors will affect the EPNs’ ability to locate and infect 
hosts (Griffin, 2015). Most important is to select the most 
effective EPN strain against the target pest (high virulence) 
and the compatibility with the environmental conditions 
and application technology. The costs and benefits will 
also have to be compared to other control measures and 
needs to be seen in light of the farmers’ needs to control 
the insect pest within the constraints of environmental 
policies. A positive aspect is the generally low cost of EPNs 
registration due to fewer safety requirements (Birch and 
Glare, 2020).

Further studies are needed to fully understand the role 
of potato extract in the observed long term in wireworm 
mortality. The longer lasting EPNs activity may also be 
explained by the properties of the bead system itself. 
For instance, tests on the use of capsules containing H. 
bacteriophora in the field against rootworms have shown that 
the IJs had a high survival rate in the capsules and that this 
formulation was more effective than water sprays (Hiltpold 
et al., 2012; Kim et al., 2021). 

5. Conclusions and future directions
That EPNs can cause significant wireworm mortality was 
already known (Morton and Garcia-del-Pino, 2016), but 
ours appears to be the first study to show that EPNs can 
negatively affect wireworm feeding activity. Supplementing 
the formulation with an attractive plant extract enhanced 
the control potential of the EPNs considerably. Our results 
suggest that encapsulated EPNs combined with potato extract 
can mitigate the wireworms’ negative impact on crops for at 
least two months. The attractiveness of the potato extract 
had already been demonstrated with olfactometer assays 
in which the choice for and feeding activity on the alginate 
beads were observed (la Forgia et al., 2020). In the future, 
the attraction to beads should also be compared using other 
attractants like maize roots extract, in order to optimize and 
validate the attract-and-kill system with the alginate beads. 
The improvement of the attractiveness could indeed increase 
the feeding and, consequently, the mortality. Further 
improvements may be achieved by combining EPNs with 
entomopathogenic fungi in the beads, which may further the 
main increase mortality, especially in field conditions. 
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