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The role of wildlife with long-range dispersal such as gulls in the global dissemination of
antimicrobial resistance (AMR) across natural and anthropogenic aquatic environments
remains poorly understood. Antibiotic-resistant bacteria have been detected in resident
and migratory gulls worldwide for more than a decade, suggesting gulls as either
sentinels of AMR pollution from anthropogenic sources or independent reservoirs that
could maintain and disperse AMR across aquatic environments. However, confirming
either of these roles remains challenging and incomplete. In this review, we present
current knowledge on the geographic regions where AMR has been detected in gulls,
the molecular characterization of resistance genes, and the evidence supporting the
capacity of gulls to disperse AMR across regions or countries. We identify several
limitations of current research to assess the role of gulls in the spread of AMR including
most studies not identifying the source of AMR, few studies comparing bacteria isolated
in gulls with other wild or domestic species, and almost no study performing longitudinal
sampling over a large period of time to assess the maintenance and dispersion of AMR
by gulls within and across regions. We suggest future research required to confirm the
role of gulls in the global dispersion of AMR including the standardization of sampling
protocols, longitudinal sampling using advanced satellite tracking, and whole-genome
sequencing typing. Finally, we discuss the public health implications of the spread of
AMR by gulls and potential solutions to limit its spread in aquatic environments.

Keywords: marine birds, One Health, seagulls, wildlife, bacteria, antimicrobial resistance, AMR, ESBL

INTRODUCTION

Antimicrobial resistance (AMR) is a major global health challenge affecting human, animal, and
environmental health (FAO and WHO, 2019; WHO, 2019). Thus, a One Health approach is
required to understand the dynamics of AMR between humans and animals (Salgado-Caxito
et al., 2021). Many studies have reported the presence of antibiotic-resistant bacteria (ARB) in
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wild animals, highlighting their potential role in the spread of
clinically important bacteria to humans and domestic animals
(Wang et al., 2017; Benavides et al., 2018; Dolejska and Literak,
2019). Wildlife such as wild birds, particularly the ones living
in proximity to human settings or agriculture fields, can acquire
AMR from anthropogenic sources when feeding on landfills and
wastewater (Nelson et al., 2008; Wang et al., 2017). Despite
several reports of wild birds carrying ARB (Wang et al.,
2017), their impact on the dissemination of ARB in aquatic
environments remains still poorly understood.

Gulls can impact the spread of ARB of public health concern
by acting either as (i) receivers of ARB or antibiotic-resistant
genes (ARGs) and acting as sentinels of human environmental
pollution to natural ecosystems (Guenther et al., 2011) or as
(ii) reservoirs of ARBs and ARGs, capable of dispersing ARB
or ARGs to different geographic locations and to other species
including humans and domestic animals. In particular, the
migratory capacity of several gull species such as the Franklin’s
gull (Leucophaeus pipixcan), migrating across America from
Canada to Chile, could result in the dissemination of ARB
and ARGs over extensive geographic areas, dispersing AMR
from regions with high levels of AMR to less affected areas
(Báez et al., 2015; Dolejska and Literak, 2019). Gulls are also
present in most urban and rural environments, and their
feces are extensively dispersed in the environment (Bonnedahl
and Järhult, 2014). Several studies have detected ARGs in
gulls (Oravcova et al., 2017; Ahlstrom et al., 2019b; Haenni
et al., 2020). In particular, AMR has been detected in several
species of seagulls, which have large breeding distributions
in urban areas and feed on human waste (Bonnedahl et al.,
2015; Stedt et al., 2015; Ahlstrom et al., 2019a). Thus, gulls
have been suggested as potential reservoirs of ARB and ARGs,
although evidence proving their role as reservoirs has not
been provided (Radhouani et al., 2010; Aberkane et al., 2015;
Merkeviciene et al., 2018).

In this scoping review, we summarized the current knowledge
regarding the global dissemination of ARB and ARGs among
gulls and assess whether there is evidence supporting the
assumption that gulls can act as reservoirs of AMR. In particular,
we aim to provide a comprehensive overview of the geographic
location where ARB and ARGs have been found in gulls, the gull
and bacteria species involved, as well as the antibiotic families
and genes detected. To discuss the public health implications
of gulls, we summarized whether bacteria of critical importance
according to WHO have been detected in gulls. We also assessed
the number of publications that had either identified the origin
of AMR found in gulls or tested and concluded that gulls can
disperse AMR across the landscape or to other species. Based
on this current evidence, we discussed several recommendations
aiming to improve our understanding of the role of gulls in the
dissemination of AMR.

MATERIALS AND METHODS

We performed a scoping review following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR) checklist (Tricco

et al., 2018; Supplementary Table 1). All authors defined research
questions, objectives, search strategy, and inclusion/exclusion
criteria through previous discussions.

Search Strategy
The search was performed in PubMed, Scopus, and Web
of Science databases using three general queries: (antibiotic
resist∗ OR antimicrobial resist∗), (Escherichia OR Klebsiella
OR Staphylococcus OR Enterococcus OR Enterobacter∗ OR
Salmonella OR Pseudomonas), and (bacteria). Each of them was
merged with (marine bird∗ OR aquatic bird∗ OR gull∗ OR Larus).
Details of the search strategy are available as an additional file
(Supplementary Table 2). Visualization, duplicate removal, and
storing collected data were performed in Microsoft Excel.

Eligibility Criteria
We aimed to identify peer-reviewed studies on AMR in different
wild species of gulls (i.e., seagulls) showing the presence
and/or potential transmission of ARB and ARGs. Thus, we
included only studies providing at least one of the following
information: (i) wild gull species where ARB was recovered, (ii)
phenotypic resistance to specific antibiotics in bacteria isolated
from gulls, and/or (iii) ARGs identified in bacteria isolated
from gulls. There were no restrictions related to the year of
publication or geographical location. Any type of reviews or
studies including in vivo experiments, samples of gulls from
rehabilitation centers, or containing previously published data
were excluded. Details of all inclusion and exclusion criteria are
provided in Supplementary Table 3.

Identification and Screening of Articles
After the removal of duplicates, we identified a total of 3,475
articles published from 1964 to January 2021, including 3
additional references that were identified from reading these
papers. Pre-selection by title and abstract reduced to 227 articles
for full-text analysis, and 90 fulfilled the preestablished criteria
and were included in the final analysis (Figure 1). The remaining
140 articles did not fit our inclusion criteria as they did not
include gull samples, did not present AMR information/data,
data from gulls were previously published, the study included
experimental infection, the study was performed on captive gulls
or in rehabilitation centers, the study sampling was conducted
postmortem, or the full text of the article was not available.

Data Extraction

Extracted data were independently performed by three
authors (DZG, MSC, and ZRS) and verified by other authors.
Disagreements were resolved through discussion. The obtained
data were entered into a Microsoft Excel template adapted from
a previous study (Supplementary Table 4; Salgado-Caxito et al.,
2021). This file included the title of the article, authorship, year
of publication, gull species included in the study and whether the
species was migratory or not, the number of sampled individuals,
the bacteria species studied, the number of recovered isolates, the
antimicrobial susceptibility tests performed, the name and family
of the antibiotics tested, and the molecular typing used (i.e., PCR,
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FIGURE 1 | Article search flow diagram.

sequencing, and whole-genome sequencing) when available. To
assess the current knowledge on the role of gulls as reservoirs
of ARB or ARGs, we also specifically extracted from studies (i)
whether the study compared gulls to other animals in the area;
(ii) whether the study identified the origin (e.g., anthropogenic
source) of the ARB or ARGs found; (iii) if gulls were sampled
more than once, particularly in both areas of migration (origin
and destination); (iv) if molecular typing of ARB was performed;
and (iv) if an individual follow-up and sampling of gulls were
performed, along with the method used.

Statistical Analysis
We estimated the proportion of studies filling a given criteria
(e.g., studies identifying the presence of ARGs or the origin of
ARB) using R. 3.1.6 (R Development Core Team).

RESULTS

Geographic Locations and Gull and
Bacteria Species Studied
Our scoping review identified 90 articles published between 1981
and 2020, although only 22% of these studies were published
before 2010. The number of studies published on gulls increased

from 1 in 1981 to 10 per year in 2020 and peaked in 2017 with
12 articles (Figure 2B). Studies were conducted in gulls from all
five continents, but the majority of publications were made in
Europe (58%) followed by North America (19%) (Figure 2A).
Studies were conducted in a total of 31 countries, with high-
income countries such as the United States (17%), Portugal
(12%) and Spain (10%) conducting the highest number of studies
(Figure 2C). In contrast, in middle- and low-income countries,
few publications were conducted (Morocco, 1%; South Africa,
1%; Bangladesh, 1%).

From 100 species of gulls known (IUCN, 2021), ARB or
ARGs were recovered from 23 species. Most gulls studied (74%)
were migratory species. The number of studies per gull species
was highly heterogeneous (Figure 3B). The majority of studies
focused on the herring gull (Larus argentatus, 26%), followed
by the laughing gull (Chroicocephalus ridibundus, 23%) and the
yellow-legged gull (Larus michahellis, 19%) (Figure 3A). These
three species are widely distributed in the northern hemisphere.

Among the 90 studies, 49 ARB species were recovered
from gulls. Most studies focused on Escherichia coli (59%),
Salmonella enterica (23%), Campylobacter jejuni (8%), and
Klebsiella pneumoniae (8%) (Figure 3C). The temporal trend of
publications showed that after 2008, most studies have focused
on E. coli.
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FIGURE 2 | Geographical locations of the AMR studies found in gulls. (A) Number of publications per continents. (B) Number of publications per continent over the
1980–2020 period. (C) Number of publications of AMR in gulls per country in gradient.

Antibiotic Susceptibility in Bacteria From
Gulls
Screening of ARB using selective media supplemented with
antibiotics before antimicrobial susceptibility tests was
performed in 43% of studies. Seventeen percent of studies
performed antibiotic susceptibility tests after isolation in non-
supplemented media. The remaining 40% of the studies did
not present the methodology for recovering isolates. Forty-one
publications had information about the number of positive
individuals, and 68% of those studies were conducted in Europe.
The highest proportion of animals harboring bacteria resistant
to at least one antibiotic (referred as positive animals) was
estimated in one study in Africa (70%) that included less than

50 individuals. The highest proportion of positive gulls was
observed among Larus dominicanus (100%), while Proteus
mirabilis showed the highest proportion of positive individuals
(27.9%) (Table 1). Given the high heterogeneity in susceptibility
methods and antibiotics tested, a comparison of ARB prevalence
across studies, defined as the number of positive individuals
over the total of sampled animals, could not be performed.
Regarding the methodology used to test susceptibility, 68%
of studies confirmed phenotypic resistance using the disk
diffusion method (CLSI, 2018). Overall, resistance to 79
antibiotic agents from 21 families was tested (Supplementary
Table 5), including antibiotics used in human medicine
such as beta-lactams (i.e., penicillin, cephalosporins, and
carbapenems), tetracyclines, fluoroquinolones, sulfonamides,
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FIGURE 3 | Number of publications per gull and bacteria species. (A) Number of publications per gull species. (B) Number of publications per gull species over the
1980–2020 period. (C) Number of publications per bacteria species.

aminoglycosides, nitrofurans, macrolides, monobactam,
polypeptides, glycopeptides, and lincosamides. More than
50% of studies reported at least one bacterial isolate resistant
to tetracycline (58%) and ampicillin (52%), followed by
chloramphenicol (47%), streptomycin (44%), trimethoprim–
sulfamethoxazole (38%), gentamicin (36%), nalidixic acid
(35%), and ciprofloxacin (32%) (Figure 4A). In particular,
broad-spectrum beta-lactams used in human medicine such as

amoxicillin with clavulanic acid and ceftazidime were reported
in 20% of publications.

Among the four antimicrobial-resistant pathogens considered
as a “critical priority” by the WHO (WHO, 2017), all were
tested at least once in the reviewed studies. Third-generation
cephalosporin-resistant Enterobacterales from gulls were
the most reported (41%), followed by carbapenem-resistant
Enterobacterales (10%) (Table 2). Among “high-priority”
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TABLE 1 | AMR bacteria detected in gulls by continent and gull species between 1981 and 2020.

Category Description Publications No. of individuals % of positive animals

No. % Positives* Total

Continent Africa 1 2.4 28 40 70.0

Europe 28 68.3 919 6,375 14.4

North America 5 12.2 50 1,310 3.8

Oceania 3 7.3 57 1,108 5.1

South America 4 9.8 164 832 19.7

Total 41 1,218 9,665 12.6

Gull species Chroicocephalus novaehollandiae 2 4.9 4 1,008 0.4

Chroicocephalus ridibundus 2 4.9 16 1,025 1.6

Larus argentatus 4 9.8 77 343 22.5

Larus audouinii 1 2.4 27 111 24.3

Larus dominicanus 1 2.4 10 10 100.0

Larus hyperboreus 1 2.4 2 15 13.3

Larus michahellis 6 14.6 260 814 31.9

Larus ridibundus 6 14.6 161 2,718 5.9

Leucophaeus pipixcan 1 2.4 91 124 73.4

Larus delawarensis 1 2.4 2 32 6.3

More than one species 16 39.0 568 3,465 16.4

Total 41

Bacteria species Acinetobacter baumannii 1 2.4 2 741 0.3

Campylobacter spp. 2 4.9 26 151 17.2

Enterobacter cloacae 1 2.4 2 15 13.3

Escherichia coli 21 51.2 805 3,395 23.7

Proteus mirabilis 2 4.9 98 351 27.9

Salmonella enterica 9 22.0 130 3,327 3.9

More than one species 5 12.2 155 1,685 9.2

Total 41

*Positive individuals represent an individual where at least one resistant bacteria to any antibiotic researched in the study was obtained.

pathogens, Campylobacter spp. (6%) and Salmonella spp. (8%)
both resistant to fluoroquinolones were the most identified. No
“medium-priority” pathogen has been recovered from gulls.

Molecular Characterization of ARGs in
Gulls
ARGs were reported in 70% of studies conducted in gulls
(Tables 3, 4). Mobile genetic elements (MGE) were identified
in 43% of studies, with 35 studies confirming that ARGs
were inserted on an MGE. Sixteen percent of studies detected
ARGs using PCR alone, or in combination with sequencing
(43%). Only 8% of studies characterized bacteria by whole-
genome sequencing, and one study used a metagenomic
approach (Figure 4B).

Most studies detecting ARGs focused on beta-lactamase
genes including extended-spectrum beta-lactamases (ESBL),
AmpC-type beta-lactamases, and carbapenemases, which were
identified in all continents but Antarctica (Table 3). Among
these beta-lactamases, ESBL were the most identified genes,
evenly distributed across continents, particularly the genotype
blaCTX-M. Studies detected blaCTX-M-14 and blaCTX-M-15 in
Asia, Europe, North and South America, and Oceania. Likewise,
blaCTX-M-55 was reported in all these continents with the
exception of South America. Beta-lactamases blaCMY-2 (AmpC)

were reported in Europe, North America, and Oceania, and
blaOXA-48 (carbapenemase) were reported in Africa, Europe,
North America, and Oceania (Table 3). Of the 15 studies
that found AmpC-type beta-lactamases, 7 identified that they
were inserted on an MGE, 2 identified them on the bacterial
core genome, 2 detected both chromosomal and acquired
AmpC, and 4 studies did not identify the location of the
AmpC gene. Genes conferring resistance to other antibiotics
such as fluoroquinolones, aminoglycosides, sulfonamides along
with trimethoprim, polypeptides, tetracyclines, chloramphenicol,
macrolides, streptogramins, glycopeptides, fosfomycin, and
rifamycin were reported in 59 studies (Table 4). Asia only
reported beta-lactam resistance genes.

Origin of AMR in Gulls
Only 19% of studies suggested a potential origin for the ARB or
ARGs detected among gulls. Landfill (41%), places close to gulls
nesting, and/or resting areas with high human density (29%),
sewage effluents (29%), and contaminated water (6%) were
suspected. Suspicions were based on potential contamination
sources around the sampling area. However, only one study
(Masarikova et al., 2016) carried out sampling to verify whether
the gulls acquired the bacteria from a specific contamination
source, comparing bacteria from gulls to bacteria isolated from
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FIGURE 4 | Antibiotic resistance and molecular method used. (A) Number of publications by family of antibiotic. (B) Number of publications by typing method.

sewage water near their nesting sites. The same AMR phenotypic
profiles were obtained in both sample types, and pulsed-field
gel electrophoresis (PFGE) detected the same AMR profiles in
bacterial clones from wastewater and gulls.

Evidence of Gulls Acting as Reservoirs of
ARB or ARGs
Two studies (2%) tagged gulls in both the origin and final
movement areas to identify whether they were capable of
spreading AMR across the landscape (Palmgren et al., 2006;

Ahlstrom et al., 2019a). Ahlstrom et al. (2019a) sampled
individual gulls at different periods of time obtaining fecal
samples at a landfill and in places where humans and seagulls
gathered. Satellite telemetry was used to monitor individuals
for up to 3 months, and whole-genome sequencing of bacteria
was used to compare E. coli isolates between different locations.
Their results showed that the prevalence and genetic typing
of AMR isolates were highly similar between gulls and a
landfill. Palmgren et al. (2006) ringed gulls and sampled
1,047 individuals for up to 3 years. This study failed to
detect long-term carriage of antibiotic-resistant Salmonella since
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TABLE 2 | ARB of the “Global Priority Pathogens” list of the World Health Organization isolated from gulls reported between 1981 and 2020.

Priority
category

Pathogens Antibiotic resistance No. of
publications

Gull species References

Critical Acinetobacter baumannii Carbapenem-resistant 1% (1/90) C. ridibundus Łopińska et al., 2020

Pseudomonas aeruginosa Carbapenem-resistant 0% (0/90) − −

Enterobacterales* Carbapenem-resistant 10% (9/90) L. glaucescens, L.
argentatus, L.

hyperboreus, C.
novaehollandiae, L.

michahellis, C. genei

Papagiannitsis et al., 2017; Vergara et al., 2017;
Vittecoq et al., 2017; Ahlstrom et al., 2018, 2019a,c;
Barguigua et al., 2019; Mukerji et al., 2019;
Aires-De-sousa et al., 2020

Enterobacterales* Third generation
cephalosporin-resistant

41% (37/90) L. glaucescens, L.
argentatus, L.

hyperboreus, L. fuscus,
L. michahellis, C.

novaehollandiae, L.
glaucescens, C.

ridibundus, L. marinus, L.
canus, L. cachinnans, L.

dominicanus,
Leucophaeus pipixcan,
C. brunnicephalus, L.

atricilla

Poeta et al., 2008; Bonnedahl et al., 2009, 2014; Rose
et al., 2009; Hernandez et al., 2010; Simões et al.,
2010; Veldman et al., 2013; Hasan et al., 2014; Stedt
et al., 2015; Alcalá et al., 2016; Aberkane et al., 2016,
2017; Atterby et al., 2016, 2017; Dolejska et al., 2016;
Liakopoulos et al., 2016; Merkeviciene et al., 2017,
2018; Papagiannitsis et al., 2017; Troxler et al., 2017;
Vergara et al., 2017; Ahlstrom et al., 2018, 2019a,b,
2021; Mukerji et al., 2019, 2020; Ngaiganam et al.,
2019; Aires-De-sousa et al., 2020; Haenni et al., 2020;
Zendri et al., 2020

High Enterococcus faecium Vancomycin-resistant 3% (3/90) Chroicocephalus
novaehollandiae, L.

cachinnans

Radhouani et al., 2010; Bonnedahl et al., 2014;
Oravcova et al., 2017

Staphylococcus aureus Methicillin-resistant 2% (2/90) L. argentatus Merkeviciene et al., 2017; Aires-De-sousa et al., 2020

Staphylococcus aureus Vancomycin-intermediate 0% (0/90) − −

Staphylococcus aureus Vancomycin-resistant 0% (0/90) − −

Helicobacter pylori Clarithromycin-resistant 0% (0/90) − −

Campylobacter spp. Fluoroquinolone-resistant 6% (5/90) L. michahellis,
L. audouinii,

C. ridibundus,
L. dominicanus,

Thalasseus bergii

Merkeviciene et al., 2017; Migura-Garcia et al., 2017;
Moré et al., 2017; Troxler et al., 2017; Antilles et al.,
2021

Salmonella spp. Fluoroquinolone-resistant 8% (7/90) L. michahellis,
L. audouinii, L.

dominicanus, C.
novaehollandiae,

C. ridibundus,
Leucophaeus pipixcan,
Leucophaeus modestus

Fresno et al., 2013; Antilles et al., 2015, 2021; Retamal
et al., 2015; Masarikova et al., 2016; Cummins et al.,
2020; Tardone et al., 2020

Neisseria gonorrhoeae Third generation
cephalosporin-resistant

0% (0/90) − −

Neisseria gonorrhoeae Fluoroquinolone-resistant 0% (0/90) − −

Medium Streptococcus pneumoniae Penicillin-non-susceptible 0% (0/90) − −

Haemophilus influenzae Ampicillin-resistant 0% (0/90) − −

Shigella spp. Fluoroquinolone-resistant 0% (0/90) − −

*Klebsiella pneumoniae, Escherichia coli, Enterobacter spp., Serratia spp., Proteus spp., Providencia spp., and Morganella spp.

all positive individuals were negative during the sampling
2 months later.

DISCUSSION

AMR has been detected in resident and migratory gulls
worldwide for more than a decade (Fenlon, 1981; Tsubokura
et al., 1995; Smith et al., 2002). However, the role of gulls as
reservoirs (i.e., having the capacity to disperse and transmit AMR
to other species) remains unknown. Our review identified 90
studies on AMR in wild gulls. AMR has been widely detected

across all continents including in 23 of 100 species of gulls
(IUCN, 2021), 49 bacteria species with 9 of 13 ARB classified as
critical priority for human health (WHO, 2017), ARGs from 13
classes, and 47 antibiotic types. Our results show that, with the
exception of China, studies in middle- and low-income countries
are rare. Similarly, most studies have focused on a few species
of gulls from Europe (e.g., L. argentatus and C. ridibundus) and
most on E. coli and Salmonella spp. Despite ARB and ARGs
being widely detected in gulls, our analyses showed that the
origin of these AMR remains unknown in 81% of studies, and
only two studies followed gulls across time (for up to 3 years),
but none has been able to prove that gulls were reservoirs
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TABLE 3 | Beta-lactamases genes identified in isolates from gulls reported between 1981 and 2020.

Continent AmpC CP ESBL Othersa References

Africa NR blaOXA−48 NR NR Barguigua et al., 2019

Antarctica NR NR NR NR −

Asia NR NR blaCTX-M-14, blaCTX-M-15, blaCTX-M-55,
blaCTX-M-79

NR Hasan et al., 2014

Europe blaCMY-2,
blaCMY,

blaDHA-1,
blaACT-14,
blaACT-15,
blaACT-23

blaOXA-48,
blaOXA-181,
blaKPC-2,
blaKPC-3,
blaOXA-71,
blaOXA-208,
blaVIM-1,
blaVIM-4

blaCTX-M-15, blaCTX-M-55, blaSHV-2,
blaCTX-M-1, blaCTX-M-14, blaCTX-M-27,
blaCTX-M-9, blaSHV-12, blaPER,
blaCTX-M-32, blaCTX-M, blaTEM-84,
blaCTX-M-2, blaCTX-M-8, blaCTX-M-3,
blaTEM-52C, blaTEM-52, blaCTX-M-14a,
blaPSE-1

blaTEM, blaOXA-1- like,
blaTEM-1, blaSHV,
blaOXA-1, blaOXA-3,
blaOXA-5, blaTEM-1b

Čížek et al., 2007; Dolejska et al., 2007; Poeta et al., 2008;
Bonnedahl et al., 2009, 2010; Dolejská et al., 2009;
Radhouani et al., 2009; Hernandez et al., 2010; Literak
et al., 2010, 2014; Simões et al., 2010; Wallensten et al.,
2011; Veldman et al., 2013; Vredenburg et al., 2014;
Aberkane et al., 2015, 2016, 2017; Antilles et al., 2015;
Stedt et al., 2015; Varela et al., 2015; Carroll et al., 2015;
Masarikova et al., 2016; Alcalá et al., 2016; Atterby et al.,
2017; Merkeviciene et al., 2017, 2018; Vergara et al., 2017;
Vittecoq et al., 2017

North
America

blaampC,
blaCMY-2,
blaCMY-61,
blaDHA-1,
blaCMY

blaKPC-2,
blaOXA-48,
blaOXA-9,
blaCARB-1,
blaCARB-2,

blaCARB

blaCTX-M, blaCTX-M-1, blaCTX-M-14,
blaCTX-M-15, blaCTX-M-27, blaCTX-M-32,
blaCTX-M-3, blaCTX-M-55, blaCTX-M-65,
blaCTX-M-8, blaTEM-141, blaTEM-52,
blaTEM-19, blaTEM-206, blaTEM-214,
blaSHV-12, blaSHV-2, blaSHV-2A,
blaSHV-11, blaSHV-14

blaTEM-1A, blaTEM-1B,
blaTEM-1C, blaTEM-1D,
blaOXA-1, blaOXA-466,
blaampH, blaampC2,
blamrdA, blaampC1,
blaTEM-1, blaSHV-1,
blaTEM

Alroy and Ellis, 2011; Martiny et al., 2011; Bonnedahl et al.,
2014, 2015; Atterby et al., 2016; Ahlstrom et al., 2018,
2019a,b, 2021; Gomez-Alvarez et al., 2019

Oceania blaCMY-2,
blaCMY-13,
blaCMY-42,
blaCMY-60

blaOXA-48,
blaIMP-4,
blaIMP-38

blaCTX-M-15, blaCTX-M-27, blaCTX-M-14,
blaCTX-M-3, blaCTX-M-55, blaCTX-M-11,
blaCTX-M-24

blaTEM-1, blaLAP-2,
blaTEM, blaOXA-1,
blaSHV, blaOXA-1,
blaTEM-1

Dolejska et al., 2016; Papagiannitsis et al., 2017; Mukerji
et al., 2019, 2020; Cummins et al., 2020

South
America

NR NR blaCTX-M-1, blaCTX-M-2, blaCTX-M-14,
blaSHV-2A, blaSHV-2, blaCTX-M-15,
blaCTX-M-22, blaCTX-M-3, blaTEM-40,
blaTEM-198, blaSHV-12

blaTEM-1 Hernandez et al., 2013; Báez et al., 2015; Liakopoulos
et al., 2016

AmpC, cephalosporinases; CP, carbapenemases; NR, not reported.
aCorresponds to beta-lactamases that are not classified as ESBL, AmpC, or CP.

(Palmgren et al., 2006; Ahlstrom et al., 2019a). Therefore, our
review highlights the need to increase surveillance of AMR in
gulls and design innovative studies aiming to assess their role
as reservoirs, which can have major implications for public and
conservation measures to limit the global spread of AMR in
aquatic systems.

The detection of AMR in gulls across all continents, including
critically important antibiotic-resistant pathogens such as ESBL
and carbapenemase-producing E. coli and S. enterica, illustrates
the potential of gulls to participate in the alarming global spread
of AMR (Dolejska et al., 2016; Ahlstrom et al., 2019c; Aires-
De-sousa et al., 2020; Cummins et al., 2020). The migratory
capacity of gulls makes them an ideal host to spread ARB and
ARGs across landscapes and ecosystems. For example, Ahlstrom
et al. (2021) reported that gulls of the Larus genus, including
L. argentatus, can migrate 3,000 km over a week, Larus fuscus can
migrate from Europe to Africa (Kilpi and Saurola, 1984), while
Leucophaeus pipixcan migrates from North to South America
(Hernandez et al., 2013; Barbieri et al., 2016). In contrast, other
gull species such as L. dominicanus are resident but also carry
ESBL-resistant E. coli with ARGs genes such as blaCTX-M and
blaSHV and aminoglycoside-resistant Salmonella enteritidis with
str genes (Liakopoulos et al., 2016; Toro et al., 2016). Although
these species might not necessarily contribute to the long-range
dispersal of AMR, they could participate in local transmission

to other species and humans (Vigo et al., 2011; Retamal et al.,
2015; Toro et al., 2016). Overall, this review highlights that
gulls are at least sentinels of ARB and ARGs spreading in
the environment, calling for future research in species and
countries where AMR has not yet been studied. In particular,
environmental and animal health national and international
authorities should consider gulls in the surveillance of AMR
within the environment.

Although AMR is widely spread among gulls, there are almost
no data on the origin of the observed ARB and ARGs. In fact,
less than 20% of studies included in this review mentioned
potential sources of AMR contamination. Given that AMR
has exponentially increased with antibiotic use in humans and
livestock and several gull species feed on human and agricultural
waste, most studies suspect a human origin including landfills,
places close to gulls nesting, and/or resting areas that have a
high human density, sewage effluents, and contaminated water
(Bonnedahl et al., 2014; Atterby et al., 2016; Mukerji et al.,
2019; Ahlstrom et al., 2021). This is consistent with the overall
assumption that wildlife becomes contaminated with AMR
from anthropogenic sources in studies suggesting transmission
in areas where wildlife lives and feeds (Dolejska and Literak,
2019). However, no study has fully proven the origin of AMR
in gulls, and other environmental factors such as co-selection
with heavy metals and microplastics can also generate AMR
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TABLE 4 | AMR genes identified in isolates from gulls reported between 1981 and 2020.

Continent FQ POLY TET AMG CHL SUL TMP MAC STR GLY FOS RIF References

Africa aac(6′)-Ib-cr,
qnrS1, qnrB1

NR NR NR NR NR NR NR NR NR NR NR Barguigua et al., 2019

Antarctica NR NR NR NR NR NR NR NR NR NR NR NR −

Asia NR NR NR NR NR NR NR NR NR NR NR NR −

Europe aac(6′)-Ib-cr,
qnrB, gyrA,
parC, qnrA1,
qnrS, qnrB1,
qnrS1

mcr-9,
mcr-1,

tetA, tetB, tetG,
tetL, tetM, tetD

aadB, aadA, aadA1,
aadA2, aadA4, aadA5,
rmtB, armA, aphA1,
aacA4, aac(3)II, strA,
strB, aac(6′)-Ib,
aph(30′)-IIIa, ant(6)-Ia,
sat, aac(3)-IV, aac(6′),
aadA1a

catII,
catA,
catA1,
cmlA,
cmlA1,
floR,
cat,

catB3

sul1,
sul2,
sul3

dfr1,
dfr5,
dfr7,

dfrA16,
dfrA1,
dfrA12,
dfrA14,
dfrA17,
dfrA7,
dfrA15

ermB vatE,
vatD

vanA NR NR Čížek et al., 2007; Dolejska et al., 2007;
Gionechetti et al., 2008; Poeta et al., 2008;
Dolejská et al., 2009; Radhouani et al., 2009,
2010, 2011; Bonnedahl et al., 2009, 2010;
Hernandez et al., 2010; Literak et al., 2010,
2014; Simões et al., 2010; Wallensten et al.,
2011; Veldman et al., 2013; Vredenburg et al.,
2014; Aberkane et al., 2015, 2016; Carroll
et al., 2015; Aberkane et al., 2017; Stedt et al.,
2015; Varela et al., 2015; Antilles et al., 2015;
Masarikova et al., 2016; Ruzauskas and
Vaskeviciute, 2016; Alcalá et al., 2016;
Merkeviciene et al., 2017, 2018; Vergara et al.,
2017; Vittecoq et al., 2017; Atterby et al., 2017;
Ngaiganam et al., 2019; Ahlstrom et al., 2019b;
Haenni et al., 2020; Łopińska et al., 2020;
Zendri et al., 2020; Aires-De-sousa et al., 2020

North
America

aac(6′)-Ib-cr,
gyrA, parC,
parE, qnrB4,
qnrS1, oqxB,
qnrA1, qnrB,
qnrA

NR tetA, tetB, tetC,
tetD, tetR

aac3, aac(3)-Iia,
aac(3)-IId, aac(3)-VIa,
aadA, aadA1, aadA2,
aadA2b, aadA5,
ant(2′′)-Ia, aph(3′′)-Ib,
aph(3′)-Ia, aph(6)-Id,
aph(3′), aac(3)-IIa,
aph(3′)-IIa, strA, strB

catA1,
catB3,
catB4,
cmlA1,

floR

sul1,
sul2,
sul3

dfrA1,
dfrA5,
dfrA7,
dfrA8,
dfrA12,
dfrA14,
dfrA15,
dfrA16,
dfrA17,
dfrA5,
dfrA8

ermB,
mphA,
mphE,
ereA

NR NR fosA3,
fosA4,
fosA7

NR Alroy and Ellis, 2011; Martiny et al., 2011;
Bonnedahl et al., 2014, 2015; Atterby et al.,
2016; Ahlstrom et al., 2018, 2019a,c, 2021;
Gomez-Alvarez et al., 2019

Oceania qnrS, qnrB,
qnrS1, qnrB4,
qnrB6

mrc-1 tetA, tetM strA, strB, aac(6′)-Iy,
ant(3′′)-IIa, aph(3′)-Ia,
aac(3)-IId, aph(3′)-IIIa,
aac(6′)aph(2′′)

floR sul2,
sul3

dfrA14 mphA,
ermB

NR vanB fosA7 arr-2 Dolejska et al., 2016; Oravcova et al., 2017;
Papagiannitsis et al., 2017; Mukerji et al., 2019,
2020; Cummins et al., 2020

South
America

NR NR tetA strA, strB NR NR NR NR NR NR NR NR Hernandez et al., 2013; Báez et al., 2015;
Liakopoulos et al., 2016; Toro et al., 2016

FQ, fluoroquinolones; POLY, polypeptides; TET, tetracyclines; AMG, aminoglycosides; CHL, chloramphenicol; SUL, sulfonamides; TMP, trimethoprim; MAC, macrolides; STR, streptogramins; GLY, glycopeptides; FOS,
fosfomycin; RIF, rifamycin; NR, not reported.
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(Gullberg et al., 2014; Dong et al., 2021). In our review, only
one study sampled a potential contamination source to identify
the origin of AMR find in gulls, showing that isolates from
wastewater and gulls had the same macrorestriction profiles
(Masarikova et al., 2016). One possible explanation for the small
number of studies trying to identify the origin of AMR in
gulls could be that no standard sampling protocol or specific
criteria are available to fully determine the origin. Alternatively,
logistical challenges such as collecting both wildlife, domestic
animals, and human environments at the same time could limit
the realization of these studies. Future research could follow
methodologies used by studies performed on bacteria susceptible
to antibiotics and other wildlife. For example, Nelson et al.
(2008) characterized E. coli from gulls, garbage, and sewage by
ribotyping, finding isolates with > 90% similarity in the band
patterns between gulls and sewage. However, this study was
not included in this review because it did not test for ARB
or ARGs. Similarly, other studies have simultaneously sampled
domestic animals and wildlife where contact between species can
be frequent (e.g., small-scale farms) to assess potential cross-
species transmission of ESBL-E. coli (Benavides et al., 2021).
Although challenging, identifying the origin of AMR in gulls is
essential when planning preventive strategies to limit the spread
of AMR in natural ecosystems. Seagulls are characterized by
being ubiquitous in most urban and rural environments, and
many of them are migratory, so it is assumed that gulls may
disperse ARB and ARGs between countries or even continents.
Despite this assumption, only two studies included in this review
performed longitudinal samplings to test the long-term carriage
of ARB or ARGs in gulls (Palmgren et al., 2006; Ahlstrom et al.,
2019a), requiring further research to identify their implication as
reservoirs of AMR.

The detected ARB and ARGs found in gulls have major
implications for both animal and human health. E. coli
was the most common bacterial species reported followed
by Salmonella, similarly to other wildlife species (Vittecoq
et al., 2016). Both bacterial species are important for public
health and are considered a critical priority for human and
animal health (Vittecoq et al., 2016; WHO, 2017). E. coli
and Salmonella spp. can also be found at equilibrium as
commensal bacteria, so the impact of these bacteria of gull’s
health is unknown. Other reported pathogens found in gulls,
such as Campylobacter spp. and Klebsiella pneumoniae, are
considered as zoonotic pathogens and could represent a threat
to human health. Global priority antibiotic-resistant pathogens
for human and animal health were increasingly reported among
gulls after 2008, particularly those considered as “critical”
(WHO, 2017). Broad-spectrum antimicrobial therapies are
commonly used to treat bacterial infections in both humans
and animals (Bush and Jacoby, 2010). The widespread detection
of third-generation cephalosporin-resistant Enterobacterales in
addition to resistance to other important antimicrobials, such
as carbapenems and fluoroquinolones, could compromise the
effective treatment rates representing an important threat to
public and veterinary health.

The higher detection of antibiotic-resistant enterobacteria
could be explained by the relatively easier collection of fecal

samples compared to capturing and sampling gulls to detect
other pathogens (e.g., blood bacteria). Thus, the absence
of other global-priority ARB in current studies such as
Pseudomonas aeruginosa carbapenem-resistant (critical priority),
Staphylococcus aureus vancomycin-intermediate or -resistant
(high priority), and Shigella spp. fluoroquinolone-resistant
(medium priority) could reflect a lack of research and not
necessarily that these bacteria are not circulating among gulls.
In fact, one study using a metagenomic approach found 31
previously undescribed ARGs, while another detected more
than 70 bacterial species and 24 ARGs (Martiny et al., 2011;
Merkeviciene et al., 2017). This review identified a high diversity
of ARGs including those implicated in bacterial infections
of humans and animals such as ESBL and carbapenemases
(Bevan et al., 2017; Li et al., 2019). The presence of ARGs
inserted in MGE could facilitate the spread of these resistance
genes within gulls and between humans and other animals
(Loayza et al., 2020). Our review also shows a wide diversity
of bacterial clones and ARGs found in gulls. Whole-genome
sequencing for bacterial typing was used in 13% of studies
since 2011. Thus, the more widespread use of this technique in
the following years could increase the detection of ARB clones
and ARGs in gulls.

Our review showed that North America and Europe
had the most diverse molecular diversity among ARB,
which could be associated with more available molecular
typing techniques compared to low-income countries. For
example, ESBL- E. coli ST131, previously associated with
nosocomial infections in humans, has been identified in
gulls mainly from the United States (Bonnedahl et al., 2014;
Ahlstrom et al., 2018, 2019a, 2021) and Portugal (Simões
et al., 2010; Vredenburg et al., 2014; Varela et al., 2015).
Despite fewer information available, ST131 has also been
reported in gulls from low- and middle-income countries
(LMICs) such as Bangladesh (Hasan et al., 2014). Future
research should also evaluate the pathogenic potential of
the detected ARB using whole-genome sequencing to detect
virulence factors and other pathogenic genetic material
(e.g., biofilms).

CONCLUSION AND FUTURE
DIRECTIONS

Our review identified an increasing interest in ARB and ARGs
among gulls in the last decade, although there is a considerable
lack of information in LMICs, particularly regarding migratory
species. Despite the widespread detection and high diversity of
ARB and ARGs worldwide, there is no evidence that gulls act as
reservoirs of ARB and ARGs. Furthermore, most of the studies
could not demonstrate whether ARB and ARGs in gulls came
from anthropogenic sources. Finally, we could not compare ARB
or ARGs prevalence across studies due to their heterogeneity in
the results and methodologies to assess AMR.

Knowledge gaps identified in this review can be overcome
by future research. First, the use of whole-genome sequencing
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combined with sampling across different species could help
assessing cross-species transmission between gulls and humans,
domestic animals, or other wild species that do not usually
interact with humans but share nesting sites with gulls
(e.g., penguins). Secondly, future research should identify if
environmental factors such as plastic and heavy metal pollution
are also selecting ARB and ARGs in gulls independently
of contact with humans. Thirdly, the clinical relevance and
conservation implications of the detected ARB for gull’s health
require further investigation. In particular, there is no evidence
that the observed bacteria cause any pathogenicity to the studied
gulls nor complicate treatment of gulls with antibiotics in
rehabilitation centers. Finally, innovative techniques such as
satellite tracking and collaborations across research teams in
different countries where gulls migrate (e.g., Canada to Chile
for the Franklin’s gulls) could help elucidate whether gulls are
spreading ARB and/or ARGs across countries and continents
during their migration.
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