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Abstract: We apply the algebraic reliability method to the analysis of several variants of multi-state
k-out-of-n systems. We describe and use the reliability ideals of multi-state consecutive k-out-of-n
systems with and without sparse, and show the results of computer experiments on these kinds of
systems. We also give an algebraic analysis of weighted multi-state k-out-of-n systems and show that
this provides an efficient algorithms for the computation of their reliability.
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1. Introduction

The usual approach to system reliability assumes that the system and its components
can only be in one of two states, failure and working. However, many systems and
equipments in engineering applications exhibit multiple performance or capacity levels
and therefore cannot be adequately modeled by binary methods. For such non-binary
situations, several models of multi-state reliability analysis have been proposed in the
literature, e.g., [1–5]. In multi-state (MS) systems both the system and its components can
be in any of a discrete set of states that indicates different levels of performance. This allows
the modeling of a wide variety of situations and is an area of intense research and practice.

Among the most important binary systems are k-out-of-n systems and its variants,
e.g., linear consecutive, circular consecutive, weighted, etc. These systems model redun-
dancy in fault-tolerant systems and are used in many applications of a very different
practical nature [1]. Multi-state versions of k-out-of-n systems have been proposed in the
literature and several methods are used for their reliability analysis. The generalized MS
k-out-of-n:G system model was proposed in [6]. Since then, significant efforts have been
made in the analysis of such systems and to produce efficient algorithms for their reliability
computation, see [7] and the references therein for a complete account.

In recent years, several models have been proposed to describe practical situations
that cannot be modeled by usual k-out-of-n systems. For instance, the MS consecutive k-
out-of-n model was proposed in [8], weighted multi-state k-out-of-n systems were studied
in [9] and sparsely connected homogeneous multi-state consecutive k-out-of-n:G systems
were recently proposed in [10].

For binary and multi-state systems, several algebraic methodologies have been sug-
gested that allow the efficient analysis of their structure and reliability. In the case that the
structure function of the system can be analyzed in recursive terms (for instance, series-
parallel systems and others) the Universal Generating Function method has shown to be
very flexible and efficient [2,3,11]. In case that the structure function does not have an easy
to describe pattern, like in general networks, the algebraic method based on monomial
ideals is an approach that also produces efficient algorithms [12–15]. This latter method
has been used to analyze k-out-of-n systems and variants in the binary case [13,16] and
the generalized multi-state version [17]. In summary, this method assigns for each level

Mathematics 2021, 9, 2042. https://doi.org/10.3390/math9172042 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9516-0394
https://orcid.org/0000-0002-5615-4194
https://doi.org/10.3390/math9172042
https://doi.org/10.3390/math9172042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9172042
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9172042?type=check_update&version=1


Mathematics 2021, 9, 2042 2 of 15

j of performance of the system a monomial ideal whose minimal generating set is in cor-
respondence with the set of minimal working states of the system. The algebraic study
of this ideal, in particular of its Hilbert series, provides a direct method for computing
the j-reliability of the systems. A detailed account of this methodology can be seen in the
above references.

In the present paper, we take advantage of the versatility of the algebraic method
based on monomial ideals and apply it to the analysis of the reliability of recently proposed
variants of multi-state k-out-of-n systems. Section 2 reviews the basic definitions and
notations about coherent systems and the algebraic method. In Section 3, we analyze
multi-state consecutive k-out-of-n systems, giving formulas and bounds for their reliability.
Section 4 applies the algebraic method to the recently proposed sparsely connected homo-
geneous multi-state consecutive k-out-of-n:G system model. Finally, Section 5 is devoted to
multi-state weighted k-out-of-n systems.

2. Basic Definitions

A system S consists of n components denoted by ci with i ∈ {1, . . . , n}. At each
moment in time, the system is in one of a discrete set of levels S = {0, 1, . . . , M} indicating
growing levels of performance. Each component ci of the system can be in one of a discrete
set of levels Si = {0, . . . , Mi}. A state of a component is its level and a state of the system
is given by an n-tuple of its components’ states. Given two states s = (s1, . . . , sn) and
t = (t1, . . . , tn), we say that s ≥ t if si ≥ ti for all i = 1, . . . , n and, conversely, that s ≤ t
if si ≤ ti for all i. The level of performance of the system is determined in terms of the
states of the components by a structure function Φ : S1 × · · · × Sn −→ S. The system S is
said to be coherent if Φ is non-decreasing and each component is relevant to the system,
i.e., for each component ci there exist a system state s = (s1, . . . , sn) and two different levels
j, k ∈ Si such that Φ(si,j) 6= Φ(si,k), where si,` = (s1, . . . , si−1, `, si+1, . . . , sn).

The levels of the system {0, . . . , M} indicate growing levels of performance, the system
being in level 0 indicates that the system is failing, and level j > i indicates that the system
is performing at level j better than at level i. For each component ci and for each of its
levels j, we denote by pi,j the probability that ci is performing at level ≥ j. The j-reliability
of S , denoted by Rj(S) is the probability that S is performing at level ≥ j; conversely,
the j-unreliability of S , denoted Uj(S), is 1− Rj(S). A coherent system is given at level
j by its set of j-working states, i.e., those tuples (s1, . . . , sn) ∈ S1 × · · · × Sn such that
Φ(s1, . . . , sn) ≥ j. We say that a state (s1, . . . , sn) ∈ S1 × · · · × Sn is a minimal j-working
state or minimal j-path if Φ(s1, . . . , sn) ≥ j and Φ(t1, . . . , tn) < j whenever all ti ≤ si and at
least in one case the inequality is strict. We say that a state (s1, . . . , sn) ∈ S1 × · · · × Sn is a
minimal j-failure state or minimal j-cut if Φ(s1, . . . , sn) < j and Φ(t1, . . . , tn) ≥ j whenever all
ti ≥ si and at least one of the inequalities is strict. These systems are usually denoted by :G
(for good) in the literature. If instead of paths we consider cuts, then the sytems are denoted
by :F (for fail).

Let S be a system with n components and let j ∈ {0, . . . , M} be one of the levels of
the system. Let Fj(S) be the set of j-working states of the system and Fj(S) the subset
of minimal j-working states. Let us consider P = k[x1, . . . , xn] a polynomial ring in n
indeterminates where k denotes any field of characteristic 0. To each state s = (s1, . . . , sn) ∈
S1 × · · · × Sn of S we associate the monomial xs = xs1

1 · · · x
sn
n ∈ P.

We denote by pr(xs) = ∏n
i=1 pi,si the probability that the system is in a state ≥ s.

In algebraic terms, having a state t ≥ s is equivalent to saying that the monomial xt

is a multiple of xs, i.e., xt is in I = 〈xs〉, the ideal in P generated by the monomial xs.
Now we consider the probability that the system is in a state greater than or equal to at
least one of the states in {µ1, . . . , µr}: this situation algebraically corresponds to the set of
monomials xt belonging to the ideal I = 〈xµ1 , . . . , xµr 〉. Thus we denote its probability by
pr(I) = pr(

⋃r
i=1〈xµi 〉).

The ideal generated by the j-working states of S is denoted by Ij(S) and is called
the j-reliability ideal of S . For a monomial ideal there is a unique minimal monomial
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generating set, denoted MinGens(I). Due to the coherence property of S , we have that
MinGens(Ij(S)) is the set of the monomials corresponding to the minimal j-paths of S .
The multigraded Hilbert series of an ideal provides a compact way to enumerate all
monomials in a monomial ideal. The multigraded Hilbert series of an ideal I ∈ P, given by

HI(x1, . . . , xn) = ∑
µ∈Nn

[xµ ∈ I]xµ =
r

∑
i=1

(−1)i+1 ∑
|σ|=i

lcm(xµs |s ∈ σ)

∏n
j=1(1− xj)

,

where the symbol [xµ ∈ I] is equal to 1 if xµ is in I and 0 otherwise. Let now HNI(x1, . . . , xn)
denote the numerator of the Hilbert series of the ideal I and let S be a coherent system.
Let pr(HNIj(S)(x1, . . . , xn)) denote the formal substitution of every xµ by pr(xµ) in the
numerator of the multigraded Hilbert series of Ij(S), then we have that

Rj(S) = pr(Ij(S)) = pr(HNIj(S)(x1, . . . , xn)).

Hence, any way to obtain HNIj(S)(x1, . . . , xn) gives us a way to compute Rj(S). One
such way is by constructing a multigraded free resolution of I and read HN(I) from the
data in the resolution. This is the approach we use in our algorithms, for it provides
compact forms of the inclusion-exclusion formulas and Bonferroni bounds. In particular,
we use Mayer–Vietoris trees [18] as an efficient algorithm to obtain a compressed expression
of HNIj(S)(x1, . . . , xn).

3. Multi-State Consecutive k-out-of-n Systems

A definition of consecutive multi-state k-out-of-n:F systems, in which k could take
different values for different system levels was proposed in [8]. Under that definition,
a possibly different number of consecutive components need to be below level j for the
system to be below level j for different levels. The required number of consecutive compo-
nent failures is thus dependent on the system level under consideration. The definition is
formalized as follows

Definition 1. An n-component multi-state system such that its structure function Φ satisfies that
Φ(x) < j for j = 1, 2, · · · , M if at least kl consecutive components are in states below l for all
j ≤ l ≤ M is called a multi-state consecutive k-out-of-n:F system.

If k1 ≥ k2 ≥ · · · ≥ kM the system is called a decreasing multi-state consecutive k-out-of-n:F
system. In this case, as j increases, the requirement on the number of consecutive components that
must be below state j for the system to be below state level j also decreases.

If k1 ≤ k2 ≤ · · · ≤ kM, the system is an increasing multi-state consecutive k-out-of-n:F
system. In this case, for the system to be below a higher state level j, a larger number of consecutive
components must be below state j.

If all the kj are the same we say the system is a constant consecutive k-out-of-n:F system.

Example 1 ([8] Example 2, [1] Example 12.16). Consider a three-component system where both
the system and the components may be in one of three possible states: 0, 1 and 2. The system is below
state 2 if and only if at least one component is below state 2, i.e., k2 = 1. The system is below state 1
if and only if at least two consecutive components are below state 1, i.e., k1 = 2. This is a strictly
decreasing multi-state consecutive k-out-of-n system. This system has a consecutive 1-out-of-3:F
structure at system state level 2 and a consecutive 2-out-of-3:F structure at system state level 1.

Example 2 ([8] Example 3, [1] Example 12.17). Consider a three-component system where both
the system and the components may be in one of four possible states: 0, 1, 2 and 3. The system is
below state 3 if and only if the three components are below state 3. The system is below state 2 if and
only if at least two consecutive components are below state 2 and the three components are below
state 3. The system is below state 1 if and only if at least one component is below state 1, at least
two consecutive components are below state 2, and at least three components are below state 3.
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The system in this example has a 3-out-of-3:F structure at system state 3, a consecutive 2-out-of-3:F
structure at system state level 2, and a 1-out-of-3:F structure at system state level 1.

Given a structure function Φ, its dual ΦD with respect to t ∈ Nn is given by (cf. [19],
and see [20] for the case t = (1, . . . , 1), M = 1)

ΦD(s1, . . . , sn) = M−Φ((t1 − s1, . . . , tn − sn)). (1)

In our case, we use t = (M, . . . , M). This means that the dual system is in state M− j
or above if and only if the original system is in state j or below, and that for probability
evaluation, the probability of the dual component ci to be in state greater or equal to M− j
is the probability that the original component ci is at state lower than or equal to j. Observe
that MS consecutive k-out-of-n:F systems are dual to consecutive k-out-of-n:G systems; this
duality transforms increasing systems in decreasing ones and vice-versa. For the algebraic
treatment of these systems we shall make use of their dual structure. We can treat the
consecutive k-out-of-n:F structures at each level of our systems as consecutive k-out-of-n:G
structures and take advantage of the ideal structure. In this setting, the system-to-ideal
correspondence is clearer and more convenient.

Let Ik,n be the reliability ideal of a binary consecutive k-out-of-n system, this ideal is
given by

Ik,n = 〈x1 · · · xk, x2 · · · xk+1, . . . , xn−k+1 · · · xn〉.

The graded Betti numbers of Ik,n can be recursively computed by the formulas given
in [16], where βi,j,k,n indicates the i-th Betti number in degree j of the ideal Ik,n:

β0,k,k,n = n− k + 1,

β1,k+1,k,n = n− k, for k ≥ n
2

,

β1,k+1,k,n = 1 + β1,k+1,k,n−1, for k <
n
2

,

β1,2k,k,n = n− 2k + β1,2k,k,n−1, for k <
n
2

,

βi,j,k,n = βi−2,j−k−1,k,n−k−1 + βi−1,j−k,k,n−k−1 + βi,j,k,n−1 ∀i ≥ 2, for k <
n
2

.

Let us denote by Ik,n,j the monomial ideal given by the generators of Ik,n in which each
variable is raised to the j-th power

Ik,n,j = 〈x
j
1 · · · x

j
k, xj

2 · · · x
j
k+1, . . . , xj

n−k+1 · · · x
j
n〉

Observe that for this ideal, the graded Betti numbers are given by

βi,d,(Ik,n,j) = βi, d
j
(Ik,n).

An increasing or constant multi-state consecutive k-out-of-n:G system (i.e., a decreas-
ing k-out-of-n:F system) works at level j if at least k j components work at level j or more,
and these requirements do not overlap among the levels. Therefore, each level has a binary
consecutive k j-out-of-n structure and the j-th reliability ideal is given by

Ik,n,j = Ikj ,n,j

Example 3. The system in Example 1 corresponds to a multi-state consecutive k-out-of-n:G system
with k1 = 1, k2 = 2, hence the j-reliability ideals are given by

Ik,n,1 =〈x, y, z〉,
Ik,n,2 =〈x2y2, y2z2〉
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The case of decreasing MS consecutive k-out-of-n:G system (i.e., increasing MS consec-
utive k-out-of-n:F systems) is more complex. The main difficulty comes from the fact that
multi-state decreasing consecutive k-out-of-n:G systems consist of a set of binary consec-
utive k-out-of-n structures connected by and operators to describe the conditions under
which the system is in state j or above, and these individual structures are not embedded
in one another. The system is in state j or above if there are k j consecutive components in
state j or above and if there are k j′ consecutive components in state j′ or above for each
j′ < j. Since the system is decreasing, these conditions do not completely overlap.

Example 4. The dual to the system in Example 2 is a decreasing multi-state consecutive k-out-of-n
system such that k1 = 3, k2 = 2 and k3 = 1. The system is in state 1 or above if at least three
components are in state 1 or above; the system is in state 2 or above if at least 2 consecutive
components are in state 2 or above and at least 3 components are in state 1 or above. Finally,
the system is in state 3 if at least 1 component is in state 3 and at least 2 components are in state
2 or above and at least 3 components are in state 1 or above. This system consists of three binary
consecutive k-out-of-n structures combined using the and operator.

Proposition 1. The ideal of a decreasing multi-state consecutive k-out-of-n system is of the form

Ik,n,j =
⋂
j′≤j

Ikj′ ,n,j′

Proof. The ideal corresponding to a consecutive k-out-of-n structure in which each com-
ponent is at level j is given by Ik,n,j. This models the condition of having k consecutive
components out of n, operating at level j or more. The and operator between two levels with
such structure implies that the monomials verifying both conditions are in the intersection
of both ideals, hence the result.

Example 5. The ideals of the system in Example 4 are given by

Ik,n,1 = 〈xyz〉,
Ik,n,2 = 〈x2y2, y2z2〉 ∩ 〈xyz〉 = 〈x2y2z, xy2z2〉,
Ik,n,3 = 〈x3, y3, z3〉 ∩ 〈x2y2, y2z2〉 ∩ 〈xyz〉 = 〈xy2z3, xy3z2, x2y3z, x3y2z〉

Using these ideals to compute the reliability of the system, we can improve over the
enumerative method. The algebraic approach provides an algorithm that can be used for
increasing, constant and decreasing, as well as for non-monotonic multi-state consecutive
k-out-of-n systems. In the latter case, the intersection in Proposition 1 runs only on the
non-decreasing stretches, since Ikl ,n,l ∩ Ikl′ ,n,l′ = Ikl ,n,l if kl ≥ kl′ when l > l′. Huang et al.
gave in [8] and algorithm for decreasing multi-state consecutive k-out-of-n:F systems and
claimed that “there are no efficient algorithms for system performance evaluation of an
increasing multi-state consecutive k-out-of-n:F systems”. They proposed the use of duality
to obtain bounds for the reliability of such systems and the use of the enumerative method
to obtain the exact reliability. Later, Belaouli and Ksir proposed in [21] a non-recursive
algorithm for monotonic systems. Yamamoto et al. [22] proposed an algorithm for general
multi-state consecutive k-out-of-n:G systems which do not need to be monotonic. Finally,
Zhao et al. [23] used the finite Markov chain imbedding approach (see [24,25]) for the
multi-state consecutive k-out-of-n model, and more recently, Yi et al. [26] used the same
method for some of its variants. The algorithms in [22,23] are very efficient and provide
the exact reliability for systems with independent components both identical and non-
identical. Our algorithms based on the algebraic methods are slower than these but since
they are enumerative, they have the advantage that they can be used to obtain bounds
and exact reliabilities, and that can be used in the case of non-independent components.
Their efficiency is bigger than other enumerative methods since we avoid much of their
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redundancy (cf. [27]) by using the Hilbert series of the corresponding ideals in a compact
form [28].

Example 6 ([22,23]). Consider a non-monotone system with independent non identical com-
ponents. We will consider 10 components and six levels. The number of consecutive com-
ponents required at each of these levels does not follow a monotonic sequence. We have that
k1 = 6, k2 = 5, k3 = 1, k4 = 2, k5 = 4, and k6 = 4. The probabilities of each component
being in the different states are given as follows: pi,0 = 0.1, pi,1 = 0.12, pi,2 = 0.13, pi,3 = 0.14,
pi,4 = 0.15, pi,5 = 0.16 and pi,6 = 0.2 if i is odd, and pi,0 = 0.05, pi,1 = 0.1, pi,2 = 0.12,
pi,3 = 0.13, pi,4 = 0.15, pi,5 = 0.2 and pi,6 = 0.25 if i is even.

The j-reliability ideals of this system are

Ik,n,1 = 〈x1x2x3x4x5x6, x2x3x4x5x6x7, . . . , x5x6x7x8x9x10〉,
Ik,n,2 = Ik,n,1 ∩ 〈x2

1x2
2x2

3x2
4x2

5, x2
2x2

3x2
4x2

5x2
6, . . . , x2

6x2
7x2

8x2
9x2

10〉,
Ik,n,3 = Ik,n,2 ∩ 〈x3

1, x3
2, . . . , x3

10〉
Ik,n,4 = Ik,n,3 ∩ 〈x4

1x4
2, x4

2x4
3, . . . , x4

9x4
10〉

Ik,n,5 = Ik,n,4 ∩ 〈x5
1x5

2x5
3x5

4, x5
2x5

3x5
4x5

5, . . . , x5
7x5

8x5
9x5

10〉
Ik,n,6 = Ik,n,5 ∩ 〈x6

1x6
2x6

3x6
4, x6

2x6
3x6

4x6
5, . . . , x6

7x6
8x6

9x6
10〉

Tables 1 and 2 show the bounds and exact reliabilities obtained by the algebraic algorithms for
Ik,n,j, j = 1, . . . , 6. In these tables, column li indicates a lower bound given by the first i summands
of the Hilbert series numerator of the corresponding j-reliability ideal, while column ui denotes an
upper bound given by the first i summands. The bounds l′j(p) and l∗∗j(p) defined in [29–31] are
given as follows

l′j(p) = max
1≤m≤Mp

(
n

∏
i=1

p
ym

i
i

)
,

where ym, m = 1, . . . , Mp are the minimal paths of S for level j. On the other hand

l∗∗j(p) =
Mc

∏
m=1

n

ä
i=1

p
zm

i +1
i

where zm, m = 1, . . . , Mc denotes the set of minimal cut vectors of S for level j,and for pi ∈ [0, 1]
we define än

i=1 = 1−∏n
i=1(1− pi).

An asterisk indicates that the bound is sharp. Cells with a minus sign – indicate that the
bound is meaningless (i.e., upper bounds above 1 or lower bounds below 0). Note that for systems
with a large number of generators, the first bounds are useless due to the fact that each of the
first summands of the compact inclusion–exclusion formula consists of a large number of inner
summands. Observe that our sets of bounds compare well with l′j(p) and l∗∗j(p). All these bounds
and reliabilities were computed in less than 0.1 s on a laptop (MacBookAir M1. 8GbRAM) using the
C++ library described in [28]. It is worth noting that the performance of our method does not depend
on having identical or non-identical probability distributions in the components of the system.

Table 1. Lower bounds for the j-reliability of the consecutive k-out-of-n system in Example 6.

Level Gens. l2 l4 l6 l8 l′j(p) l∗∗j(p)

1 5 0.812534 * 0.625026 0.807054
2 10 0.628628 * 0.33627 0.496151
3 82 0.315292 0.603833 0.628417 0.628627 * 0.288797 0.496148
4 58 – – 0.560247 0.596598 * 0.155202 0.411976
5 22 0.0624633 0.101436 * 0.0200767 0.00178415
6 22 0.0104151 0.0123518 * 0.0019125 2.73312 × 10−7
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Table 2. Upper bounds for the j-reliability of the consecutive k-out-of-n system in Example 6.

Level Gens. u1 u3 u5 u7 u9

1 5 – 0.812534 *
2 10 – 0.628628 *
3 82 0.746048 0.631709 0.628634 0.628627 *
4 58 – – – 0.596598 *
5 22 0.412608 0.102 0.101436 *
6 22 – 0.0123544 0.0123518 *

4. Sparsely Connected Homogeneous Multi-State Consecutive k-out-of-n:G Systems

Sparsely connected homogeneous multi-state consecutive k-out-of-n:G systems were
proposed in [10] as a generalization of the binary sparse k-out-of-n systems proposed by
Zhao et al. in [32], which were themselves conceived as an extension of the consecutive
k-out-of-n model. In such systems, two working (resp. failing) components are said to
be consecutive with sparse d if the number of non-working (non-failed) between any
two adjacent working (failed) components is at most d. Hence, when d = 0, this is the
usual consecutive k-out-of-n model. In the multi-state setting, the model proposed in [10]
generalizes the MS consecutive k-out-of-n model, cf. [8], in the same fashion as in the binary
case. One considers any two components whose states are l or above; if all the components
between them are below state l and the number of such components is at most d, then these
components can be called consecutive components in state l with sparse d.

Example 7 ([10], Example 1). Consider a lighting system in a manufacturing workshop with ten
homogeneous lamp bulbs, see Figure 1. All the bulbs are arranged linearly and each of them might
be in one of three different states. State 0 is a failed state, state 1 represents a partial functioning
state, and state 2 is a perfect functioning state. We want to evaluate the probability that the system
can satisfy a certain requirement of brightness. According to this requirement, the system may be in
one of the following states: System state 0 indicates that the lighting system does not provide enough
brightness for the manufacturing system to work; system state 1 indicates that the manufacturing
system can work partially by a certain amount of brightness; and system state 2 means that the
lighting system provides enough brightness for the manufacturing system to work perfectly. In the
lighting system, the concept of sparse d can be illustrated in terms of the coverage of light. Let d = 1.
As shown in Figure 1, components 5, 6, and 8 are in state 2 while component 7 is below state 2,
then they can be regarded as 3 consecutive components in state 2 because the number of components
being below state 2 between components 6 and 8 does not exceed 1. However, components 1 and 4
cannot be regarded as consecutive components in state 1 because the number of components being
below state 1 between them exceeds 1.

1
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Figure 1. Lighting system: bulb linear arrangement in Example 7.

Let us denote by Jk,n,d the reliability ideal of a binary consecutive k-out-of-n:G system
with sparse d. It is generated by all the monomials xµ such that xµ is the product of k
consecutive variables with sparse d, i.e., xµ = xi1 · · · xik such that ij − ij−1 ≤ d + 1 for all
j ∈ {i2, . . . , ik}. In order to collect all such monomials, observe that:

- i1 can be any index in {1, . . . , n− k + 1}
- For each of indices ij, j ∈ {i2, . . . , ik} the gap ij − ij−1 must be in {1, . . . , d + 1}. Note

that the sum of those k− 1 gaps is always in {k− 1, . . . , n− i1}.



Mathematics 2021, 9, 2042 8 of 15

Hence, the number of generators of Jk,n,d, i.e., the number of minimal working states
of the system, is given by the following result.

Proposition 2. Let G(Jk,n,d) be the set of minimal generators of Jk,n,d, we have that

#(G(Jk,n,d)) =
n−1

∑
j=k−1

(n− j)
k−1

∑
l=0

(−1)l
(

k− 1
l

)(
j− l(d + 1)− 1

k− 2

)

Proof. Let Cj,k−1,d+1 be the number of compositions of j in k− 1 summands each of them
in {1, . . . , d + 1}. For each index i in {1, . . . , n− k + 1} we select k variables, starting in xi,
i.e., we select k− 1 gaps, each of which is smaller than d + 1 or equal, and the total sum
cannot exceed n − i, being the minimal sum equal to k − 1, since each gap is at least 1.
Hence, we have that the number of generators of the ideal is

n−k+1

∑
i=1

n−i

∑
j=k−1

Cj,k−1,d+1,

and a simple reorganization of the summands leads to

n−k+1

∑
i=1

n−i

∑
j=k−1

Cj,k−1,d+1 =
n−1

∑
j=k−1

(n− j)Cj,k−1,d+1.

Now, by formula E in [33] we have that

Cj,k−1,d+1 =
k−1

∑
l=0

(−1)l
(

k− 1
l

)(
j− l(d + 1)− 1

k− 2

)
,

and hence the result.

Let G(Jk,n,d) = {g1, g2, . . . } be the set of minimal generators of Jk,n,d and let it be sorted
by the lex order. In order to compute the Betti numbers and Betti multidegrees of Jk,n,d, we
will use Mayer–Vietoris trees and cone resolutions, cf. [18]. These are based on the iterative
computation of the intersection ideals 〈g1, . . . , gi−1〉 ∩ 〈gi〉 where i ranges in |G(Jk,n,d)|.

Proposition 3. Let set(gi) be the set of variables in {xmin(gi)−d−1, . . . , xmax(gi)
} such that xi

does not divide gi. Then

〈g1, . . . , gi−1〉 ∩ 〈gi〉 = 〈xi · gi | xi ∈ set(gi)〉+ 〈gi · g′l | g′l ∈ G(Jk,min(gi)−d−2,d)〉

Proof. Let supp(gi) be the set of variables that divide gi, max(gi) be the biggest variable
that divides gi and min(gi) the smallest variable that divides gi.

For all xv ∈ set(gi), we have that gi
xv

max(gi)
= gi′ ∈ G(Jk,n,d) with i′ < i in the lex order,

therefore, xvgi ∈ G(〈g1, . . . , gi−1〉 ∩ 〈gi〉).
If xv /∈ set(gi) and xw ∈ supp(gi), we have that gi

xv
xw

either is not in G(Jk,n,d) or it is
equal to some gi′ ∈ G(Jk,n,d) with i′ > i in the lex order. Therefore, in any case xvgi it is not
a minimal generator of 〈g1, . . . , gi−1〉 ∩ 〈gi〉.

Finally, for any gi′ ∈ G(Jk,n,d) such that supp(gi′) ⊆ {1, . . . , min(gi) − d − 2} we
have that supp(gi) ∩ supp(gi′) = ∅ and there is no xv ∈ set(gi) such that xv divides gi′

hence 〈gi〉 ∩ 〈gi′〉 = 〈gigi′〉, gigi′ ∈ G(〈g1, . . . , gi−1〉 ∩ 〈gi〉 and gigi′′ does not divide gigi′

for any other such gi′′ 6= gi′ . Observe that the set given by all gi′ ∈ G(Jk,n,d) such that
supp(gi′) ⊆ {1, . . . , min(gi)− d− 2} is precisely G(Jk,min(gi)−d−2,d).

Theorem 1. βi(Jk,n,d) = ∑xµ∈G(Jk,n,d)
(| set(xµ)|

i ) + βi−1(Jk,min(xµ−d−2),d)
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Proof. It is a direct consequence of Proposition 3 and the fact that

set(xµ) ∩ supp(G(Jk,min(xµ−d−2),d)) = ∅.

Observe that β0(Jk,n,d) = #(G(Jk,n,d)) and hence the recursion in Theorem 1 is closed
and it yields a procedure for the computation of the Betti numbers of Jk,n,d. From this result
and applying the components’ probabilities, we obtain the reliability of the corresponding
binary consecutive k-out-of-n:G system with sparse d.

We say that a binary consecutive k-out-of-n:G system with sparse d is compact if
2k ≥ n− d. For any such compact system, we have that Ci−d−2,k,d = 0 for all
i = 1, . . . , n− k + 1, i.e., Jk,min(xµ−d−2),d = ∅ for all xµ ∈ G(Jk,n,d). We therefore obtain
the following consequences of Proposition 3:

Corollary 1. Let Jk,n,d the reliability ideal of a compact binary consecutive k-out-of-n:G system
with sparse d, then Jk,n,d has linear quotients with respect to the lex order.

Proof. Having linear quotients with respect an ordering of the generators means that for
such ordering we have that 〈g1, . . . , gi−1〉 : 〈gi〉 is generated by a set of variables set(gi).
This is equivalent to the fact that 〈g1, . . . , gi−1〉 ∩ 〈gi〉 = 〈xi · gi | xi ∈ set(gi)〉. Proposition 3
and the fact that for compact systems Jk,min(xµ−d−2),d = ∅ for all xµ ∈ G(Jk,n,d) yield
the result.

Corollary 2. Let Jk,n,d be a compact binary consecutive k-out-of-n:G system with sparse d, then

βi(Jk,n,d)) = ∑
xµ∈G(Jk,n,d)

(
| set(xµ)|

i

)
.

Observe that a binary consecutive k-out-n ordinary system, i.e., d = 0, is compact if
and only if k ≥ n/2

Example 8. Let n = 9, k = 3, d = 2. The corresponding consecutive k-out-of-n with sparse d
system is not compact. The list of minimal monomial generators of Jk,n,d has 45 generators and is
given by the monomials xµ = xaxbxc for all triples abc in the following set (given in≤ x order)

123, 124, 125, 134, 135, 136, 145, 146, 147,

234, 235, 236, 245, 246, 247, 256, 257, 258,

345, 346, 347, 356, 357, 358, 367, 368, 369,

456, 457, 458, 467, 468, 469, 478, 479,

567, 568, 569, 578, 579, 589,

678, 679, 689,

789.

Example 9. Let n = 15, k = 5 and let d range from 0 to 10. When d = 0, we have the usual
consecutive 5-out-of-15 system, and as d increases we tend towards the traditional k-out-of-n system,
which occurs when d > n− k. Let us assign working probabilities to the components in three ways:
First consider highly reliable components, i.e., pi,1 = 0.8 if i is odd and pi,1 = 0.7 if i is even;
second, consider medium reliable components, i.e., pi,1 = 0.5 if i is odd and pi,1 = 0.4 if i is even
and finally consider components with low reliability, pi,1 = 0.3 if i is odd and pi,1 = 0.2 if i is even.
Figure 2 shows the behaviour of the reliability of these three kinds of systems as the sparse d varies.
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Figure 2. System reliability for consecutive 5-out-of-15 systems with sparse d = {0, . . . , 10}. Low,
medium and high reliability components.

For the multi-state case, the situation is similar to multi-state consecutive k-out-of-n
systems. Gao, Cui and Chen define multi-state consecutive k-out-of-n:G system with sparse
d in [10] in the following way.

Definition 2. A system with n components is called a generalized multi-state consecutive k-out-
of-n:G system with sparse d if Φ(X) ≥ j, (1 ≤ j ≤ M) whenever there exists an integer value
l, (j ≤ l ≤ M) such that at least consecutive kl components are in state l or above with sparse d.

As in MS consecutive k-out-of-n systems, we consider increasing, decreasing and
constant generalized MS consecutive k-out-of-n:G system with sparse d systems depending
on the sequence of k j for the different levels j.

Applying the same reasoning as in Section 3, we define Jk,n,d,j as the ideal generated
by the generators of Jk,n,d each raised to the j-th power. We then define the ideal of a
multi-state consecutive k-out-of-n:G system with sparse d as

Jk,n,d,j =
⋂
j′≤j

Jkj′ ,n,j′ ,d

Example 10. In the system in Example 7, see [10], to reach system state 1, it is required that at
least consecutive 3-out-of-10 light bulbs should be in state 1 or above with sparse 1. To reach state 2,
i.e., to meet the demand of enough brightness, at least consecutive 5-out-of-10 light bulbs should be
in state 2 or above with sparse 1. Therefore, we can model the mentioned example as an increasing
MS consecutive (k1, k2)-out-of-10:G system model with sparse 1, where k1 = 3 and k2 = 5. Using
Proposition 2, we have that the number of generators of J3,10,1,1 is 28 and the number of generators
of J5,10,1,2 is 64. In both cases, the computation of the Betti numbers and j-reliabilities (and bounds)
of this system is computed in less than one second by our algorithms.

Example 11. Let n = 15 and k1 = 2, k2 = 5, k3 = 7, k4 = 9. We consider multi-state consecutive
k-out-of-n:G systems with sparse d such that the systems have 4 different working levels. Take
d = 3, 5, 7. The components are independent but non-identical. The probabilities of each component
being in the different sates are given as follows: pi,0 = 0.1, pi,1 = 0.15, pi,2 = 0.2, pi,3 = 0.25 and
pi,4 = 0.3 if i is odd, and pi,0 = 0.05, pi,1 = 0.15, pi,2 = 0.2, pi,3 = 0.25 and pi,4 = 0.35 if i is
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even. The number of generators for the corresponding ideals and the reliabilities and computation
times for each of these systems are given in Table 3. The column reliability indicates the
probability that the system is at level j or greater.

Table 3. Number of generators of the ideals of several multi-state consecutive k-out-of-n:G systems
with sparse d and times to compute their reliability.

n k d j num.gens. Reliability Time (s)

15 2 3 1 50 0.9999996 0.004018
15 5 3 2 1281 0.99801 0.152161
15 7 3 3 4470 0.785976 2.04139
15 9 3 4 4565 0.0233618 4.49723
15 2 5 1 69 0.9999996 0.003935
15 5 5 2 2499 0.999723 0.343454
15 7 5 3 6219 0.857467 4.90422
15 9 5 4 4997 0.0250292 5.43077
15 2 7 1 84 0.9999998 0.00347
15 5 7 2 2919 0.999942 0.480944
15 7 7 3 6429 0.863406 5.61369
15 9 7 4 5005 0.0250567 5.40056

4.1. Multi-State Consecutive k-out-of-n:G Systems with Sparse d and Maximum Total Gap m

In multi-state consecutive systems, Huan et al. [34] consider the situation in which a
system may fail when a number of consecutive failures takes place or when a total number
of failures (maybe not consecutive) occur, see also [35]. This situation can be applied to
multi-state consecutive k-out-of-n:G systems with sparse d and therefore extend this model
to a wider range of situations. We consider as before that two components whose states are
l or above are consecutive if all the components between them are below state l and the
number of such components is at most d, in addition, we say that k components c1, . . . , ck
are consecutive only if they are pairwise consecutive in this sense and the total number
of components in state l or below between c1 and ck is at most m. With this restriction we
give the following definition:

Definition 3. A system with n components is called a generalized MS consecutive k-out-of-n:G
system with sparse d and maximum total gap m if Φ(X) ≥ j (1 ≥ j ≥ M) whenever there exists
an integer value l (j ≥ l ≥ M) such that at least consecutive kl components are in state l or above
with sparse d and the number of components below state l within them is at most m.

Let us denote by J′k,n,d,m the ideal of a binary consecutive k-out-of-n:G system with
sparse d and maximum total gap m. Following the proof of Proposition 2, we have that
the number of generators of J′k,n,d,m is given by a truncation of the sum in the number of
generators of Jk,n,d.

Proposition 4. Let G(J′k,n,d,m) be the set of minimal generators of J′k,n,d,m, we have that

#(G(J′k,n,d,m)) =
m

∑
j=k−1

(n− j)
k−1

∑
l=0

(−1)l
(

k− 1
l

)(
j− l(d + 1)− 1

k− 2

)

Observe that if m ≥ n− 1 then the system is a consecutive k-out-of-n:G system with
sparse d.

Example 12. Consider the system in Example 8. We have n = 9, k = 3, d = 2, and set m = 3.
Now, components 1, 4 and 7 are consecutive with sparse 2 but the total number of failed components
between 1 and 7 is four, hence, this would be a failure state for a consecutive 3-out-of-9:G system
with sparse 2 and maximum total gap 3. For such a system, the list of minimal monomial generators
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of its reliability ideal J′k,n,d,m has 42 elements and is given by the monomials xµ = xaxbxc for all
triples abc in the following set (given in lex order)

123, 124, 125, 134, 135, 136, 145, 146,

234, 235, 236, 245, 246, 247, 256, 257,

345, 346, 347, 356, 357, 358, 367, 368,

456, 457, 458, 467, 468, 469, 478, 479,

567, 568, 569, 578, 579, 589,

678, 679, 689,

789.

Example 13. Figure 3 shows the effect of setting the maximum gap at half the sparse and twice the
sparse in the systems of Example 9. In both cases, the reliability of the system is reduced as expected,
by a small amount in case the gap is half the sparse, and by a larger amount in case the maximum
allowed gap doubles the sparse of the system.

Figure 3. System reliability for consecutive 5-out-of-15 systems with sparse d = {0, . . . , 10} and
maximum gap set as d/2 or 2d. Systems with low, medium and high reliability components.

5. Weighted Multi-State k-out-of-n Systems

The traditional binary k-out-of-n system model was extended by Wu and Chen [36]
to weighted k-out-of-n systems. In a binary weighted k-out-of-n:G system, component i
has a weight wi. The weight of each component represents the utility of the component,
i.e., its contribution to the actual performance of the system. The system works if and only
if the total weight of the working components is at least k, a pre-specified value. Observe
that k may be larger than n. The multi-state version of weighted k-out-of-n systems was
introduced by Li and Zuo in [9] where the authors define two variants of these systems.

Definition 4 (Weighted multi-state k-out-of-n system, model I). In a system with n compo-
nents, each component and system may be in M + 1 possible states, {0, . . . , M}. Component i
(1 ≤ i ≤ n), when in state j (0 ≤ j ≤ M), has a utility value of wi,j. The system is in state j or
above if the total utility of all components is greater than or equal to k j, a pre-specified value. Let Φ
be the structure function of the system representing the state of the system and W the total utility of
all components. Then, this definition means Pr{Φ ≥ j} = Pr{W ≥ k j}. Since state 0 is the worst
state of the system, we have Pr{Φ ≥ 0} = 1.

For the second definition, we consider only the contribution of those components in
state j or above.
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Definition 5 (Weighted multi-state k-out-of-n system, model II). The system is in state j or
above if the sum of the weights of the components whose states are in state j or above is greater than
or equal to k j. Let Φ be the structure function of the system and Wj be the sum of the utilities of the
components whose states are j or above. We then have Pr{Φ ≥ j} = Pr{Wj ≥ k j}.

Since the structure functions of these kinds of systems depend strongly on the indi-
vidual contributions or weights of each of the variables, the methods for computing its
reliability are of an enumerative nature. Li and Zuo evaluate in [9] two such methods:
a recursive one [36,37] and the Universal Generating Function Method (UGF) [2,3,11].
The analysis in [9] shows that, in general, the recursive approach is more effective than the
UGF method for both models I and II. A key issue in the algorithmic evaluation of these
systems’ reliability is the efficiency in enumerating the working states for each level.

For any monomial ideal I ⊆ k[x1, . . . , xn], a quotient basis is a basis as a k-vector space
of the quotient ring R/I. It amounts to a way of enumerating all the monomials that
are not in I. In our case, considering I = 〈xM+1

1 , . . . , xM+1
n 〉 we have that the (M + 1)n

monomials not in I correspond to all possible states of the system’s components. In order
to obtain the reliability of the system, we proceed state by state and add the probabilities of
the states whose weight is above k j for each j. This methodology might theoretically be
less efficient than the recursive or the UGF approach, but a good implementation of the
enumeration step can compensate this. This is indeed the case with the CoCoALib function
QuotientBasis which is an efficient implementation of the enumeration of the elements
in the k-basis of R/I for any ideal I. Tables 4 and 5 show the results of some computer
experiments in systems of the same kind as those in the experiments in [9]. In Table 4, we
set n = 5 and take M from 3 to 12. Each component’s weight is a random integer number
in the range [1, 14] and probabilities are randomly assigned. In Table 5, the weights and
probabilities are assigned in the same way but we keep M constant and equal to 5 while
n varies from 3 to 11. In both cases, we set k1 = 200. In the tables, column TS indicates
the total number of possible states of the system, column WS indicates the number of
j-working states and column RS indicates the size of the set of minimal working states.
The number of working states was obtained by exhaustive search on the possible states of
the systems, and the number of minimal states was obtained by the minimization algorithm
implemented in CoCoALib. For each of these numbers, there is a column indicating the
time used for its computation by the C++ class described in [28]. Observe that [9] shows the
results of another set of examples in which the weights assigned to the variables are floating
point numbers in the range [20, 50] this affects the performance of the UGF method, since
there are less like terms to cancel, but it does not affect the recursive method. It does not
affect the performance of our approach either, since our method is based on the efficiency
of the algebraic approach to enumeration of all working states. Observe that in these tables,
the time for the computation of the reliability of the system is that in the WS-time column.
The tables show computations Model I systems, the algorithms and results are essentially
equivalent for Model II.

The described procedure computes the exact reliability of weighted k-out-of-n systems.
In case one is interested in the algebraic bounds as obtained in the previous sections, we
need to consider the ideal generated by the monomials corresponding to working states
of the system. In this case, the first step is to obtain the set of minimal working states,
or equivalently the minimal set of generators of the corresponding ideal. The complexity
of this procedure, starting with the complete set of working states is O(r2) where r is the
total number of working states of the system. It is, therefore, an impractical procedure for
large systems. In Tables 4 and 5, the time for computing the minimal generating set of the
j-ideal, i.e., the minimal set of working states is given under column RS-time. The size of
these sets is under column RS and one can see that these sizes are significantly smaller
than that of the set of working states, hence, it would be worth investigating efficient ways
of obtaining these sets directly. This would imply a drastic reduction of the computing
time of the reliability and bounds for weighted multi-state k-out-of-n systems.
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Table 4. n = 5, k1 = 200, average of ten runs.

M TS WS RS TS-Time (s) WS-Time (s) RS-Time (s)

3 243 0 0 0.006094 0.006162 0
4 1024 0 0 0.007245 0.007462 0
5 3125 3 1 0.008029 0.008848 0.008869
6 7776 44 5 0.009567 0.011285 0.011382
7 16,807 410 26 0.01666 0.018772 0.019281
8 32,768 5398 293 0.028787 0.36573 0.044584
9 59,049 16,204 179 0.091856 0.101756 0.113455

10 100,000 32,768 390 0.150313 0.166822 0.193492
11 161,051 76,570 373 0.3017117 0.351811 0.413162
12 248,832 121,508 326 0.427333 0.482606 0.583472

Table 5. M = 5, k1 = 200, average of ten runs.

n TS WS RS TS-Time (s) WS-Time (s) RS-Time (s)

3 125 0 0 0.00592 0.005949 0
4 625 0 0 0.006535 0.006662 0
5 3125 0 0 0.006134 0.006803 0
6 15,625 20 7 0.15506 0.017679 0.017708
7 78,125 3873 302 0.01859 0.036595 0.04394
8 390,625 46,945 2106 0.11527 0.120179 0.214819
9 1,953,125 224,695 3561 0.155288 0.422814 0.889363

10 9,765,625 1,662,628 24,131 0.738989 2.4139 18.5923
11 48,828,125 10,022,724 31,389 3.812 12.1875 64.2796

6. Conclusions and Further Work

We have presented in this work an algebraic approach to the reliability analysis of
several important multi-state systems, to which it had not been applied before, namely,
variants of the classical multi-state k-out-of-n model. This approach not only provides
insight on the structure of the system and it features, such as the number of minimal
working states, e.g., for multi-state consecutive k-out-of-n:G systems with sparse d systems,
but also produces efficient algorithms for computing the reliability of the systems and
bounds for it. The analyses performed in this work demonstrate the versatility of the
algebraic approach to system reliability and fosters further analysis of other important
systems, like networks. Further work includes also to study the relations and possible
combination with other related methods like the Universal Generating Function method,
Binary Decision Trees and others.
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