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Abstract: The availability of multiple inputs (plants) can improve output performance by conve-
niently allocating the control bandwidth among them. Beyond that, the intervention of only the
useful plants at each frequency implies the minimum control action at each input. Secondly, in
single input control, the addition of feedforward loops from measurable external inputs has been
demonstrated to reduce the amount of feedback and, subsequently, palliate its sideband effects
of noise amplification. Thus, one part of the action calculated by feedback is now provided by
feedforward. This paper takes advantage of both facts for the problem of robust rejection of mea-
surable disturbances by employing a set of control inputs; a previous work did the same for the
case of robust reference tracking. Then, a control architecture is provided that includes feedforward
elements from the measurable disturbance to each control input and feedback control elements that
link the output error to each control input. A methodology is developed for the robust design of
the named control elements that distribute the control bandwidth among the cheapest inputs and
simultaneously assures the prescribed output performance to correct the disturbed output for a set of
possible plant cases (model uncertainty). The minimum necessary feedback gains are used to fight
plant uncertainties at the control bandwidth, while feedforward gains achieve the nominal output
response. Quantitative feedback theory (QFT) principles are employed. An example illustrates the
method and its benefits versus a control architecture with only feedback control elements, which
have much more gain beyond the control bandwidth than when feedforward is employed.

Keywords: mid-ranging; valve position control; input resetting control; parallel control; MISO;
robust control; QFT; frequency domain; feedforward

1. Introduction

Uncertainties such as nonmeasurable disturbances or unavoidable simplifications in
plant modelling justify feedback control loops, which, by permanently supervising the
output, can correct its deviation from the reference or track reference changes. Better perfor-
mances of the output response are linked to larger control bandwidths, which are provided
by larger gains of feedback controllers (magnitude frequency response). Limited actuator
ranges usually constrain the bandwidth and performance. Even for unlimited linear ranges
or very powerful actuators, sensor noise amplifications at the control inputs impose an
important constraint to the bandwidth to avoid fatigue or even saturation of actuators
(Horowitz [1] labelled this fact as ‘the cost of feedback’). With this in mind, Quantitative
Feedback Theory (QFT) [1–3] proposes incorporating feedforward controllers when exter-
nal inputs are available (reference or measurable disturbance inputs [4]), reducing feedback
gain to only that strictly necessary to compensate for the uncertainties. However, reduction
of the feedback gain increases the feedforward gain to maintain a specific performance that
is linked with the chosen closed-loop bandwidth. Then, the control action is univocally con-
ditioned by the plant frequency response and the desired performance, but its convenient
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allocation between feedback and feedforward control actions can prevent excessive sensor
noise amplification linked with feedback gain. These facts, which are common knowledge
in single-input control, have not yet been fully exploited in multi-input control.

The use of multiple control inputs can undoubtedly improve closed-loop performance.
A great variety of control structures and design methods are available in the scientific liter-
ature. Some works focused on widening the range of operating points for the output [5,6].
Other works focused on improving the output dynamic performance and simultaneously
searched for a profitable combination of control inputs, branding them as input (valve) po-
sition control, mid-ranging control [7], or input resetting control [8]—their foundation [9]
has inspired a set of works in the robust framework of QFT with the named missions of
feedback and feedforward [10–13]. Thus, the robustly designed control elements determine
the intervention or inhibition of plants (one for each input) along the frequency band. Let
us consider the following facts: (i) some plants could provide the performance using less
control action than others, p.e., those plants of larger magnitude, considering that magni-
tude dominance can change over the frequency band; (ii) plants that do not significantly
contribute to the performance at certain frequencies are advised to be inhibited; (iii) the
collaboration of productive plants can reduce the control action that is needed at their
inputs—the virtual total control effort is divided among them. The frequency inhibition
of unproductive plants is relevant for several reasons. It prevents high-frequency signals
from exciting the actuators of plants that are useless at high frequencies [10]. Similarly,
it also avoids inconvenient steady-state displacements of the operating point of plants
that are useless at low frequencies [11]; applied works such as [14,15] highlight the rele-
vance of resetting the steady-state points of high-frequency intervention plants. Finally,
stability issues become critical when plants are out of phase, despite the fact that their
magnitude contribution may be large and nearly the same [16,17]; Reference [12] presented
an appropriate intervention of the magnitude frequency response of plants that were not
minimum phase.

Structures with exclusive feedback controllers to the control inputs are the only possi-
bility for rejection at the output of nonmeasurable disturbances. In [10,11], robust design
methods of the feedback controllers distributed the frequency band among the most
favourable plants to minimise the control action at each input (any number of inputs were
possible) while achieving the desired performance of the output response. The control
architecture of [10] allowed the collaboration of plants over the same frequency band
while the architecture of [11] required separated work-bands in favour of an easier design
method; unstable, nonminimum phase, or delayed plants were investigated in [12].

The reference tracking problem admits feedforward elements that can reduce the gain
of feedback controllers to palliate noise amplification at control inputs [13]. Beyond that,
the priority of the method in [13] was achieving correct distribution of the bandwidth
among the inputs (plants) to obtain the performance using the minimum possible control
action at each input.

The fact that disturbances are sometimes measurable variables opens the possibility
of connecting feedforward paths to the control inputs, which can be exploited by this
work. A control architecture with feedback and feedforward elements will be presented
for robust disturbance rejection. The method will distribute the frequency band among
the most favourable inputs (those that demand less control action). Finally, a robust
design of the control elements will guarantee the prescribed performance and stability for
a set of possible plant models. Feedforward will reduce feedback, reporting important
benefits with regard to excessive sensor noise amplification at the control inputs that could
saturate actuators and spoil the expected performance in feedback-only control structures.
Whenever external disturbances are measurable, the contribution of this work can be of
importance in a great variety of fields where multi-input control has been successfully
applied. Remarkable application fields include bioprocesses [14,15], thermal systems [18],
medical systems [19,20], scanner imaging [21,22], massive data storage devices [23,24], fuel
engines [25] and electrical vehicles [26], robotics [27–29], and unmanned aerial vehicles [30].
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2. Control Architecture and Robust Design Method

Figure 1 depicts the multiple-input single-output (MISO) system and the proposed
control architecture. The y output deviation is modelled by the influence of ui=1,. . . n control
inputs and a d disturbance input, achieving a vector of (n + 1) transfer functions (plants)
P(s) = [pi=1,. . . n(s), pd(s)]. Let us consider a total number z of uncertain parameters in
these dynamical models. By defining ql as a vector of those uncertain parameters in a set
of all possible values of Q in Rz, the MISO uncertain system can be formally defined as

P = {P(s; ql) : ql ∈ Q}. (1)

Henceforth, labels pi or pd denote plant models of delimited uncertainty.
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Figure 1. Feedback–feedforward control structure for robust rejection of measurable disturbances in
multi-input systems.

An appropriate control must compensate for the output deviation from the constant
reference, e = r − y, when a d disturbance occurs; reference tracking problems were
discussed in [13]. Measurable disturbances are considered in the new design method. In
such a case, the robust control specification is posed in the frequency domain as∣∣∣ e

d

∣∣∣ = ∣∣∣∣ pd + (∑n
i=1 pigdi

)gdm

1 + ∑n
i=1 pici

∣∣∣∣ ≤Wd; ∀P ∈ P , ∀ω, (2)

where Wd is an upper tolerance on the set of |e/d| frequency responses.
As demonstrated in [10], when d is nonmeasurable (i.e., gdi

= gdm = 0), the parallel
structure of feedback controllers ci=1,...,n allows any distribution of frequencies for ui=1,. . . n
participation to fulfil |e/d| ≤ Wd. Several pi plants could even collaborate over the
same frequencies to reduce each ui. On the other hand, a series structure of feedback
controllers [11] obliges to a predefined location of plants inside the structure and requires
separated frequency work-bands for the ui inputs. In spite of this, a method was provided
to sort the plants and assign a convenient frequency band to each input to use the least
ui possible.

Beyond those solutions, feedforward loops from the external input d to the control
inputs ui are now being added. Individual elements gdi

allow the frequency band dis-
tribution for ui inputs with regard to feedforward tasks, while the feedforward master
gdm locates the responses e, taking advantage of the measurable information d; as long
as there is a set of possible plants (1), there is a bunch of responses. The dispersion of
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frequency responses is constrained by feedback, which can be freely distributed among ui
by controllers ci. In summary, a total feedforward

lgd =
n

∑
i=1

lgdi
=

(
n

∑
i=1

pigdi

)
gdm = pdm gdm (3)

is contributed by individual feedforward channels lgdi
, which supply u f fi

, and a total
feedback

lt =
n

∑
i=1

li =
n

∑
i=1

pici (4)

is contributed by individual feedback loops li, which supply u f bi
. Both components u f fi

and
u f bi

build the control action ui, which, for d handling, can be written and overbounded as

∣∣∣ui
d

∣∣∣ = ∣∣∣∣u f bi

d
+

u f fi

d

∣∣∣∣ = ∣∣∣∣− pd + lgd

1 + lt
ci + gdi

gdm

∣∣∣∣ ≤Wd|ci|+ |gdi
gdm |; ∀P ∈ P , ∀ω. (5)

In SISO control (i = n = 1), the desired performance for e/d univocally fixes the only
control action u1/d, which can be distributed as desired between feedback and feedforward
components. QFT prioritises feedforward to reduce as much feedback as possible and
its said drawbacks; [4] provided a design solution inside a tracking error structure such
as ours, which pursues the smallest p1c1 gain that guarantees the existence of p1gd to
meet (2); in this way, the amplification of sensor noise v at the control input u1 that depends
on c1 gain is also reduced as much as possible. However, evaluating (5), a reduction of
u f b1 /d occurs at the expense of an increase in u f f1 /d, since u1 is unique to provide the
performance, i.e., the gain of gd = gd1 gdm increases.

On the other hand, a multi-input availability offers many more possibilities. Let
us note that despite the distribution between lt and lgd that was selected to achieve the
performance (2), infinite combinations of li (4) and lgdi

(3) could build them. The goal is
to find the solution that uses the set of smaller control inputs ui/d. The authors of [13]
provided a method for the problem of robust reference tracking (r 6= constant). The key
point was the more the gain of a plant, the less the need of control action to contribute
to the performance, which foresaw the use of inputs towards plants with higher gains at
each frequency.

In the current case, let us suppose a single input ui (plant pi) participates in the
disturbance rejection. If plant models are perfectly known, the control action ui = −pd/pi
would cancel the d disturbance influence on the y output. Here, the whole set of plant
uncertainties is being considered in the robust design. Then, the frequency response

ki =
pd,max

pi,min
, ∀P ∈ P , ∀ω (6)

is a rough approximation of the less favourable ui if only pi participates in the d disturbance
rejection; pi,min is the plant pi of least magnitude at a particular ω inside the uncertain set
|pi(jω)|; and pd,max is the plant pd of largest magnitude at ω inside |pd(jω)|.

Next, the ki frequency responses of all inputs i = 1, . . . , n are compared at each
frequency to decide which inputs are of sufficient interest for participation; those that yield
the smallest ki magnitude are considered. At any frequency, the contribution of as many
inputs as possible is desired, if it yields a total plant

pdm =
n

∑
i=1

pigdi
, (7)

with significantly greater magnitude than the individuals pi (let us advance that gdi
will be

designed as filters with unitary gain at the pass band). Thus, the potential collaboration of
plants would reduce individual feedforward actuations |u f fi

/d| because the virtual need
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of total feedforward |∑ u f fi
/d| ≈ |pd/pdm | would be significantly reduced. A two-in-two

comparison of ki is advised. As a rule of thumb, a difference in ki(jω) magnitude greater
than 20log2 = 6 dB makes the plant associated with larger ki(jω) magnitude useless. When
a plant cannot report benefits at a certain frequency, its disconnection is recommended to
avoid useless signals reaching the actuators. A second relevant point is to check that the
ki(jω) phase-shift of those plants that are likely to collaborate is less than 90◦, since the
vector sum of plants in the counter-phase would reduce the total magnitude of pdm (7). The
disconnection of useless plans in the counter-phase is a priority for stability issues [12].

The ki comparisons decide the smallest ui input at each frequency, i.e., the desired
frequency band allocation among inputs. Then, the design of gdi

and ci must attain the
planned distribution and, simultaneously, gdi

, ci, and gdm must achieve the specification (2).
The design method is described as follows: First, gdi

are designed as filters with unitary gain
over the pass-band. This yields a convenient plant pdm (7) that selects the most powerful pi
plants at each frequency for feedforward tasks. Subsequently, feedback lt must reduce the
influence of pdm uncertainty in |e/d| deviations around zero only to the extent that a master
feedforward gdm can further position the magnitude frequency responses inside tolerance
±Wd. The required amount of feedback lt could be provided with several combinations of
ci, but the one according to the planned distribution will save the control action by using
the most powerful plants at each frequency for feedback tasks too. The set of controllers
ci are designed via loop-shaping of li(jω) to satisfy the bounds βli (ω) at a discrete set of
frequencies Ω = {ω}. The QFT bounds βli translate the closed loop specification into terms
of restrictions for li = ci pi nominal at specific frequencies ω that are conveniently selected
according to the plant and specifications; the bounds are depicted on a mod-arg plot [2,3].
During li(jω) shaping, when it lies exactly on the bounds, it guarantees the minimum gain
of the ci controller to achieve the specification by the whole set of plant cases. A sequential
process between the i = 1, ..., n loops is arbitrated. Thus, if at some point the controller ci is
to be adjusted and the other controllers ck 6=i take known values in the sequence, the robust
disturbance rejection specification (2) can be rewritten as∣∣∣ e

d

∣∣∣ = ∣∣∣∣ pd + gdm pdm

1 + ∑k 6=i pkck + pici

∣∣∣∣ ≤Wd; ∀P ∈ P , ∀ω, (8)

and their representative βli bounds can be computed by choosing A = pdm , B = pd,
C = 1 + ∑k 6=i pkck, D = pi, G = ci, G f = gdm , and W = Wd in the solution given to∣∣∣∣AG f + B

C + DG

∣∣∣∣ ≤W (9)

in [13]; this work provided the formulation to make the design of ci and gdm independent.
After the bound computation, the essence of loop-shaping is that ci reaches the necessary
gain at the frequencies where the pi plant must work and filters (gain below 0 dB) those
frequencies where pi must not work. Special attention must be paid to the frequencies
where several inputs must collaborate. A detailed explanation of the global procedure is
given in [10].

The full achievement of (2) ends with the design of the master feedforward gdm .
The specification format can now be adapted to |(A + BG)/(C + DG)| ≤ W of function
gndbnds in the QFT toolbox [31]. By choosing A = pd, B = pdm , C = 1 + lt, D = 0, G = gdm ,
and W = Wd, the regions that are permitted for gdm on a mod-arg plot are determined; the
loop-shaping of gdm(jω) is conducted on these bounds.

Considering the whole set of external inputs, the output error responds to

e = − pd + lgd

1 + lt
d +

1
1 + lt

(r− v)−
n

∑
i=1

pi
1 + lt

rui , (10)
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and the control inputs are

ui =

[
− pd + lgd

1 + lt
ci + gdi

gdm

]
d +

ci
1 + lt

(r− v) +
(1 + l−i)

1 + lt
rui −∑

k 6=i

ci pk
1 + lt

ruk , (11)

where l−i = lt − li. Two benefits are mentioned. The availability of multiple inputs made
it possible to select the intervention of the more favourable plants pi at each frequency to
achieve |e/d| < Wd using the minimum |ui/d|. Individual feedforward gdi

and individual
feedback ci either disconnected or not the commanded inputs at each frequency; integra-
tors or derivators are recommended to connect or disconnect plants at low frequency to
fully eliminate steady-state errors [13]. Further, ci and gdm were in charge of providing
|e/d| < Wd; let us recall that gdi

were filters of unitary gain at the pass-band. The use
of feedforward gdm allows reducing the amount of feedback |ci|; in fact, the formal QFT
method pursues the minimum set of |ci| for the existence of gdm . As |ci| reduces, |ui/v| (11)
also reduces in comparison with gdm = 0 solutions (feedback-only control structures are
the only option when disturbances are nonmeasurable, as in [10,12]).

An additional flexibility of multi-input systems is the possibility of moving the system
operating point ui(t = ∞) by changing the input resetting point rui (t) of the plants that do
not work at low frequencies [9,12,32].

The output reference r(t) is considered constant in the present work. For tracking
control problems, feedforwarding r(t) can achieve important benefits; a control architecture
and design method were provided in [13].

3. Example

The following theoretical example illustrates the new method of designing feedback
and feedforward elements. In addition to analysing how the specification of robust distur-
bance rejection is achieved with the minimum set of control actions, a comparison with
a control structure with only feedback elements is conducted, proving the superiority of
the feedback–feedforward structure. References [10,12] collected other examples with only
feedback elements.

A system with two control inputs obeys the following models y/ui, i = 1, 2, with
parametric uncertainty:

p1(s) =
a1(

a2
a1

s + 1
)2 , a1 ∈ [1.60, 2.40], a2 ∈ [0.17, 18.00];

p2(s) =
b1

b2s + 1
, b1 ∈ [0.98, 1.02], b2 ∈ [0.33, 1.00].

(12)

The d disturbance input influence follows the uncertain parametric model y/d:

pd(s) =
c1

s + c2
, c1 ∈ [2.00, 3.00], c2 ∈ [1.00, 2.00]. (13)

Robust stability specifications

|Ti(jω)| =
∣∣∣∣ li(jω)

1 + lt(jω)

∣∣∣∣ ≤Wsi , i = 1, 2; ∀P ∈ P , ∀ω, (14)

seek minimum phase margins of 40◦ for both feedback loops i = 1, 2 by taking

Wsi =

∣∣∣∣ 0.5
cos(π(180− PM)/360)

∣∣∣∣, PM = 40◦. (15)

Their representative bounds will delimit forbidden regions around the critical point that
cannot be violated by li = ci pi/(1+∑j 6=i lj) at any ω-frequency during loop-shaping [11,12,32].
These bounds can be computed with traditional CAD tools in the QFT toolbox [31].
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The specification for the robust rejection of measurable d-disturbances (2) adopts the
tolerance

Wd(ω) =

∣∣∣∣ 0.2s
(0.5s + 1)2

∣∣∣∣
s=jω

, (16)

whose magnitude frequency response is plotted together with the magnitude frequency
responses of plants in Figure 2a. The error tolerance Wd(ω) will allow reducing the
feedback to zero as soon as possible over ω > 4. However, as Wd(ω) < |pd(jω)|, a small
feedforward action will be needed at those frequencies. The problem arises when only
feedback action is used, since feedback can never be neglected at high frequencies. Thus, a
new specification

Wd f b(ω) =

∣∣∣∣0.2s(0.1s + 1)
(0.5s + 1)2

∣∣∣∣
s=jω

(17)

is defined for the comparison of the new control architecture with the feedback-only
architecture. Let us remark that time-domain performance will not be appreciatively altered
between the use of (16) or (17) since their differences occur after the control bandwidth (see
Figure 2a).

p1 p2 pd Wd Wd f b
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Figure 2. Magnitude frequency responses of plants: (a) performance specifications; (b) outcome
plant after individual feedforward prefiltering.

The set of discrete frequencies

Ω = {0.01, 0.1, 0.2, 0.4, 0.8, 1, 4, 8, 10, 20}[rad/s] (18)

will be used for the assignment of working frequencies to inputs (plants) for bound
calculations and to guide loop-shaping in the QFT framework. These have been se-
lected considering the frequency response of plants and of the open-loop and closed-loop
transfer functions.

3.1. Design Methodology

The frequency band allocation that minimises ui is founded on the ki frequency
responses (6), which are depicted in Figure 3. The criteria argued in Section 2 advise that
p1 works over ω < 0.2 and p2 works over ω > 1.0 since their respective ki magnitudes
are the lesser over those frequencies. Additionally, the collaboration of both plants over
0.2 ≤ ω ≤ 1.0 is advised since the difference between ki-magnitudes is less than 6 dB, and
the difference between ki-phases is less than 90◦. Table 1 summarises all these conclusions.

Table 1. Frequency-band allocation that minimises ui.

ω 0.01 0.1 0.2 0.4 0.8 1 4 8 10 20

p1 × × × × × ×
p2 × × × × × × × ×
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Figure 3. Frequency responses of k1,2 (6).

According to the desired frequency band allocation (Table 1), the design of the indi-
vidual feedforward elements yields

gd1(s) =
1

s + 1
, gd2(s) =

s
s + 0.2

. (19)

The low-pass filter gd1 attains a cut-off frequency of ωc = 1, and the high-pass filter
gd2 attains a cut-off frequency of ωc = 0.2. The use of individual filters gdi=1,2

modifies the
outcome plant pdm (7) to be handled by feedback ci=1,2 and the remaining feedforward
gdm . Figure 2b proves how pdm selects the more powerful part of plants pi=1,2, which will
minimise u f fi

to satisfy the performance specification (2) and (16).
For the design of feedback controllers ci, the bounds βli that represent performance

(2) and (16) and stability (14) and (15) specifications are computed. Then, each li nominal,
lio = pio ci, is shaped to meet the bounds considering the frequency band allocation that
minimises u f bi

(see Table 1). Figure 4 depicts the bounds and loop-shapings; nominal
plants pio correspond to parameters a = 0.16, b = 1.36, c = 0.98, d = 1.00 in (12). The
resulting controllers are

c1(s) =
1.575(s + 0.08)

s(s + 0.12)(s + 1.5)
, c2(s) =

1.5(s + 0.6)
(s + 0.3)2 . (20)

Finally, the bounds on the feedforward master are computed, and the loop-shaping
(see Figure 4) yields

gdm(s) =
−1.1849(s + 0.1)(s + 0.175)(s + 2)
(s + 0.052)(s2 + 0.8563s + 0.2072)

. (21)

If no feedforward loops are employed (gd1 = gd2 = gdm = 0), feedback controllers
ci=1,2 should complete the whole job. In such a case, after computing the bounds that
represent the specifications of robust disturbance rejection (2) and (17) and robust stability
(14) and (15), the shaping of lio , i = 1, 2, yields

c1 =
108(s + 0.1)

s(s + 10)(s + 0.4)
, c2 =

964.49(s + 2.5)2(s + 0.2)
(s + 74)(s + 7.8)(s2 + 0.45s + 0.0625)

. (22)
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Figure 4. Bounds and loop-shaping for (north west) c1, (north east) c2, and (south west) gdm .

3.2. Analysis and Comparatives

Figure 5 shows several magnitude frequency responses of interest; the feedback-
feedforward solution is depicted in blue and the feedback-only solution is in red; where
applicable, several plant cases (12) are depicted.

In particular, closed-loop frequency responses of subplots (a) and (b) in Figure 5 prove
the fulfilment of robust specifications on disturbance rejection and stability, respectively. A
tight achievement of performance tolerance in the control bandwidth (ω ≤ 4) can be noticed
because some plant cases are close to or on the tolerance Wd(ω); to achieve it, observe how
l1o is onto βl1 at ω = {0.01, 0.1, 0.2} and l2o onto βl2 at ω = {0.2, 0.4, 0.8, 1} in Figure 4,
which requires a relatively high order of the controllers (20) and (22). In addition, Table 1
planning has been executed successfully: l1-lg1 of the feedback–feedforward solution and
l1 of the feedback-only solution work alongside the low-frequency band, and l2-lg2 of
feedback–feedforward and l2 of feedback-only work alongside the high-frequency band
(see subplots (e) and (f) in Figure 5).

The expected benefits of the above are using the minimum |ui/d| over ω ≤ 4 (see
subplot (g) in Figure 5). Regarding the frequency band distribution among plants, let us
note, p.e., that if p2 were forced to work at low frequency instead of p1, |u2/d(j0)|would be
|p1/p2(j0)| larger than the current |u1/d(j0)|. Regarding the tight achievement of bounds
for each input design, it seeks the strictly necessary |ui/d| to achieve the specification;
observe how |u1/d| along ω ≤ 1 and |u2/d| along 0.2 ≤ ω ≤ 4 are very similar for
both solutions. The minimum effort in the control bandwidth pursues that |ui/v| can be
reduced as soon as possible at high frequencies (see subplot (h) in Figure 5). However, the
collaboration of feedback li and feedforward lgi to build ui/d yields smaller magnitudes
|li| than when only feedback intervenes (see subplot (e) in Figure 5). Then, feedback gains
|ci| are smaller not only in the control bandwidth but also beyond the work-band of each
input (see subplot (c) in Figure 5). The end effect |u1/v| over ω > 1 is smaller for the
feedback–feedforward solution than for the feedback-only solution, and the same occurs
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for |u2/v| over ω > 4 (see subplot (h) in Figure 5). In fact, a huge noise amplification is
expected at the second control input in the feedback-only solution.
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Figure 5. Magnitude frequency responses: (a) Output error, (b) stability, (c) feedback controllers,
(d) feedforward elements, (e) feedback open-loops, (f) feedforward open-loops, (g) control inputs for
disturbance rejection, (h) sensor noise at the control inputs.

Figure 6 shows the time-domain behaviour. External inputs are a unit step change
of disturbance d(t) at t = 1 s and a sensor noise v(t) that is built with a band-limited,
white-noise source of Simulink® (power of 0.00005 and sample time of 0.01 s); the reference
input r(t) is constant and equal to zero. Blue and red colours distinguish the responses of
feedback–feedforward and feedback-only solutions, respectively. Several plant cases are
represented.
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As expected, the output response y(t) is built by the faster response y2(t) of the
plant p2, which works at high frequencies, and by the slower response y1(t) of the plant
p1, which progressively takes control of the steady-state. Ignoring the noise, the control
actions u1(t) and u2(t), which command the plants p1 and p2, corroborate the same. Let
us also remark how the input u2, which does not work at steady-state, recovers the initial
operating point ru2 = 0. Further, observe that y(t) finally recovers the initial steady-state
of zero. Both steady-state conditions y = r and u2 = ru2 require an integrator in c1 (20)
and (22) and a differentiator in gd2 (19). Regarding the control actions, ui(t) is built with
u f fi

(t) and u f bi
(t) in the feedback–feedforward solution, while ui(t) = u f bi

(t) is built in
the feedback-only solution. The main difference between both solutions is the v(t) noise
amplification at the output and, mainly, at the control inputs. The huge noise amplification
at u2(t) of the feedback-only solution would cause fatigue of the actuator or might saturate
it and spoil the theoretical performance. In such a case, a more conservative specification
for disturbance rejection e/d would be indicated in true-life control (higher tolerance Wd
in the control bandwidth). All these corroborate the superiority of feedback–feedforward
schemes.
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Figure 6. Time-domain responses.

4. Conclusions

A new control architecture and design methodology has been proposed for the robust
rejection of measurable disturbances when multiple control inputs are available to correct
the output deviation. The multi-input character allowed selecting the most favourable
plants (inputs) at each frequency to provide the performance. Thus, individual feedback
and feedforward controllers to each input allowed distributing the control bandwidth as
desired among the inputs; the allocation criterion was minimising the control action to
provide the performance. Beyond that, the main benefit of the new structure is the presence
of feedforward loops. This allowed reducing the amount of feedback and, consequently, the
sensor noise amplification at the output and, mainly, at the control inputs. The advantages
would be notorious in real-life systems, since excessive noise at actuators could sacrifice the
achievement of the aggressive performance of the output. Finally, it is important to recall
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the robust character of the control system, which guaranteed the expected performance for
a set of possible plant models.
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