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Abstract: Simplicial-map neural networks are a recent neural network architecture induced by
simplicial maps defined between simplicial complexes. It has been proved that simplicial-map neural
networks are universal approximators and that they can be refined to be robust to adversarial attacks.
In this paper, the refinement toward robustness is optimized by reducing the number of simplices
(i.e., nodes) needed. We have shown experimentally that such a refined neural network is equivalent
to the original network as a classification tool but requires much less storage.

Keywords: simplicial-map neural networks; artificial neural networks; computational topology

1. Introduction

In spite of the undoubted advantages of deep learning techniques for classification
tasks [1], many important problems remain still unsolved in this context. In particular,
if we focus on the efficiency of such models, one of their main drawbacks is the huge
amount of resources needed for training competitive networks (for instance, vision models
based on the transformer architecture need billions of images to be trained [2]). In many
cases, only big companies can support the expensive cost of training competitive architec-
tures [3,4]. From a practical point of view, one of the open research lines in deep learning
is the exploration of ways to reduce training resources without reducing the accuracy of
trained models.

One way to reduce time (to train the model) and space (to store the training data set) is
to take a small subset of the training data set that summarizes its useful information. Several
authors have explored this idea. For example, in [5], a data set representative of the training
data set was considered. In [6], techniques of active learning were applied to classify
images using convolutional neural networks. In [7], the authors reduced the volume of the
training data set using stochastic methods. Other authors, in [8], replaced the training data
set with a small number of synthetic samples containing all the original information.

Another approach tries to reduce the number of training parameters by pruning the
model. This is a general technique in machine learning and it has a long tradition in
neural networks [9]. The importance of pruning neural networks has emerged in recent
years due to the big amount of resources required in deep learning [10–12]. Since local
search techniques based on back propagation play a central role in weight optimization,
the different pruning techniques can be classified using such a training process as the main
reference. For example, there are studies where pruning occurs at the end of the training
process [13], after the training process [14] or in the early stages of the training process [15].

Topological data analysis (TDA) provides a completely different approach to reducing
the number of resources in the neural network classification process. In [16], the authors
provided a constructive approach to the problem of approximating a continuous function
on a compact set in a triangulated space. Once a triangulation of the space is given, a two-
hidden-layer feedforward network with a concrete set of weights called a simplicial-map
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neural network is computed. The construction is based on several strong theorems from
algebraic topology and allows one to avoid the heavy process of optimizing the weights
of neural networks since they can compute the weights directly from the triangulation of
the space. Later, in [17], the authors showed that simplicial-map neural networks can be
defined to be robust to adversarial attacks of a given size.

Simplicial-map neural networks are vaguely related to margin-based classifiers such
as support vector machines (SVMs) and to nonparametric methods such as k-nearest
neighbors (k-NN). These algorithms are widely used and, in both cases, there exist efforts
to study their robustness to adversarial examples such as [18] in the case of k-NN or [19]
for SVMs. Simplicial-map neural networks are not trained but defined on a triangulation
of the data set and the decision boundaries are based on that triangulation. One of the
greatest advantages of this approach is the possibility of formal proof of different properties
such as universal approximation ability and, as previously mentioned, robustness against
adversarial examples. However, both properties are based on barycentric subdivisions
of the triangulation with a large increase in required storage as the number of simplices
grows, this being a bottleneck for its applicability.

In this paper, we propose an algorithm to reduce the number of parameters of simplicial-
map neural networks without reducing their accuracy. The key to the proposed method is
that barycentric subdivisions, in particular, and triangulations of training data sets, in general,
introduce many simplices that are not needed or redundant. The paper is organized as
follows. In Section 2, we recall some basic concepts. In Section 3, we provide the description
of our methodology. The description is illustrated with some examples in Section 4. We finish
the paper with some conclusions and hints for future work.

2. Background

In [16,17], a new approach to construct neural networks based on simplicial maps was
introduced. Roughly speaking, a combinatorial structure (a simplicial complex) K is built
on top of a labeled data set using Delaunay triangulations to, lately, construct a neural
network based on a simplicial map defined between K and a simplicial complex with just
one maximal simplex. This section is devoted to recall some of the basic concepts used in
such construction.

The research field of neural networks is exponentially growing and recently, many
different architectures, activation functions, and regularization methods have been intro-
duced; thus, it is difficult to find a general definition that covers all the cases. In this paper,
we adapt a definition from [20] that fits into our purposes. From now on, n, m, d, k denote
positive integers and J1, nK denote the set of integers {1, . . . , n}.

Definition 1 (adapted from [20]). A multilayer feedforward network defined between spaces
X ⊆ Rd and Y ⊆ Rk is a function N : X → Y composed of m + 1 functions:

N = fm+1 ◦ fm ◦ · · · ◦ f1

where the integer m > 0 is the number of hidden layers and, for i ∈ J1, m + 1K, the function
fi : Xi−1 → Xi is defined as

fi(y) := φi(W(i); y; bi)

where X0 = X, Xm+1 = Y, and Xi ⊆ Rdi for i ∈ J1, mK; d0 = d, dm+1 = k, and di > 0 being
an integer for i ∈ J1, mK (called the width of the ith hidden layer); W(i) ∈ Mdi−1×di

being a
real-valued di−1 × di matrix (called the matrix of weights of N ); bi being a point in Rdi (called the
bias term); and φi being a function (called the activation function). We will call the width of the
neural network to the maximum width of hidden layers.

Throughout this paper, neural networks will be considered as classification models.
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Definition 2. A labeled data set D is a finite set of pairs

D =
{
(pj, `j) : j ∈ J1, nK, pj ∈ Rd, `j ∈ Ek}

where, for j, h ∈ J1, nK, pj 6= ph if j 6= h, and `j represents a one-hot vector. We say that `j is the
label of pj or, equivalently, that pj belongs to the class `j. We will denote by DP the ordered set of
points 〈pj〉j.

Given a data set and a set of neural networks that only differ in their weights, the su-
pervised classification problem consists in finding an available neural network in the set
that provides the best classification for the data set. Since neural networks in the set only
differ in their weights, finding the best neural network is equivalent to find the best possible
weights. Again, several definitions of the concept of supervised classification problem can
be provided, mainly depending on the method used to look for the possible weights and
the concept of improvement chosen to define the best option.

In this paper, the concept of supervised classification problem for neural networks is
defined as follows.

Definition 3. Given a labeled data set D ⊂ Rd × Ek, an integer m > 0, and a set of activation
functions φi for i ∈ J1, mK, a supervised classification problem consists of looking for the weights
W(i) and bias terms bi for i ∈ J1, mK, such that the associated neural network N : X → Y,
with X ⊆ Rd, Y ⊆ Rk and D ⊆ X×Y, satisfies:

• N (p) = ` for all (p, `) ∈ D.
• N maps x ∈ X to a vector of scores N (x) = (y1, . . . , yk) ∈ Y such that yi ∈ [0, 1] for

i ∈ J1, nK and ∑i∈J1,nK yi = 1.

If such a neural network N exists, we will say that N characterizes D, or, equivalently, that
N correctly classifies D.

The process to search for optimal weights is usually called the training of the neural
network. The training most commonly used is based on backpropagation [21]. Nevertheless,
in this paper, the optimal weights are not searched through an optimization process. Instead,
a combinatorial structure is built on top of the training samples and a function called simpli-
cial map is defined on it; then, a special kind of neural network named simplicial-map neural
network is constructed. In order to recall the definition of simplicial-map neural network, we
start by recalling the definitions of convex hull and convex polytope.

Definition 4. The convex hull of a set S ⊂ Rd, denoted by conv(S), is the smallest convex set
containing S. If S is finite, then conv(S) is called a convex polytope and denoted by P . The set of
vertices of a convex polytope P is the minimum set VP of points in P such that P = conv(VP ).

Our construction of simplicial-map neural networks is based on the simplicial complex
obtained after a triangulation of the given convex polytope. Let us now recall the concept
of simplicial complex.

Definition 5. Let us consider a finite set V whose elements will be called vertices. A simplicial
complex K consists of a finite collection of nonempty subsets (called simplices) of V such that:

1. Any subset of V with exactly one point of V is a simplex of K called 0-simplex or vertex.
2. Any nonempty subset of a simplex σ is a simplex, called a face of σ.

A simplex σ with exactly k + 1 points is called a k-simplex. We also say that the dimension
of σ is k and write dim σ = k. A maximal simplex of K is a simplex that is not face of any other
simplex in K. The dimension of K is denoted by dim K and it is the maximum dimension of its
maximal simplices. The set of vertices of a simplicial complex K will be denoted by K(0). A simplicial
complex K is pure if all its maximal simplices have the same dimension.
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An example of simplicial complex is the Delaunay complex defined from the Voronoi
diagram of a given finite set of points.

Definition 6. Let S = {p1, . . . , pn} be a finite set of points in Rd in general position. The Voronoi
cell V(pi, S) is defined as:

V(pi, S) :=
{

x ∈ Rd : ||x− pi|| ≤ ||x− pj||, ∀pj ∈ S
}

.

The Voronoi diagram of S, denoted as V(S), is the set of Voronoi cells:

V(S) :=
{
V(p1, S), . . . ,V(pn, S)

}
.

The Delaunay complex of S can be defined as:

D(S) :=
{

ς ⊆ S : ∩p∈ςV(p, S) 6= ∅
}

.

The following lemma is just another view of the definition of Delaunay complexes.

Lemma 1 (The empty ball property [22] (p. 48)). Any subset σ ⊂ S is a simplex of the Delaunay
complex of S if and only if it has a circumscribing (open) ball empty of points of S.

Given d > 0, an embedding of a simplicial complex K in the d-dimensional space Rd

is usually called a geometric realization of K, and it will be denoted by |K|.
One of the key ideas along this paper is that a triangulation can be refined by suc-

cessive subdivisions of the simplicial complex obtained from the triangulation. There are
many different ways to obtain a subdivision of a simplex; in our case, we will use the
barycentric subdivision.

Definition 7. Let K be a simplicial complex with vertices in Rd. The barycentric subdivision
Sd K is the simplicial complex defined as follows. The set (Sd K)(0) of vertices of Sd K is the set
of barycenters of all the simplices of K. The simplices of Sd K are the finite nonempty collections
of (Sd K)(0) that are totally ordered by the face relation in K. That is, any k-simplex σ of Sd K
can be written as an ordered set {w0, . . . , wk} such that wi is the baricenter of µi, being µi a face
of µj ∈ K for i, j ∈ J0, kK and i < j. In particular, if σ is maximal, then there exists a d-simplex
{u0, . . . , ud} ∈ K satisfying that wi is the barycenter of {u0, . . . , ui} for i ∈ J0, dK.

Let us introduce now the notion of simplicial approximation, which is a simplicial
map defined on two simplicial complexes K and L that approximates a given continuous
function g between the geometric realization of K and L. First, we recall the concept of
vertex maps between two simplicial complexes.

Definition 8. Given two simplicial complexes K and L, a vertex map ϕ(0) : K(0) → L(0) is a
function from the vertices of K to the vertices of L such that for any simplex σ ∈ K, the set

ϕ(σ) := {v ∈ L(0) : ∃ u ∈ σ, ϕ(0)(u) = v}

is a simplex of L.

A vertex map defined on the vertices of a simplicial complex K can be linearly extended
to a continuous function on the whole simplicial complex K.

Definition 9. The simplicial map ϕc : |K| → |L| induced by the vertex map ϕ(0) : K(0) → L(0) is a
continuous function defined as follows. Let x ∈ |K|. Then, x ∈ |σ| for some simplex σ ={u0, . . . , uk}
of K. So, x = ∑i∈J0,kK λiui being λi ≥ 0, for all i ∈ J0, kK and ∑i∈J0,kK λi = 1. Then,

ϕc(x) := ∑
i∈J0,kK

λi ϕ
(0)(ui).
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Intuitively, a simplicial approximation between two simplicial complex K and L is a
simplicial map that preserves the star of a vertex. Recall that for a vertex v of K(0), the star
of v, denoted by st v, is the set of simplices of K having {v} as a face.

Definition 10. Let g : |K| → |L| be a continuous function between the geometric realization of
two simplicial complexes K and L. A simplicial map ϕc : |K| → |L| induced by a vertex map
ϕ(0) : K(0) → L(0) is a simplicial approximation of g if

g(| st v|) ⊆ | st ϕc(v)|

for each vertex v of K(0).

Next, the main definition used in this paper is recalled. Given a simplicial map between
the geometric realizations of two finite pure simplicial complexes, a two-hidden-layer feedfor-
ward network can be built. Such neural network is called a simplicial-map neural network
and the value of its weights can be exactly computed from the vertex map associated to
the simplicial map. In other words, there is no need to train the neural network to find the
optimal weights.

Definition 11. Let K and L be two finite pure simplicial complexes of dimension d and k, respectively.
Let us consider the simplicial map ϕc : |K| → |L| induced by a vertex map ϕ(0) : K(0) → L(0). Let{

σ1, . . . σn
}

be the maximal simplices of K, where σi =
{

ui
0, . . . , ui

d
}

and ui
h ∈ Rd for i ∈ J1, nK and

h ∈ J0, dK. Let
{

µ1, . . . , µm
}

be the maximal simplices of L, where µj =
{

vj
0, . . . , vj

k
}

and vj
h ∈ Rk

for j ∈ J1, mK and h ∈ J0, kK. The simplicial-map neural network induced by ϕc, denoted byNϕ, is
the two-hidden-layer feedforward neural network having the following architecture:

• an input layer with d0 = d neurons;
• a first hidden layer with d1 = n(d + 1) neurons;
• a second hidden layer with d2 = m(k + 1) neurons; and
• an output layer with d3 = k neurons.

This way, Nϕ = f3 ◦ f2 ◦ f1 being fi(y) = φi(W(i); y; bi), for i ∈ J1, 3K, defined as follows.

First, W(1) =


W(1)

1
...

W(1)
n

 ∈ Mn(d+1)×d and b1 =

B1
...

Bn

 ∈ Rn(d+1) where

(
W(1)

i

∣∣ Bi

)
=

(
ui

0 · · · ui
d

1 · · · 1

)−1

∈ M(d+1)×(d+1)

being W(1)
i ∈ M(d+1)×d and Bi ∈ Rd+1. The function φ1 is defined as

φ1(W(1); y; b1) := W(1)y + b1.

Second, W(2) =
(
W(2)

h,`

)
∈ Mm(k+1)×n(d+1) b2 ∈ Rm(k+1) is null where

W(2)
h,` :=

{
1 if ϕ(0)(ui

t) = vj
r,

0 otherwise;

being h = j(r + 1) and ` = i(t + 1) for i ∈ J1, nK; j ∈ J1, mK; t ∈ J0, dK; and r ∈ J0, kK. The
function φ2 is defined as:

φ2(W(2); y; b2) := W(2)y.

Thirdly, W(3) =
(

W(3)
1 · · · W(3)

m

)
∈ Mk×m(k+1) and b3 ∈ Rk is null being

W(3)
j :=

(
vj

0 · · · vj
k

)
for j ∈ J1, mK.
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The function φ3 is defined as:

φ3(W(3); y; b3) :=
∑j∈J1,`K zjψ(yj)

∑j∈J1,`K ψ(yj)

being zj := W(3)
j yj for y =

y1

...
ym

 ∈ Mm·(k+1) and

ψ(yj) :=
{

1 if all the coordinates of yj are ≥ 0,
0 otherwise.

As shown in [17], simplicial-map neural networks can be used for classification purposes.
Given a labeled data set D ⊂ Rd ×Rk, we first compute a convex polytope P surrounding D.
Second, we compute the Delaunay complex K = D(S) of the set S =DP ∪VP and define a
simplicial complex L composed of a maximal simplex σ = {v0, . . . , v`} such that its dimension
is equal to the number of classes of D. Finally, a vertex map that induces a simplicial-map
neural network that correctly classifies D is defined as follows (see Proposition 4 in [17]):

ϕ(0)(u) :=
{

vi if (u, i) ∈ D,
v0 if u ∈ VP .

(1)

However, this simplicial-map neural network is not robust to adversarial attacks as
shown in Proposition 5 in [17]. To construct simplicial-map neural networks robust to
adversarial attacks of a given bounded size, the idea is to define a width decision boundary
through barycentric subdivisions. Nevertheless, with each barycentric subdivision iteration,
the number of simplices grows as it is claimed in Remark 1 of [16].

Once we have introduced all the necessary notions to explicitly construct a neural
network to solve a classification problem, we present a methodology to reduce the size of
such a network without hindering its performance.

3. Description of the Methodology

In this section, we propose a methodology to reduce the size of a simplicial-map neural
network used for classification tasks.

Recall that given a labeled data set D with k classes, the process to obtain a simplicial-
map neural network that correctly classifies D is: (1) to compute a convex polytope P
surrounding D; (2) to compute the Delaunay complex K of the set DP ∪VP ; (3) to compute a
vertex map ϕ(0) from the vertices of K to the vertices of a simplicial complex L with only one
maximal k-simplex; and (4) to compute a simplicial-map neural network Nϕ : |K| → |L|,
from the simplicial map ϕc.

However, this simplicial-map neural networkNϕ, as many other neural networks, can
suffer the attack of adversarial examples. In [17], a method to increase the robustness of
the simplicial-map neural network to such attacks was developed by applying successive
barycentric subdivisions to K and L depending on the desired robustness. However,
the iteration of barycentric subdivisions results in the exponential growth of the number of
simplices. Therefore, the storage and computational cost of the simplicial map ϕc and the
simplicial-map neural network Nϕ grow exponentially.

In order to avoid this problem, in this paper, we propose a method to reduce the
storage and computational cost of the simplicial-map neural network Nϕ : |K| → |L| by
removing points of the given labeled data set D but keeping exactly the same accuracy as
Nϕ. The idea is to remove those simplices from K whose vertices belong all to the same
class. Therefore, those simplices with vertices in the decision boundary remain, leaving the
decision boundary invariant.
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Let us now formalize this idea. Let D =
{
(pj, `j) : j ∈ J1, nK, pj ∈ Rd, `j ∈ Ek} be

a data set and let Nϕ be the simplicial-map neural network obtained using the process
described above. Our aim is to obtain a subset D̃ that induces a simplicial-map neural
network Ñϕ̃ with exactly the same behavior than Nϕ. The procedure is described in
Algorithm 1.

Algorithm 1 Simplicial-map neural network optimization

Result: The simplicial-map neural network Ñϕ̃;
Input: A labeled data set D, a convex polytope P surrounding D, and the
simplicial-map neural network Nϕ : |K| → |L| that correctly classifies D;
M := ∅;
for σ = {v0, . . . , vn} ⊂ DP ∪VP being a maximal simplex of K do

if Nϕ(vi) 6= Nϕ(vj) for some i 6= j then
M := M ∪ {σ};

end
end
D̃ := {(v, `) : v ∈ M(0) and (v, `) ∈ D};
K̃ := D(D̃P ∪VP );
Compute the simplicial map ϕ̃(0) : K̃(0) → L(0);
Compute the simplicial-map neural network Ñϕ̃ : |K̃| → |L|;
Output : Ñϕ̃

In Section 4, using a high-dimensional data set composed of digit images, we check
experimentally that both simplicial-map neural networks Ñϕ̃ and Nϕ have the same
behavior. The following partial result also supports that idea.

Lemma 2. Let D be a labeled data set, let Nϕ : |K| → |L| be the simplicial-map neural network
that correctly classifies D, constructed following the method given in [17], and let Ñϕ̃ be the
simplicial-map neural network obtained from Algorithm 1. If σ = {v0, . . . , vn} ∈ K satisfies that
Nϕ(vi) 6= Nϕ(vj) for some i 6= j, then Ñϕ̃(x) = Nϕ(x) for all x ∈ |σ|.

Proof. Let σ = {v0, . . . , vn} be a simplex of K such that Nϕ(vi) 6= Nϕ(vj) for some i 6= j.
Then, σ is a face of a maximal simplex µ of K with all its vertices belonging to D̃P ∪ VP .
Therefore, µ is a maximal simplex of K̃ (by Lemma 1) and Ñϕ̃(x) = Nϕ(x) for any x ∈ |µ|.
Since σ is a face of µ then Ñϕ̃(x) = Nϕ(x) for any x ∈ |σ|.

In order to illustrate Algorithm 1, let us consider the two-dimensional labeled data set D
given in Figure 1. Let us consider a square surrounding the data set as the convex polytope P ,
and let us compute the Delaunay complex K = D(DP ∪VP ) as shown in Figure 2. Then, K is
composed of 24 points and 42 2-simplices. Applying Algorithm 1 is equivalent to remove
those 2-simplices of K whose vertices belong, all of them, to the same class. Then, we consider
only the vertices of the surviving 2-simplices and the Delaunay complex is computed again.
In that case, the resultant simplicial complex is composed of 18 points and 30 2-simplices (see
Figure 2).

Lemma 3. If the points of DP ∪ VP are in general position, then the reduced simplicial neural
network Ñϕ̃ can always be computed from Algorithm 1.

Proof. If the points of DP ∪VP are in general position, then any subset of points of DP ∪VP
are in general position, so the the Delaunay triangulation of D̃P ∪ VP can always be
computed, as well as the simplicial-map neural network Ñϕ̃.
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Figure 1. A toy example of a two-dimensional data set for binary classification generated using the
scikit-learn package implementation of [23].

Figure 2. On the left, the Delaunay triangulation of the labeled data set D given in Figure 1 together
with the vertices of the square polytope surrounding D. On the right, the Delaunay triangulation
of a subset of D obtained as described in Algoritm 1. As we can see, the triangles whose vertices
belonged all to the same class disappeared.

Let us notice that, depending on the distribution of the data set, the reduction obtained
after applying Algorithm 1 can be significant or not. Specifically, if the different classes of
D are not mixed, then we can expect good results of Algorithm 1. The reduction will be
optimum when the data set is separable and dense. In such case, most of the simplices
would have vertices of the same class and be removed when Algorithm 1 is applied.
An example of these two opposite cases are shown in Figure 3.
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Figure 3. From left to right and from top to bottom: (1) a separable and dense binary data set D;
(2) the data set obtained after applying Algorithm 1 to D; (3) a data set that cannot be reduced by
applying Algorithm 1.

4. Experiments

In this section, a high-dimensional data set composed of digit images is considered.
In this case, for visualization purposes, the data set is firstly embedded to obtain a low-
dimensional representation using the UMAP algorithm [24]. The data set is composed
of 1797 greyscale images of dimension 8× 8. These images represent digits from 0 to 9.
In Figure 4, some of the images are shown and, in Figure 5, the two-dimensional UMAP
output is displayed, representing the full data set. In order to illustrate our method by
providing a graphical intuition, we will focus on the 2D representation of the digits data
set, but the construction can be conducted with any dimension of the input.

Let us focus on the 1797 two-dimensional points of the UMAP representation of the
digits data set D depicted in Figure 5, and let us consider a square P surrounding such a
cloud of points DP. According to [17], a simplicial-map neural network Nϕ can be built
in order to correctly classify D. Now, let us apply Algorithm 1 to obtain a simplified
version of Nϕ that also correctly classify D. This way, all of the points in DP surrounded
by points belonging to the same class were removed to obtain a reduced data set D̃
inducing the same simplicial-map neural network than D. In Figure 5, the two-dimensional
representation of the reduced data set is shown. The next step is the computation of
the Delaunay triangulation using the data set D̃ and the vertices of the square P . In
Figure 6, the Delaunay triangulation is shown for both the original and the simplified data
set. The Delaunay triangulation of the original data set is composed of 3596 2-simplices,
whereas the Delaunay triangulation of the simplified data set is composed of 604 2-simplices
and 305 points reaching a remarkable reduction in the number of simplices. The results
are summarized in Table 1. Finally, the induced simplicial-map neural networks were
experimentally compared obtaining exactly the same performance.

Lastly, Algorithm 1 was experimentally tested for synthetically generated two- and
three-dimensional data sets. The numerical results can be found in Tables 2 and 3, respectively.
Let us point out that in the three-dimensional data set with a greater amount of points,
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the reduced data set has a reduction of approximately 73%, inducing the same simplicial-map
neural network.

The code of the experimentation can be consulted in https://github.com/Cimagroup/
DelaunayTriangAndNN (accessed on 30 August 2021).

Figure 4. Some of the 1797 images used in the experiment. The images are labeled from 0 to 9 in a
natural way. Each image is grey-scaled and has 8× 8 pixels, so it can be represented as a point in
R64. In order to visualize such 1797 64-dimensional points, R64 has been projected into R2 using the
UMAP algorithm. Figure 5 shows the projection on R2 of the 1797 images.

Figure 5. Visualization of the UMAP 2D representation of the original data set used (left), and the
simplified data set obtained (right).

https://github.com/Cimagroup/DelaunayTriangAndNN
https://github.com/Cimagroup/DelaunayTriangAndNN
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Figure 6. On the (left), the Delaunay triangulation of the original data set and, on the (right),
the Delaunay triangulation of the simplified data set.

Table 1. The size of the data set used in the digits experiment, the number of 2-simplices obtained
after computing the Delaunay triangulation, and the ones obtained after applying Algorithm 1.

Data Set Size 2-Simplices 2-Simplices (Reduced) Data Set Size (Reduced)

1801 3596 604 305

Table 2. The size of the two-dimensional synthetic data sets used, the number of 2-simplices obtained
after computing the Delaunay triangulations, and the ones obtained after applying Algorithm 1.

Data Set Size 2-Simplices 2-Simplices (Reduced) Data Set Size (Reduced)

14 22 22 14
104 202 58 32
1004 2002 230 118
10,004 20,002 8384 4195
100,004 200,002 6620 3313
1,000,004 2,000,002 73,488 36,747

Table 3. The size of the three-dimensional synthetic data sets used, the number of 2-simplices obtained
after computing the Delaunay triangulations, and the ones obtained after applying Algorithm 1.

Data Set Size 3-Simplices 3-Simplices (Reduced) Data Set Size (Reduced)

14 34 29 13
104 551 391 75
1004 6331 1647 272
10,004 66,874 30,357 4556
100,004 672,097 147,029 21,955
1,000,004 6,762,603 1,858,204 274,635

5. Conclusions

Simplicial-map neural networks are a recent neural network architecture based on
simplicial maps defined between a triangulation of the given data set and a simplicial com-
plex encoding the classification problem. These neural networks are refined by applying
barycentric subdivisions to ensure their robustness. The iterative application of barycentric
subdivisions increases the number of simplices exponentially. Therefore, the width of the neu-
ral network also increases exponentially. In this paper, we have provided a way to reduce the
number of simplices but maintaining the performance of the neural network. The proposed
method has been experimentally tested. As further work, we plan to formally prove that our
optimized simplicial-map neural network Ñϕ̃ is equivalent to the original oneNϕ.
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