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Abstract: The high phenolic compound content of grapes makes them an important source of natural
antioxidants, among other beneficial health properties. Vineyard irrigation might affect berry compo-
sition and quality. Regulated deficit irrigation (RDI) is a widely used strategy to reduce the possible
negative impact of irrigation on grapes, improving grape composition and resulting in water savings.
Monastrell grapevines (Vitis vinifera L.) grown in eastern Spain were subjected to two water regime
strategies: rainfed (non-irrigation) and RDI. The content of anthocyanins, flavonols, flavanols, hydrox-
ybenzoic and hydroxycinnamic acids, and stilbenes was determined by HPLC and was related with
total phenolic content and three antioxidant activity methods (ABTS, DPPH, and ORAC). The study
aimed to evaluate and compare the phenolic composition and antioxidant potential of Monastrell
grapes. The rainfed regime concentrated grapes in terms of phenolic compounds. Thus, total content
of anthocyanins, flavonols, flavanols, hydroxybenzoic acids, and total phenols were higher in the
rainfed grapes than in the RDI ones. Besides, the rainfed grapes doubled their antioxidant potential
with respect to the RDI grapes with the ORAC method. Total phenolic content and antioxidant
activity by ORAC assay positively correlated with most of the total phenolic compounds analyzed.
This study demonstrates how field practices can modulate final grape composition in relation to their
antioxidant activity.

Keywords: phenolic compounds; antioxidant capacity; regulated deficit irrigation; ABTS; DPPH;
ORAC; anthocyanins; flavonols; flavanols; non-flavonoids

1. Introduction

Phenolic compounds are among the most important and studied grape compounds,
both for their contribution to the sensory properties of grapes and wines and for their
antioxidant, antibacterial, anti-inflammatory, hypoglycemic, and hypolipidemic activities
that have a great impact on human health [1,2].

Among other reactive species and as a consequence of the oxidative stress that reactive
oxygen species (ROS) cause, they provoke biomolecular damage to cells and tissues of the
living organisms [3]. The pathophysiology of many diseases, such as cancer, atherosclerosis,
cardiovascular, metabolic and neurodegenerative diseases, and brain ageing is related to
this oxidative damage [3,4]. It has been found that grape polyphenols reduce ROS levels,
which decrease chronic inflammation and modulate inflammatory pathways, which has the
potential to overcome chronic inflammation leading to the development of chronic diseases
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such as neurodegenerative diseases, Alzheimer’s disease, cancer, diabetes, cardiovascular
disease, lung disease, arthritis, and autoimmune diseases [4]. Moreover, authors such as
Sureda et al. [5] and García-Flores et al. [6] suggested that the effects of ROS during intense
exercise observed in athletes of different disciplines can be reduced by the antioxidant
potential beneficial of the fruit polyphenols.

Grapes are the fourth most produced fruit worldwide [2] and have a high content of
polyphenols and an important nutritional value. In grapes, two main groups of phenolic
compounds can be found: flavonoids (i.e., anthocyanins, flavanols, and flavanols) and
non-flavonoids (i.e., hydroxycinnamic and hydroxybenzoic acids and stilbenes) [7]. Several
factors, such as grape variety and maturity [8,9], genetic diversity [10], viticulture manage-
ment [11], soil characteristics [12], environmental stress [13], grapevine health status [14],
and winemaking conditions, modulate grapes’ phenolic profile and concentration. Be-
sides, Pérez-Magariño and González-San José [15], reported that differences in viticultural
management and enological techniques, harvest maturity, and grape variety modify the
antioxidative properties, in quality and quantity, of phenolic compounds.

On the other hand, grapevines are often grown in semi-arid regions characterized by
dry and warm summers [16]. In vitiviniculture, water management via irrigation has sev-
eral implications on grape composition and, therefore, on wine quality [17]. Because water
resources will be increasingly limited as a result of the climate change, to apply efficient
deficit irrigation (DI) strategies will be more necessary [18]. Regulated deficit irrigation
(RDI) is a promising, widely used technique that, with moderate annual volumes of water
restricted below the full evapotranspiration (ETc) of a vineyard, allows to improve the
concentration of grapes’ secondary metabolites, which confer important sensory attributes
to grapes and wines [18]. However, the timing and the severity of the RDI strategy affects
plant physiology, yield, and the metabolism of grapes in diverse ways [19]. Moreover, RDI
effects are often cultivar-dependent [16].

Different authors have investigated the phenolic content and antioxidant capacity
of grape by-products, especially grape juice, pomace, wine, and raisin [20–24], and more
scarcely, fresh grape [25]. However, this is the first information about the relationship
between the phenolic content and antioxidant capacity of Monastrell grapes under rainfed
and RDI watering regimes. Therefore, the aim of the study was to evaluate and compare the
polyphenol content and antioxidant activity (evaluating the radical scavenging according
to three different methods: ABTS, DPPH, and ORAC) of the Monastrell grapes under
rainfed and RDI watering regimes. Thus, the most important family groups of phenolic
compounds on grape and grape extract were characterized in terms of antioxidant activity
through chemical (ABTS, DPPH, and ORAC) determinations.

2. Materials and Methods
2.1. Vineyard Conditions and Grape Sampling

The study was carried out with cv. Monastrell (Vitis vinifera L.) grapes from a commer-
cial vineyard located in the municipal area of Fuente-Álamo (Lat: 38◦43′ N, Long: 1◦28′ W,
elevation 820 m a.s.l.), Albacete, in the southeast of Spain. Two watering treatments
were applied: rainfed, where plants were not irrigated, and regulated deficit irrigation
(RDI), where water application was carried out to optimize its use, taking into account
the water needs of the plant. Thus, for the RDI system, the soil water balanced method
proposed by FAO was used [26], and crop evapotranspiration (ETc) was estimated using
the ETc = ETo × Kc formula, where ETo is the reference evapotranspiration calculated daily
with the Penman–Monteith equation FAO56 [26] by a nearby meteorological station, and
Kc is the crop coefficient. The water was applied through a drip irrigation system with one
emitter of 3.8 L/h for each linear meter of pipe (two emitters per plant).

The experiment design consisted in a four replicate complete randomized design
with four rows of grapevines for each replicate. Each row had twelve grapevines per
treatment and surrounding perimeter grapevines were used as buffers. Then, grapes from
24 grapevines per each replicate of each treatment were used in the assay.
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At harvest day, when grapes reached an average Brix between 24 and 24.5, a ran-
dom set of 200 grapes per replicate was collected and frozen at −20 ◦C to analyze their
phenolic composition.

2.2. Extraction of Grape Phenolic Compounds and Determination of Phenolic Composition
by HPLC

Phenolic compounds were analyzed according to the method of Portu et al. [27].
A liquid chromatograph HPLC (Agilent Technologies, Palo Alto, CA, USA) equipped
with a photodiode array detector (DAD) was used. Previously, grape phenolic com-
pounds were extracted from 50 g of each frozen grape sample with 50 mL of a mixture of
methanol/water/formic acid (50:48.5:1.5, v/v/v) according to the same author’s method.
Briefly, the mixture was homogenized by Ultra-Turrax T-18 (IKA, Staufen, Germany) at
18,000 rpm for 1 min. The smooth pastes obtained were macerated for 10 min in an ultra-
sonic bath (JP Selecta, Barcelona, Spain) and centrifuged at 5000 rpm and 10 ◦C for 10 min.
The supernatant was separated, and the resulting pellet was extracted up to three times
using 50 mL of the solvent mixture each time. The supernatants were then combined, and
the volume was annotated. Samples were transferred to vials and stored at −20 ◦C until
beginning their determination.

Then, following Castillo-Muñoz et al. [28], the chromatographic conditions were:
10 µL of grape extract were injected into the chromatograph. In addition, isolation of
non-anthocyanin compounds was performed based on Castillo-Muñoz et al. [29] method.
Phenolic compounds were identified according to the retention times of pure compounds
and the UV-Vis data obtained from authentic standards. For quantification, different
wavelengths for each family of phenolic compounds (anthocyanins: 520 nm, flavonols:
360 nm, hydroxybenzoic and hydroxycinnamic acids and stilbenes: 320 nm, and flavanols:
280 nm) were used to extract the DAD chromatograms. Besides, the calibration graphs
of the respective standards (R2 > 0.999) were done. When no standard was available,
quantification was performed according to the calibration graph of the most similar com-
pound [27,28]. Briefly, for anthocyanins, malvidin-3-O-glucoside was used; for flavonols,
quercetin-3-O-glucoside was used; for free hydroxycinnamic acids and the corresponding
tartaric esters, trans-caftaric acid was used; for procyanidins B1 and B2, catechin was used;
for epigallocatechin, epicatechin was used; and for the trans- and cis-piceid and trans- and
cis-resveratrol, their respective trans isomers were used.

The treatments were performed in quadruplicate, so the results for phenolic com-
pounds in grapes correspond to the average of four analyses (n = 4) and concentrations in
samples were expressed as milligrams per fresh weight of grape (mg/kg).

2.3. Determination of Total Phenolic Content (TPC)

Total Phenolic Content was determined by the Folin-Ciocalteu method described by
Mosca [30]. The grape extract samples (explained in Section 2.2) and reagents were pipetted
into each well in a 96-well microplate in this order: sample (adequately diluted), Folin-
reagent (0.62 M), sodium carbonate solution 4% (w/w), and ultrapure water (1:4:4:4). After
incubation in the dark for one hour at 25 ◦C, absorbance was measured at λ = 765 nm using
a Fluostar Omega microplate reader (BMG-LabTech, Ortenberg, Germany). Gallic acid
(GA) was used as standard (in the range 0.12 to 1.70 mM), and the results were expressed
in mg GA Equivalents (mg GAE)/mL sample ± standard deviation. Each sample was
analyzed in triplicate.

2.4. Determination of Free Radical Scavenging

The free radical scavenging activities of the grape extracts were determined using the
2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical test; 2,2′-Azobis(2-amidinopropane)
dihydrochloride (AAPH) radical test (Oxygen Radical Absorbance Capacity (ORAC)); and
2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical test (Trolox Equivalent
Antioxidant Capacity, TEAC) according to the methods described below.
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2.4.1. DPPH Assay

The capacity of grape extract samples (explained in Section 2.2) to scavenge DPPH
radicals was performed by the method of Villasante et al. [31]. The reagent, DPPH (0.1 mM
in methanol), was added with a multi-channel-pipette to each well in a 96-well microplate.
Initial absorbance was determined at λ = 517 nm at 37 ◦C using a Fluostar Omega mi-
croplate reader (BMG-LabTech, Ortenberg, Germany). Thereafter, an appropriate dilution
of samples was added (proportion 0.1 sample: 1 reagent) and absorbance was measured 15,
30, 60, and 75 min later. Trolox® standards were used and a calibration line of % inhibition
against Trolox concentration (0.02–0.5 mM) was plotted. Results were expressed in mMol
Trolox Equivalent (TE)/mL sample ± standard deviation. The measurements were done in
triplicate for each sample.

The inhibition percentage was calculated using the following equation:

%inhibition of sample =

(
A0 −As

A0

)
× 100

where A0 = initial absorbance of DPPH solution; As = sample absorbance at the end of the reaction.

2.4.2. ORAC Assay

The radical scavenging activity vs. AAPH was determined by the ORAC assay as
described by Azman et al. [32]. Fluorescein in phosphate buffer solution (PBS) (10 mM,
pH = 7.4) and grape extract samples (explained in Section 2.2.) adequately diluted (or
standard or PBS) were pipetted into each well in a 96-well microplate. An initial fluores-
cence reading was recorded with λexcitation = 485 nm and λemission = 520 nm at 37 ◦C using
a Fluostar Omega microplate reader (BMG-LabTech, Ortenberg, Germany). Then, APPH
(240 mM) was added, and fluorescence was recorded every 2 min for 2 h. The proportion
of each compound was 6:1:1 (fluorescein:sample:AAPH). Trolox® was used as standard
(200 µM–12.5 mM) instead of sample and PBS blank was also determined. ORAC values
were expressed as µmol TE/mL sample ± standard deviation. Each sample was measured
in triplicate.

Area under the curve (AUC) and AUCnet were calculated using the following equations:

AUC =

(
0.5 + ∑n

i f
fo

)
·2; AUCnet = AUCs −AUCblank

where f = fluorescence at a given time; fo = initial fluorescence; n = number of cycles;
and 2 is the time (in min) of each cycle.

2.4.3. TEAC Assay

The radical scavenging ability of grape extract samples (explained in Section 2.2)
against ABTS radical cation was determined using a method based on that described by
Segovia et al. [33]. The ABTS•+ was generated by mixing ABTS solution (7 mM, final
concentration) with a potassium peroxodisulfate solution (2.45 mM, final concentration)
and storing it in the dark overnight. The running ABTS solution was prepared by diluting
it in PBS 1:100, reaching an absorbance value between 0.72 and 0.8 at λ = 734 nm. ABTS
solution was pipetted into the well in a 96-well microplate and the initial value was read at
30 ◦C in a Fluostar Omega microplate reader (BMG-LabTech, Ortenberg, Germany). Then,
the samples (1:10 proportion) were added, stirred, and incubated for 10 min and the final
absorbance was measured. The calibration line was prepared with Trolox® (0.021–0.55 mM)
and the TEAC value is expressed as mMol Trolox Equivalent (TE)/mL± standard deviation.
Each sample was analyzed in triplicate.

2.5. Statistical Analysis

Significant differences for each parameter were assessed using a variance analysis
(ANOVA) procedure. When the ANOVA test was significant, differences between means
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of the samples were compared using Duncan’s Multiple Range test (p < 0.05). A multiple
factor analysis was also performed. SPSS Statistics Version 21.0 package for Windows (IBM,
Chicago, IL, USA) was the software used for the statistical analysis.

3. Results and Discussion
3.1. Flavonoid Composition of Monastrell Grapes from Grapevines under Non-Irrigated (Rainfed)
and Regulated Deficit Irrigation (RDI) Watering Regimes
3.1.1. Anthocyanins

Table 1 shows the watering regime effect on the content of the five monomeric an-
thocyanin structures identified in the grape samples (3-O-glucosides (3-glc) of delphini-
din, cyanidin, petunidin, peonidin and malvidin), their acetylated (3-acglc) and trans-
p-coumaroylated (3-cmglc) derivates, and the cis- and trans-p-coumaroyl (cis-3-cmglc,
trans-3-cmglc) and the caffeoyl (3-cfglc) derivates of malvidin. Most of these compounds
showed a higher content in grapes from the rainfed treatment compared to those that were
irrigated. As other authors have also found [12,34], malvidin-3-glc was the major antho-
cyanin compound in the grapes. Besides, the content of total non-acylated anthocyanins
accounted for 83% of the total anthocyanins in grapes and total acylated anthocyanins
accounted for about 16% (Table 1).

Table 1. Individual anthocyanin content (mg/kg) in Monastrell grapes from grapevines under
non-irrigated (rainfed) and regulated deficit irrigation (RDI) conditions.

Treatments (T)

Anthocyanins Rainfed RDI p-Value 1

Delphinidin-3-glc 101.5 ± 18.5 86.1 ± 5.8 0.224
Cyanidin-3-glc 78.0 ± 5.7 72.3 ± 7.4 0.350
Petunidin-3-glc 108.9 ± 17.0 87.7 ± 4.0 0.088
Peonidin-3-glc 106.7 ± 5.6 b 93.4 ± 2.9 a *
Malvidin-3-glc 370.1 ± 27.3 b 273.2 ± 2.7 a **

Total non-acylated 765.2 ± 60.4 b 612.6 ± 12.8 a ***
Delphinidin-3-acglc 5.3 ± 0.4 b 4.1 ± 0.4 a *

Cyanidin-3-acglc 3.3 ± 0.2 2.8 ± 0.3 0.437
Petunidin-3-acglc 5.0 ± 0.4 b 4.1 ± 0.2 a **
Peonidin-3-acglc 2.4 ± 0.3 2.3 ± 0.1 0.203
Malvidin-3-acglc 14.0 ± 0.8 b 10.4 ± 0.9 a **

Delphinidin-3-cmglc 10.9 ± 1.5 b 8.5 ± 1.1 a *
Petunidin-3-cmglc 16.3 ± 2.3 b 10.9 ± 0.2 a **
Cyanidin-3-cmglc 11.0 ± 0.1 b 10.4 ± 0.1 a ***
Peonidin-3-cmglc 19.0 ± 1.1 b 11.4 ± 0.5 a ***

Malvidin-3-cis-cmglc 3.6 ± 0.7 2.6 ± 0.1 0.203
Malvidin-3-trans-cmglc 68.9 ± 9.7 b 40.1 ± 1.7 a **

Malvidin-3-cfglc 2.5 ± 0.3 2.0 ± 0.1 0.286
Total acylated 162.3 ± 14.3 b 109.6 ± 3.2 a **

Abbreviations: glc: glucoside, acglc: acetylglucoside, cmglc: trans-p-coumaroylglucoside, cfglc: caffeoylglucoside.
For each anthocyanin, different lowercase letters indicate significant differences between treatments (p ≤ 0.05).
1 Statistical significance: * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001. When there is no difference between treatments
(p > 0.05), no significance letters are shown. Experiments were performed in quadruplicate, and results for each
parameter presented are means ± standard deviation (n = 4).

3.1.2. Flavonols

The flavonol glycosides of the six flavonoid structures present in Vitis vinifera grapes
are shown in Table 2. In this case, the watering regime only affected the content of myricetin-
3-glcU, total myricetins, laricitrin-3-glc, ishorhamnetin-3-gal, and syringetin-3-glc, being
always higher their content in rainfed grapes than in RDI. The quercetin flavonoid structure
was the most abundant in Monastrell grapes, followed by the myricetins-type flavonols
(Table 2). In Tempranillo grapes, Portu et al. [27] and Garde-Cerdán et al. [34] found these
proportions changed, with flavonol-myricetin structures being in the majority, followed by
those of the quercetin type. Zarrouk et al. [35] reported that the heat stress promotes the
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reduction in the UPD-glucose:flavonoid 3-O-glucosyltransferase activity, increasing the
flavonol content. As the grapevines under the rainfed treatment had less vegetative growth
(data not shown), the bunches were more exposed to the sun than in the RDI vines. Thus,
the increase in anthocyanin and flavonol content observed in berries under the rainfed
versus the RDI watering regime (since both family compounds share the same biosynthetic
pathway) could be due to the effect of the higher temperature increase in the rainfed regime
during grape ripening. In addition, yield was also lower in the rainfed vines (data not
shown), facilitating the concentration of the analyzed compounds.

Table 2. Flavonol content (mg/kg) in Monastrell grapes from grapevines under non-irrigated
(rainfed) and regulated deficit irrigation (RDI) conditions.

Treatments (T)

Flavonols Rainfed RDI p-Value 1

Myricetin-3-glcU 12.0 ± 1.8 b 6.5 ± 0.5 a **
Myricetin-3-gal 8.8 ± 1.6 6.7 ± 1.0 0.066
Myricetin-3-glc 77.3 ± 8.2 68.4 ± 2.4 0.139

Total myricetins 98.1 ± 7.9 b 81.5 ± 2.6 a **
Quercetin-3-glcU 101.9 ± 17.7 77.5 ± 4.5 0.080
Quercetin-3-glc 129.4 ± 14.4 140.4 ± 15.3 0.425
Total quercetins 231.4 ± 16.7 218.0 ± 14.6 0.279
Laricitrin-3-glc 13.8 ± 0.8 b 9.0 ± 0.5 a ***

Kaempferol-3-gal 3.1 ± 0.6 1.5 ± 0.3 0.067
Kaempferol-3-glc 25.0 ± 0.9 21.8 ± 4.8 0.297

Total kaempferols 28.1 ± 0.6 23.3 ± 4.9 0.120
Isorhamnetin-3-gal 2.2 ± 0.2 b 1.7 ± 0.1 a *
Isorhamnetin-3-glc 4.2 ± 0.4 4.8 ± 0.6 0.519

Total isorhamnetins 6.5 ± 0.4 6.2 ± 0.4 0.537
Syringetin-3-glc 6.0 ± 0.1 b 4.3 ± 0.2 a **

Abbreviations: glcU: glucuronide, gal: galactoside, glc: glucoside. For each flavonol, different lowercase letters
indicate significant differences between treatments (p ≤ 0.05). 1 Statistical significance: * p ≤ 0.05, ** p ≤ 0.01,
and *** p ≤ 0.001. When there is no difference between treatments (p > 0.05), no significance letters are shown.
Experiments were performed in quadruplicate, and results for each parameter are presented as means ± standard
deviation (n = 4).

3.1.3. Flavanols

Table 3 presents the concentrations of flavanols in Monastrell grapes under rainfed and
RDI watering regimes. Only the content of epicatechin, the major flavanol in the grapes, and
epicatechin-3-gallate increased with rainfed treatment with respect to RDI. When a water deficit
strategy was used, Yu et al. [36] and Savoi et al. [37] also observed a limited or mild effect on
flavanol accumulation in grapes.

Table 3. Flavanol content (mg/kg) in Monastrell grapes from grapevines under non-irrigated (rainfed)
and regulated deficit irrigation (RDI) conditions.

Treatments (T)

Flavanols Rainfed RDI p-Value 1

Catechin 48.1 ± 3.3 38.6 ± 8.1 0.131
Epicatechin 58.1 ± 1.1 b 37.6 ± 2.7 a ***

Epicatechin-3-gallate 68.8 ± 4.3 b 50.4 ± 5.8 a **
Procyanidin B1 10.0 ± 1.4 8.8 ± 1.5 0.242
Procyanidin B2 9.5 ± 1.3 10.8 ± 1.2 0.322

For each flavanol, different letters indicate significant differences between treatments (p ≤ 0.05). 1 Statistical
significance: ** p ≤ 0.01, and *** p ≤ 0.001. When there is no difference between treatments (p > 0.05), no
significance letters are shown. Experiments were performed in quadruplicate, and results for each parameter are
presented as means ± standard deviation (n = 4).
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3.2. Non-Flavonoid Composition of Monastrell Grapes from Grapevines under Non-Irrigated
(Rainfed) and Regulated Deficit Irrigation (RDI) Watering Regimes

The concentration of non-flavonoid compounds determined in the Monastrell grapes
from grapevines under non-irrigated and RDI water conditions are listed in Table 4. As
occurs in other varieties, gallic acid was the majority non-flavonoid found in Monastrell
samples. Only the content of total hydroxybenzoic acids and trans-fertaric acid was affected
by the watering regime, increasing in grapes from rainfed grapevines with respect to those
from the RDI strategy. There are few papers studying the effects of watering regimes on
non-flavonoid compounds in grapes. Zarrouk et al. [35] reported an increase in sustained
deficit irrigation (SDI) berries with respect to rainfed due to the attenuation of the negative
effects of temperature on bunchers under the SDI regime.

Table 4. Non-flavonoid content (mg/kg) in Monastrell grapes from grapevines under non-irrigated
(rainfed) and regulated deficit irrigation (RDI) conditions.

Treatments (T)

Non-Flavonoids Rainfed RDI p-Value 1

Hydroxybenzoic acids
Syringic acid 3.9 ± 0.6 1.5 ± 0.2 0.058

Gallic acid 6.1 ± 1.4 4.9 ± 0.5 0.147
Hydroxycinnamic acids

trans-Caftaric acid 1.5 ± 0.3 2.5 ± 0.8 0.132
trans + cis-Coutaric acids 1.0 ± 0.1 1.6 ± 0.4 0.116

Caffeic acid 1.0 ± 0.1 1.0 ± 0.1 0.489
trans-Fertaric acid 1.0 ± 0.1 b 0.9 ± 0.1 a **
p-Coumaric acid 0.4 ± 0.1 0.4 ± 0.1 0.718

Stilbenes
trans-Piceid 4.1 ± 0.2 3.9 ± 1.4 0.822

cis-Piceid 0.4 ± 0.1 0.4 ± 0.1 0.866
trans-Resveratrol 0.3 ± 0.1 0.3 ± 0.1 0.558

cis-Resveratrol 0.3 ± 0.1 0.2 ± 0.1 0.064

For each non-flavonoid, different letters indicate significant differences between treatments (p ≤ 0.05). 1 Sta-
tistical significance: ** p ≤ 0.01. When there is no difference between treatments (p > 0.05), no significance
letters are shown. Experiments were performed in quadruplicate, and results for each parameter presented as
means ± standard deviation (n = 4).

3.3. Total Phenolic Compounds

The content of different groups of phenolic compounds in Monastrell grapes under
non-irrigation (rainfed) and regulated deficit irrigation (RDI) watering regimes, as total
anthocyanins, total flavonols, total flavanols, total hydroxybenzoic and hydroxycinnamic
acids, total stilbenes, total non-flavonoids as well as total phenolic compounds, is shown
in Figure 1. Thus, in general, grapes from the rainfed regime presented a higher content
of total anthocyanins, total flavonols, total flavanols, total hydroxybenzoic acids and total
phenolic compounds than the grapes from RDI. However, total hydroxycinnamic acids,
total stilbenes, and total non-flavonoid content did not show significant differences between
both irrigation regime grapes.

Anthocyanins are the most abundant phenolic compounds in Monastrell grapes, ac-
counting for about 60% of the total of phenolic compounds. The anthocyanin degradation
and/or the inhibition of its synthesis was reported when the clusters were exposed to
high sunlight radiation [38] or/and high temperature [38,39]. Since both anthocyanin and
flavonol compounds share the same biosynthetic enzyme, it can be suggested that the
same factor that inhibited and/or degraded anthocyanins affects the flavonol accumulation.
However, the impact of water availability on grape flavonols is controversial since there
were studies such as those by Grimplet et al. [40] in which DI affected flavonols moder-
ately, and another, i.e., Kennedy et al. [41], in which no effect of DI on these compounds
was observed.
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Figure 1. Mean values of total phenolic compounds and total content (mg/kg) of different groups of phenolic compounds in
Monastrell grapes. Bars represent the standard deviations (n = 4). Different letters (a and b) indicate significant differences
between grapes under non-irrigation (rainfed) and regulated deficit irrigation (RDI) regimes (p ≤ 0.05). When there is no
difference between treatments (p > 0.05), no significance letters are shown.

The increase of total phenolic compounds in rainfed grapes may be explained through
the berry size, lower in rainfed (160.7 g/100 grapes) than in RDI (186.1 g/100 grapes). Thus,
grape size indirectly affects the final concentration of phenolic compounds, and therefore,
more diluted compounds could be found due to the rise of grape size and the skin to
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pulp ratio increase in the smaller grapes of grapevines subjected to water deficits [41–43].
Roby et al. [44] reported that grapes developed under water deficits had significantly more
skin, the dominant tissue of flavonoid biosynthesis, than control grapes. Besides, authors
such as Martínez-Lüscher et al. [45] and Luzio et al. [46] highlighted the importance of
grape exposure to light, which genetically induced the biosynthesis of flavonoids. This
means that the accumulation and composition of flavonoids in grapes are correlated by
light quality and quantity exposure, which has a synergistic effect on the expression of
genes in flavonoid biosynthesis pathway expression. The higher vigour observed in RDI
grapevines (data not shown) could favor the higher presence of leaves with respect to the
rainfed ones and consequently, due to the increase of the grapes’ shading, down-regulate
flavonoid biosynthesis. As non-flavonoid compounds such as hydroxycinnamic acids and
stilbenes are more abundant in grape pulp than flavonoid compounds, which are mainly
found in the skin and seeds [47], it could be possible that in no-flavonoids content, the light
exposure did not have such an effect, and no differences were observed between grapes
from both watering regimes (Figure 1).

3.4. Antioxidant Capacity

The antioxidant potential of Monastrell grapes was assessed as ABTS, DPPH, and
oxygen radical absorbance capacity (ORAC), three complementary antioxidant assays
(Table 5). Total phenolic compounds (TPC) and the antioxidant tested by the ORAC
method were higher in rainfed grapes than in RDI ones; meanwhile, grapes from the RDI
regime had greater ABTS values than the rainfed ones. In the rainfed grapes, ORAC values
almost doubled those of RDI grapes (Table 5).

Table 5. Total phenolic content (TPC) and free radical scavenging activities (ABTS, DPPH, and ORAC)
of Monastrell grapes under non-irrigation (rainfed) and regulated deficit irrigation (RDI) regime.

TPC
(mg GAE/mL)

ABTS 1

(mmol TE/mL)
DPPH

(mmol TE/mL)
ORAC

(µmol TE/mL)

Rainfed 1.5 ± 0.2 b 3.7 ± 0.1 a 5.6 ± 0.5 43.6 ± 6.9 b

RDI 1.2 ± 0.1 a 3.9 ± 0.1 a 5.3 ± 0.1 23.4 ± 3.1 a

p-value 2 ** * 0.265 **
1 ABTS: 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), DPPH: 2,2-diphenyl-1-picryl-hydrazyl-hydrate,
ORAC: 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH) radical test-Oxygen radical absorbance capacity
(ORAC), GAE: galic acid equivalent, TE: Trolox equivalent. All parameters are given as average values ± the
standard deviations (n = 4). Different letters (a and b) indicate significant differences between grapes under
non-irrigation (rainfed) and regulated deficit irrigation (RDI) regime (p < 0.05). 2 Statistical significance: * p ≤ 0.05,
** p ≤ 0.01. When there is no difference between treatments (p > 0.05), no significance letters are shown.

The highest TPC in rainfed grapes can be explained by the smaller size in rainfed
grapes compared to RDI. Thus, the phenolic compound concentration was higher in
rainfed grapes. Grapes from rainfed treatment had the highest content of TPC and the
strongest antioxidant capacity according to ORAC method. Thus, they may have greater
health benefits than RDI grapes. In the ABTS method, RDI grapes are not significantly
different from the rainfed ones (Table 5). In general, the scavenging ability of the different
bioactive compounds varies widely by the mode of action of each radical [48], but it is
more usual to find higher values of antioxidant capacity with ABTS than with the DPPH
method [49], contrary to what was observed in our Monastrell grapes (Table 5). In Southern
Portugal, Zarrouk et al. [50] observed higher total phenol content of the skin in RDI and
non-irrigated Aragonez (syn. Tempranillo) vines than in conventional sustained DI ones
during two consecutive years. However, although they reported an increasing trend
of the ORAC activity in grape skin induced by RDI strategy, they suggested that other
parameters other than phenolics (perhaps vitamins) are responsible for ORAC activity
because, in their conditions, water deficits did not modify the bioactive quality of the
grapes. Genebra et al. [51] suggested that ORAC activity increases until veraison and
decreases thereafter. Thus, they supported the hypothesis of polyphenols oxidation during
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seed development reported by Kennedy et al. [52]. Besides, Genebra et al. [51] observed
that the peak of ORAC activity is different depending on the grapevine water status, being
maximal the ORAC activity at peak size stage in the seeds of non-irrigated grapes, while
they were maximal at veraison for RDI and sustained DI ones. Thus, they corrobated
previous results of Castellarin et al. [42,53] in which it was observed that water stress
advanced the grapes’ ripening.

3.5. Relationship of Total Phenolic Content and Different Phenolic Groups According to Their
Antioxidant Activity
3.5.1. Total Polyphenol Content

The correlations between total polyphenol content (TPC) and the content of total
phenolic groups were established in Figure 2. Total anthocyanins, total flavonols, total
flavanols, total hydroxybenzoic acids, and total phenolic compounds had a high positive
correlation with the values of TPC in Monastrell grapes under rainfed and RDI water status
(Figure 2).

Li et al. [25] found a strong linear correlation between the total phenolic content and
antioxidant activities in skins and pulps of eleven grape varieties, the Muscat Kyoto grapes
being the richest in bioactive phenolic compounds. In their study, Tkacz et al. [54] found
low correlations between antioxidant activity and each group of phenolic compounds
of novel sea buckthorn-based smoothies. González-Tejedor et al. [55] reported opposite
results, where the FRAP method best reflected the concentration of antioxidant compounds
in a purple smoothie made from grape, cucumber, beet, and broccoli. Jara-Palacios et al. [56]
observed that the antioxidant activity (measured by ORAC assay) in seeds, skins, stems,
and pomace extracts of white Zamera cv. only agreed with total polyphenol content for
skins and stems. However, for DPPH assay, the antioxidant activity was in agreement with
the results of total polyphenol content for all the seeds, skins, stems, and pomace samples.

3.5.2. Antioxidant Activity Measured by 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic
acid) (ABTS)

Correlations between ABTS values and the total of different groups of phenolic com-
pounds were established (Figure 3). However, no significant relationships were found
between the antioxidant activity measured with the ABTS method and the total of the
different groups of phenolic compounds determined, nor with the total of all of them.

To the best of our knowledge, this is the first study relating the antioxidant activ-
ity measured as ABTS of Monastrell grapes under two different watering regimes and
the different groups of phenolic compounds. In smoothies based on pome and berry
fruits, Teleszko and Wojdyło [57] did not find correlations for ABTS with phenolic acids
and flavonols. In grape wines, Wojdylo et al. [58] found that the reduction in the ABTS
antioxidant capacity measured after fermentation and after maturation was related to a
decrease in polyphenol content. They observed a positive correlation (r = 0.69) between
the total phenolic compounds and ABTS antioxidant capacity. In their case, they found a
positive correlation between anthocyanins, flavonols, flavan-3-ols content (r = 0.60, 0.64,
and 0.66, respectively), and antioxidant capacity in Dornfelder cv. samples when ABTS
assay was used.
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Figure 2. Relationship of the total phenolic content (TPC) (mg GAE/mL) and total anthocyanins, flavonols, flavanols,
hydroxybenzoic and hydroxycinnamic acids, stilbenes, non-flavonoids, and content of total phenolic compounds (mg/kg)
of Monastrell grapes. Values of the coefficient of determination (R2) are presented. Lines of linear regression are shown:
(- - -) when relationships are significant (p < 0.05, *; p < 0.01, **; and p < 0.001, ***), or (· · · ) when there are no significant
differences (p > 0.05, ns).
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Figure 3. Relationship of the 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) (mmol Trolox/mL) and total
anthocyanins, flavonols, flavanols, hydroxybenzoic and hydroxycinnamic acids, stilbenes, non-flavonoids, and content
of total phenolic compounds (mg/kg) of Monastrell grapes. Values of the coefficient of determination (R2) are presented.
Lines of linear regression are shown: there are no significant differences (p > 0.05, ns).

3.5.3. Antioxidant Activity Measured by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)

In the case of the relations between DPPH values and the total of different groups of
phenolic compounds (Figure 4), only the total of hydroxybenzoic acids content showed
a significant correlation (r2 = 0.542; p < 0.05). However, Karaman et al. [59] observed
correlations among ABTS and DPPH antioxidant assays and total phenolic compounds and
catechin content (in seeds, skins, and stems), total anthocyanin (in skins), trans-resveratrol
(in seeds), and rutin (in stems) of six grapevine varieties grown in Turkey. They, as well as
Xu et al. [60], suggested that both the ABTS and DPPH antioxidant methods are almost
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comparable and interchangeable in order to characterize the grape antioxidant capacities.
Karaman et al. [59] also indicated that as the correlation between phenolic compounds and
antioxidant capacity can be positive or negative, it is questionable, so further studies are
needed. Tkacz et al. [54] found a low correlation between DPPH activity and bioactive
compounds of novel sea buckthorn-based smoothies.
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Figure 4. Relationship of the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) (mmol Trolox/mL) and total anthocyanins,
flavonols, flavanols, hydroxybenzoic and hydroxycinnamic acids, stilbenes, non-flavonoids, and content of total phenolic
compounds (mg/kg) of Monastrell grapes. Values of the coefficient of determination (R2) are presented. Lines of linear
regression are shown: (- - -) when relationships are significant (p < 0.05, *), or (· · · ) when there are no significant differences
(p > 0.05, ns).
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3.5.4. Antioxidant Activity Measured by 2,2′-Azobis(2-amidinopropane) dihydrochloride
(AAPH)—Oxygen Radical Absorbance Capacity (ORAC)

The ORAC antioxidant activity method resulted in a strong correlation with the
content of total anthocyanins, total flavanols, total hydroxybenzoic acids, and total phenolic
compounds, achieving r2 = 0.646, 0.591, 0.499, and 0.652, respectively (p < 0.05) (Figure 5).
Thus, this method for determining antioxidant activity had a higher correlation with the
phenolic compounds measured in Monastrell grapes than ABTS and DDPH methods.
Moreover, Nowicka et al. [61] in their studies with Prunus-fruit smoothies reported that
the correlation between ORAC and phenolic compounds, including their groups, was
higher than for ABTS. The ORAC value increased for sea buckthorn-based with apple,
carrot, and parsley in a study by Tkacz et al. [54]. Jara-Palacios et al. [56] found the
lowest ORAC values with ethanol extracts in seeds, skins, stems, and pomace of Zalema
(Vitis vinifera L.) winemaking byproducts. However, they reported a higher scavenging
capacity of peroxyl radicals (measured by ORAC assays) from the ethanol, ethanol/water,
and water extracts from skins, than those from seeds. Matos et al. [62] reported a correlation
(with R2 > 0.95) between the ORAC values and the relative amounts of flavonols for red
wine lees, grape marc of Tempranillo, and Port wine lees. They observed that both TPC
and the antioxidant activity values are highly variable and depend on different factors such
as the grape variety, maturation stage, environmental conditions during grape growth, and
vinifications, among others. Faria et al. [63] and Genebra et al. [51] reported that the ORAC
correlated with all flavanol compounds, procyanidin dimer being the most antioxidative
compound in different phenolics. Genebra et al. [51] observed that in sustained DI seeds
at full maturation, the ORAC activity was significantly greater than in RDI and non-
irrigation seeds. This suggested that the presence of peroxyl radicals in seeds from both DI
treatments was affected by water availability which caused it to be enhanced, and this may
have implications in winemaking, especially related to the bitterness and astringency of
red wines.
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Figure 5. Relationship of the 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH)—Oxygen radical absorbance capacity
(ORAC) (µmol Trolox/mL) and total anthocyanins, flavonols, flavanols, hydroxybenzoic and hydroxycinnamic acids,
stilbenes, non-flavonoids, and content of total phenolic compounds (mg/kg) of Monastrell grapes. Values of the coefficient
of determination (R2) are presented. Lines of linear regression are shown: (- - -) when relationships are significant (p < 0.05, *;
p < 0.01, ** or (· · · ) when there are no significant differences (p > 0.05, ns).

4. Conclusions

In this assay, we found that the irrigation regime influences in a different way the
content of phenolic compounds. The non-enzymatic antioxidant capacities were modu-
lated by water deficit and correlated with phenolic compounds, which may be used for
promoting health benefits. Thus, under semiarid climatic conditions, comparing grapes
from Monastrell plants under a rainfed watering regime with others under an RDI strat-
egy, higher contents of anthocyanins, flavonols, flavanols, hydroxybenzoic acids, and
total phenolic compounds were obtained in rainfed grapes. The smaller size obtained
in the rainfed grapes favored the concentration of these phenolic compounds; however,
the total content of hydroxycinnamic acids, stilbenes, and total non-flavonoids were not
affected. Besides, watering regime affected the total phenolic content and modulated the
non-enzymatic antioxidant capacities (ABTS, DPPH, and ORAC). Antioxidant activities,
especially ORAC assay, correlated positively with most groups of phenolic compounds
found in grapes, except for the non-flavonoid content. The synergistic and antagonistic in-
teractions that occur between phenolic compounds could explain the results of antioxidant
activity obtained [64].
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