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ABSTRACT
Let (µ1, µ2) be a coherent pair of Jacobi measures. In most cases, we obtain conver-
gence and boundedness of the Fourier series for Sobolev polynomials with respect
to this kind of measures.
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1. Introduction

Let µ1, µ2 be positive Borel measures supported on R and consider the Sobolev inner
product

(f, g)S =

∫
R
f(x)g(x) dµ1(x) + λ

∫
R
f ′(x)g′(x) dµ2(x), λ > 0. (1)

Let {Pn}n and {Tn}n denote some orthogonal polynomial sequences with respect to µ1

and µ2, respectively. In [5], it is introduced the concept of coherent pair of measures
in this way: the pair (µ1, µ2) is a coherent pair of measures if there exist nonzero
constants An and Bn such that

Tn = AnP
′
n+1 +BnP

′
n, n ≥ 1.

This kind of measures has turned out to be very important in the research of Sobolev
orthogonal polynomials. In [10], a complete classification of all coherent pairs was
given. More precisely, (µ1, µ2) is a coherent pair of measures if at least one of the
two measures is a Jacobi or a Laguerre measure. The main target of this paper is
to study the convergence and uniform boundedness of the Fourier series in terms of
orthonormal polynomials associated with the inner Sobolev product (1) where (µ1, µ2)
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forms a coherent pair of measure. In this work, we are going to consider pairs where
one of the measures will be a Jacobi measure

dµα,β(x) = (1− x)α(1 + x)β dx, x ∈ [−1, 1],

with α > −1, β > 0. It may happen two possibilities:

i) (µ1, µ2) is a coherent pair of measures of Jacobi type I if µ2 = µα,β and depending
on α, µ1 would be

a) If α > 0, dµ1(x) = (ξ − x)(1− x)α−1(1 + x)β−1 dx with ξ ≥ 1.
b) If α = 0, dµ1(x) = (1 + x)β−1 dx+Mδ(1), with M ≥ 0.
c) If −1 < α < 0, dµ1(x) = (1− x)α(1 + x)β−1 dx.

ii) (µ1, µ2) is a coherent pair of measures of Jacobi type II if µ1 = µα,β−1 and

dµ2(x) =
1

ξ − x
(1− x)α+1(1 + x)β dx+Mδ(ξ), ξ ≥ 1, M ≥ 0.

Notice that for ξ = 1 and M = 0 the coherent pair is of type I.

It has been proved in [10] that all coherent pairs where µ2 is a Jacobi measure on
(−1, 1) are of the above-mentioned form, or can be transformed to one of them by the
transformation x→ −x.

Given 1 ≤ p < ∞ and µ a positive Borel measure supported on [−1, 1]. We will
write Lp(µ) as the space of all measurable functions on [−1, 1] for which

‖f‖Lp(µ) =

(∫ 1

−1
|f(x)|p dµ(x)

)1/p

<∞.

Let (µ1, µ2) be a coherent pair of measures of Jacobi type, we define the space W p
1,2,

for 1 ≤ p < ∞, as the space of measurable functions f defined on [−1, 1] such that
there exists f ′ almost everywhere and

‖f‖pW p
1,2

= ‖f‖pLp(µ1) + λ‖f ′‖pLp(µ2) <∞.

Let {Rn}n be the sequence of orthonormal polynomials with respect to (1). Let Gnf
be the n-th partial sum given by

Gnf(x) =

n∑
k=0

ek(f)Rk(x), ek(f) = (Rk, f)S .

The main result of this paper provide us characterizations of the uniform bounded-
ness of the operator Gn for Jacobi coherent pairs.

Theorem 1.1. Let α > −1, β > 0 and (µ1, µ2) be a coherent pair of Jacobi measures
where M = 0 for type II. Let f ∈W p

1,2 be with 1 < p <∞. Then

‖Gnf‖W p
1,2
≤ C‖f‖W p

1,2
, (2)

with a constant C independent of n and f , if and only if
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i) for type I, ∣∣∣∣(α+ 1)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
,

∣∣∣∣(β + 1)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
. (3)

ii) for type II, ∣∣∣∣(α+ 2)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
,

∣∣∣∣(β + 1)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
. (4)

If the space W1,2 was complete and the polynomials formed a dense class, the
uniform boundedness of Gn would be equivalent to the convergence in W p

1,2. The next
result gives us both requirements.

Theorem 1.2. Let α > −1, β > 0. Let (µ1, µ2) be a coherent pair of Jacobi measures
with M = 0 for the type II. Then

i) the set of polynomials is dense in the space W p
1,2;

ii) W p
1,2 is a complete space.

So, Theorem 1.1 and Theorem 1.2 imply the following corollary.

Corollary 1.3. Let α > −1, β > 0 and (µ1, µ2) be a coherent pair of Jacobi measures
where M = 0 for type II. Let f ∈W p

1,2 be with 1 < p <∞. Then

lim
n→∞

‖Gnf − f‖W p
1,2

= 0,

if and only if

i) for type I, (3) holds.
ii) for type II, (4) holds.

As we can read in [8] Sobolev orthogonal polynomials with respect to a Sobolev
inner product

(f, g) =

m∑
k=0

∫
R
f (k)g(k) dµk,

have been widely studied, providing us with many applications and publications. The
lack of Christoffel-Darboux formula for Sobolev orthogonal polynomials, except for
particular cases, deprives an important tool for studying convergence and summabil-
ity of Fourier orthogonal expansions. In the last years, several papers have advanced
in this topic. In [13], the author presents some results on linear summation meth-
ods for Fourier series in orthonormal polynomials of discrete Sobolev spaces. In [1],
convergence and uniform boundedness of Fourier series are obtained in this context
(µ0 = µα,α+M(δ1 +δ−1), µ1 = N(δ1 +δ−1) and µk = 0, k ≥ 2). More recently, we can
find papers as [15,16] which study more properties of Fourier series in discrete Sobolev
spaces.

In the continuous case (all the measures have continuous support), necessary con-
ditions of convergence are obtained in [3,4,7] for particular cases. Approximation by
polynomials is analyzed in [18] in the case µk = µα,β. In [2,6] the expansions for
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Jacobi-Sobolev polynomials with µk = µα+k,β+k are studied obtaining a complete
characterization of the uniform boundedness and the convergence of the partial sum
operators for the Fourier series in [2]. In this paper, we add to this topic by studying
Fourier series of ortonormal polynomials with respect to an inner Sobolev product
where the measures form a coherent pair of Jacobi measures.

This paper is structured as follows: in Section 2, we present the necessary definitions
and results concerning the Jacobi polynomials. Section 3 is devoted to give some
auxiliary results for Jacobi-Sobolev polynomials of type I and to prove i) of Theorem
1.1. Analogously, Section 4 is devoted to those of type II and proving ii) of Theorem
1.1. Finally, Theorem 1.2 is proved in Section 5.

2. Jacobi polynomials

Let {P (α,β)
n }n be the sequence of Jacobi polynomials for arbitrary α, β, defined by the

Rodrigues formula, which are orthogonal with respect to the measure dµα,β(x),

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

(
d

dx

)n
((1− x)n+α(1 + x)n+β).

We denote τ
(α,β)
n the leading coefficient of P

(α,β)
n for n ≥ 2 that is given by

τ (α,β)
n = 2−n

(
2n+ α+ β

n

)
. (5)

For α > −1 and β > −1, we have

(d(α,β)
n )2 := ‖P (α,β)

n (x)‖2L2(µα,β) =

∫ 1

−1
(P (α,β)

n (x))2(1− x)α(1 + x)β dx

=
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
≈ 2α+β

n
. (6)

For arbitrary α and β the following relations are satisfied, as we can see in [11],

d

dx
P (α,β)
n (x) =

1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 (x) (7)

and

P (α−1,β−1)
n (x) =

n+ α+ β − 1

2n+ α+ β − 1
P (α,β−1)
n (x)− n+ β − 1

2n+ α+ β − 1
P

(α,β−1)
n−1 (x). (8)

For α > −1 it holds

P (α,β)
n (1) =

(
n+ α

n

)
=

nα

Γ(α+ 1)

(
1 +O

(
1

n

))
. (9)

Let {B(α,β)
n (x)}n be the sequence of orthonormal Jacobi polynomials. Taking τ =
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max{α, β} > −1, the following equivalence is well-known (see [17], Exercise 91),

‖B(α,β)
n ‖Lp(µα,β) '


1, 2τ > pτ − 2 + p/2,

(log n)1/p, 2τ = pτ − 2 + p/2,

nτ+1/2−2(τ+1)/p, 2τ < pτ − 2 + p/2.

(10)

Let S(α,β)
n (f) be the n-th partial sum of Fourier expansion in terms of orthonormal

Jacobi polynomials,

S(α,β)
n (f) =

n∑
k=0

b
(α,β)
k (f)B

(α,β)
k (x),

where

b
(α,β)
k (f) =

∫ 1

−1
f(y)B

(α,β)
k (y) dµα,β(y).

In [12], Muckenhoupt provides us with the following theorem that will be very useful
to prove our main result, Theorem 1.1.

Theorem 2.1. Let α, β > −1 and 1 < p <∞. There exists a constant C, independent
of n and f , such that

‖S(α,β)
n f‖Lp(µα,β) ≤ C‖f‖Lp(µα,β)

if and only if ∣∣∣∣(α+ 1)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
,

∣∣∣∣(β + 1)

(
1

p
− 1

2

)∣∣∣∣ < 1

4
. (11)

We define the operators

T
(α,β)(γ,δ)
d,l g(x) =

∞∑
k=3

C

k
b
(γ,δ)
k−l (g)B

(α,β)
k−d (x), d, l = 0, 1.

With the same arguments of Proposition 3 of [2] we can prove

Proposition 2.2. For α, β, γ, δ > −1 and 1 < p <∞, it is verified that

‖T (α,β)(γ,δ)
d,l g‖Lp(µα,β) ≤ C‖g‖Lp(µγ,δ),

for each g ∈ Lp(µγ,δ).
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3. Jacobi-Sobolev orthogonal polynomials type I

3.1. Auxiliary results

Let (µ1, µ2) be a coherent pair of Jacobi type I. Let {Qn}n be the corresponding
sequence of orthogonal polynomials with respect to (1), such that for n ≥ 2 we choose

the leading coefficient of Qn(x) equals to the leading coefficient of P
(α−1,β−1)
n (x). In

[11] the authors studied the asymptotics of these polynomials and proved the following
relation:

P (α−1,β−1)
n (x) = Qn(x)− an−1Qn−1(x), n ≥ 3, an = O(1/n2). (12)

From (8) and (9) we can prove

P (0,β−1)
n (1) = 1, P (−1,β−1)

n (1) = 0. (13)

If we denote qn := (Qn, Qn)
1/2
S , (12) can be written in terms of orthonormal polyno-

mials as

d
(α−1,β−1)
n

qn
B(α−1,β−1)
n (x) = Rn(x)− an−1

qn−1

qn
Rn−1(x), n ≥ 3. (14)

Lemma 3.1. For n ≥ 3 the Fourier coefficients en(f) = (Rn, f)S can be expressed as

a) If α > 0,

en(f) =
d

(α−1,β−1)
n

qn
b(α−1,β−1)
n ((ξ − ·)f)

+
λ

2
(n+ α+ β − 1)

d
(α,β)
n−1

qn
b
(α,β)
n−1 (f ′) + an−1

qn−1

qn
en−1(f). (15)

b), c) If −1 < α ≤ 0,

en(f) =
n+ α+ β − 1

2n+ α+ β − 1

d
(α,β−1)
n

qn
b(α,β−1)
n (f)

− n+ β − 1

2n+ α+ β − 1

d
(α,β−1)
n−1

qn
b
(α,β−1)
n−1 (f)

+
λ

2
(n+ α+ β − 1)

d
(α,β)
n−1

qn
b
(α,β)
n−1 (f ′) + an−1

qn−1

qn
en−1(f). (16)

Proof. Using (14) for the case a) and (14), (8) and (13) for the cases b) and c).

Using Theorem 2 of [9], we can obtain the asymptotic for qn.
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Lemma 3.2. Let −1 < α and β > 0 then

g1(n) +
λ

4
(n+α+ β − 1)2(d

(α,β)
n−1 )2 ≤ q2

n ≤ g2(n) +
λ

4
(n+α+ β − 1)2(d

(α,β)
n−1 )2, (17)

where g1(n) ≈ C/n and g2(n) ≈ C/n.

Lemma 3.3. Let α > −1, β > 0 and τ = max{α, β}. Then

‖Rn‖W p
1,2
≤ C


1, 2τ > pτ − 2 + p/2,

(log n)1/p, 2τ = pτ − 2 + p/2,

nτ+1/2−2(τ+1)/p, 2τ < pτ − 2 + p/2.

(18)

Proof. If α > 0, we use (12) to prove

‖Qn‖Lp(µ1) ≤ C‖P (α−1,β−1)
n ‖Lp(µ1), ‖Q′n‖Lp(µ2) ≤ Cn‖P

(α,β)
n−1 ‖Lp(µ2).

Then

‖Qn‖W p
1,2
≤ C(‖P (α−1,β−1)

n ‖Lp(µα−1,β−1) + λn‖P (α,β)
n−1 ‖Lp(µα,β))).

Note that if α = 0, from (12) and (13) we have that

|Qn(1)| ≤ C

n2
. (19)

If −1 < α ≤ 0, using (12), (13), (19) and (8) we have

‖Qn‖Lp(µ1) ≤ C‖P (α,β−1)
n ‖Lp(µα,β−1), ‖Q′n‖Lp(µ2) ≤ Cn‖P

(α,β)
n−1 ‖Lp(µ2).

Then

‖Qn‖W p
1,2
≤ C(‖P (α,β−1)

n ‖Lp(µα,β−1) + λn‖P (α,β)
n−1 ‖Lp(µα,β)).

It is well-known that

‖P (α,β)
n−1 ‖Lp(µα,β) ' ‖P (α,β)

n ‖Lp(µα,β),

and using the equivalences (10) and (6), we have

‖P (α−1,β−1)
n ‖Lp(µα−1,β−1)

‖P (α,β−1)
n ‖Lp(µα,β−1)

}
≤ Cn‖P (α,β)

n ‖Lp(µα,β).

Then, for α > −1 we can write

‖Qn‖W p
1,2
≤ C(n‖P (α,β)

n ‖Lp(µα,β) + λn‖P (α,β)
n ‖Lp(µα,β)) ≤ Cn‖P (α,β)

n ‖Lp(µα,β).
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Taking into account (17) and (6)

qn ≥ Cn1/2,

then

‖Rn‖W p
1,2

=
‖Qn‖W p

1,2

qn
≤ C

n‖P (α,β)
n ‖Lp(µα,β)

n1/2
≤ C‖B(α,β)

n ‖Lp(µα,β).

Thus, from (10) we have proved the result.

3.2. Proof of Theorem 1.1, i)

3.2.1. Sufficient conditions.

First of all, notice that applying Hölder inequality and (10) we have that for g ∈
Lp(µα,β)

|b(α,β)
k (g)| ≤ C‖g‖Lp(µα,β)‖B

(α,β)
k ‖Lq(µα,β) ≤ C‖g‖Lp(µα,β), (20)

where q is the conjugate of p (1/p+ 1/q = 1). The last inequality is true if (3) holds.
On the other hand, for g ∈ W p

1,2, from Hölder inequality and (18) we have that if (3)
is satisfied

|ek(g)| ≤ C
(
‖g‖Lp(µ1)‖Rk‖Lq(µ1) + λ‖g′‖Lp(µ2)‖R′k‖Lq(µ2)

)
≤ C‖g‖W p

1,2
‖Rk‖W q

1,2
≤ C‖g‖W p

1,2
. (21)

We are going to start proving Theorem 1.1 for the type a), i.e., α > 0. Taking

M0(x) :=G2f(x),

M1(x) :=

n∑
k=3

(d
(α−1,β−1)
k )2

q2
k

b
(α−1,β−1)
k ((ξ − ·)f)B

(α−1,β−1)
k (x),

M2(x) :=
λ

2

n∑
k=3

(k + α+ β − 1)d
(α,β)
k−1 d

(α−1,β−1)
k

q2
k

b
(α,β)
k−1 (f ′)B

(α−1,β−1)
k (x),

M3(x) :=

n∑
k=3

ak−1d
(α−1,β−1)
k qk−1

q2
k

ek−1(f)B
(α−1,β−1)
k (x),

M4(x) :=

n∑
k=3

ak−1d
(α−1,β−1)
k qk−1

q2
k

b
(α−1,β−1)
k ((ξ − ·)f)Rk−1(x),

M5(x) :=
λ

2

n∑
k=3

(k + α+ β − 1)d
(α,β)
k−1 ak−1qk−1

q2
k

b
(α,β)
k−1 (f ′)Rk−1(x),

M6(x) :=

n∑
k=3

a2
k−1q

2
k−1

q2
k

ek−1(f)Rk−1(x).
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Using (14) and (15) we can write the n-th partial sum as

Gnf(x) = M0(x) +M1(x) +M2(x) +M3(x) +M4(x) +M5(x) +M6(x).

So, we are going to bound the norms of each Mi(x), i = 0, . . . , 6. Using Minkowski
inequality, (21) and (18), we obtain that

‖M0‖pW p
1,2
≤ C‖f‖pW p

1,2
. (22)

We study now

M1(x) =

n∑
k=3

(d
(α−1,β−1)
k )2

q2
k

b
(α−1,β−1)
k ((ξ − ·)f)B

(α−1,β−1)
k (x).

In this case, ∣∣∣∣∣(d
(α−1,β−1)
k )2

q2
k

∣∣∣∣∣ ≤ C

k2
.

So, from Minkowski inequality, (20), (10) and (3)

‖M1‖Lp(µ1)

≤
n∑
k=3

C

k2

(∫ 1

−1

(
|b(α−1,β−1)
k ((ξ − ·)f)||B(α−1,β−1)

k (x)|
)p

dµ1(x)

)1/p

≤ C‖(ξ − ·)f‖Lp(µα−1,β−1)

n∑
k=3

C

k2
‖B(α−1,β−1)

k ‖Lp(µ1) ≤ C‖f‖Lp(µ1). (23)

The derivative of M1(x) is

M ′1(x) =
1

2

n∑
k=3

(k + α+ β − 1)d
(α−1,β−1)
k d

(α,β)
k−1

q2
k

b
(α−1,β−1)
k ((ξ − ·)f)B

(α,β)
k−1 (x).

Let h(k) = λ
4 (k + α+ β − 1)2(d

(α,β)
k−1 )2, then from Lemma 3.2

1

g2(k) + h(k)
≤ 1

q2
k

≤ 1

g1(k) + h(k)
.

Thus ∣∣∣∣ 1

q2
k

− 1

h(k)

∣∣∣∣ ≤ g2(k)

h(k)(g1(k) + h(k))
' C

k3
. (24)
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So, we can rewrite M ′1(x) as

M ′1(x) = M ′1,1(x) +M ′1,2(x) :=
n∑
k=3

Akb
(α−1,β−1)
k ((ξ − ·)f)B

(α,β)
k−1 (x) +

n∑
k=3

C

k
b
(α−1,β−1)
k ((ξ − ·)f)B

(α,β)
k−1 (x),

where Ak = O(1/k2). For the first summnand, applying again (20) and (10)

‖M ′1,1‖Lp(µ2) ≤ C‖f‖Lp(µ1), (25)

if (3) holds. For the second term, from Proposition 2.2 and Theorem 2.1

‖M ′1,2‖
p
Lp(µ2) =

∫ 1

−1
|T (α,β)(α−1,β−1)
−1,0 (S(α−1,β−1)

n ((ξ − ·)f))|p(1− x)α(1 + x)β dx

≤ C
∫ 1

−1
|S(α−1,β−1)
n ((ξ − ·)f)|p(1− x)α−1(1 + x)β−1 dx ≤ C‖f‖pLp(µ1), (26)

if (3) holds. Thus, from (23), (25) and (26)

‖M1‖pW p
1,2
≤ C‖f‖pLp(µ1). (27)

For M2(x),

M2(x) =
λ

2

n∑
k=3

(k + α+ β − 1)d
(α,β)
k−1 d

(α−1,β−1)
k

q2
k

b
(α,β)
k−1 (f ′)B

(α−1,β−1)
k (x),

note that the coefficients satisfy∣∣∣∣∣λ2 (k + α+ β − 1)d
(α,β)
k−1 d

(α−1,β−1)
k

q2
k

∣∣∣∣∣ ≤ C

k
.

Then using (24) we can write

M2(x) = M2,1(x) +M2,2(x) :=
n∑
k=3

Akb
(α,β)
k−1 (f ′)B

(α−1,β−1)
k (x) +

n∑
k=3

C

k
b
(α,β)
k−1 (f ′)B

(α−1,β−1)
k (x),

where Ak = O(1/k2). For the first term of the sum from (20) and (10)

‖M2,1‖pLp(µ1) ≤ C‖f
′‖pLp(µ2), (28)
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if (3) is satisfied. For the second term, from Proposition 2.2 and Theorem 2.1

‖M2,2‖pLp(µ1) =

∫ 1

−1
|T (α−1,β−1)(α,β)

0,−1 S(α,β)
n (f ′)|p dµ1(x)

≤ (ξ + 1)

∫ 1

−1
|T (α−1,β−1)(α,β)

0,−1 S(α,β)
n (f ′)|p dµα−1,β−1(x)

≤ C
∫ 1

−1
|S(α,β)
n (f ′)|p dµα,β(x) ≤ C‖f ′‖pLp(µ2). (29)

So, from (28) and (29) we have

‖M2‖pLp(µ1) ≤ C‖f
′‖pLp(µ2). (30)

Derivating M2(x)

M ′2(x) =
λ

4

n∑
k=3

(k + α+ β − 1)2(d
(α,β)
k−1 )2

q2
k

b
(α,β)
k−1 (f ′)B

(α,β)
k−1 (x),

and writing the coefficients like

1

q2
k

=
1

q2
k

− 1

h(k)
+

1

h(k)
,

it is easy to see that

M ′2(x) =

n∑
k=3

Akb
(α,β)
k−1 (f ′)B

(α,β)
k−1 (x) +

λ

4
S(α,β)
n−1 (f ′)− λ

4
S(α,β)

2 (f ′),

with Ak = O(1/k2). So, from (20), (10) and Theorem 2.1, we may prove

‖M ′2‖
p
Lp(µ2) ≤ C‖f

′‖pLp(µ2), (31)

if (3) holds, and from (30) and (31)

‖M2‖pW p
1,2
≤ C‖f ′‖pLp(µ2). (32)

For M3(x) the treatment is anologous.

M3(x) =

n∑
k=3

ak−1d
(α−1,β−1)
k qk−1

q2
k

ek−1(f)B
(α−1,β−1)
k (x),

and the coefficients satisfy ∣∣∣∣∣ak−1d
(α−1,β−1)
k qk−1

q2
k

∣∣∣∣∣ ≤ C

k3
.
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Then from Minkowski inequality, (21) and (10) we have that

‖M3‖Lp(µ1) ≤
n∑
k=3

C

k3

(∫ 1

−1

(
|ek−1(f)B

(α−1,β−1)
k (x)|

)p
dµ1(x)

)1/p

≤ C‖f‖W p
1,2

n∑
k=3

C

k3
‖B(α−1,β−1)

k ‖Lp(µ1) ≤ C‖f‖W p
1,2
.

Analogously the result is obtained for the derivative of M3. Since,

‖M3‖pW p
1,2
≤ C‖f‖pW p

1,2
, (33)

when (3) is true. We take now M4(x).

M4(x) =

n∑
k=3

ak−1d
(α−1,β−1)
k qk−1

q2
k

b
(α−1,β−1)
k ((ξ − ·)f)Rk−1(x).

Observe that ∣∣∣∣∣ak−1d
(α−1,β−1)
k qk−1

q2
k

∣∣∣∣∣ ≤ C

k3
.

Therefore from (20) and (18), we obtain

‖M4‖pW p
1,2
≤ C‖f‖pLp(µ1), (34)

if (3) holds. For M5(x),

M5(x) =
λ

2

n∑
k=3

(k + α+ β − 1)d
(α,β)
k−1 ak−1qk−1

q2
k

b
(α,β)
k−1 (f ′)Rk−1(x),

the coefficients satisfy ∣∣∣∣∣(k + α+ β − 1)d
(α,β)
k−1 ak−1qk−1

q2
k

∣∣∣∣∣ ≤ C

k2
,

so we obtain the desired bound with (20) and (18).

‖M5‖pW p
1,2
≤ C‖f ′‖pLp(µ2), (35)

if (3) holds. Finally, for M6(x)

M6(x) =

n∑
k=3

a2
k−1q

2
k−1

q2
k

ek−1(f)Rk−1(x),
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and taking into account that ∣∣∣∣∣a2
k−1q

2
k−1

q2
k

∣∣∣∣∣ ≤ C

k4
,

we easily obtain

‖M6‖pW p
1,2
≤ C‖f‖pW p

1,2
. (36)

Clearly, joining (22), (27), (32), (33), (34), (35) and (36), we have proved the direct
implication for α > 0.

Now, we are going to study the cases b) and c), that is, −1 < α ≤ 0. Taking

L0(x) :=G2f(x),

L1(x) :=

n∑
k=3

(k + α+ β − 1)d
(α,β−1)
k

q2
k(2k + α+ β − 1)

b
(α,β−1)
k (f)P

(α−1,β−1)
k (x),

L2(x) :=−
n∑
k=3

(k + β − 1)d
(α,β−1)
k−1

q2
k(2k + α+ β − 1)

b
(α,β−1)
k−1 (f)P

(α−1,β−1)
k (x),

L3(x) :=
λ

2

n∑
k=3

(k + α+ β − 1)d
(α,β)
k−1

q2
k

b
(α,β)
k−1 (f ′)P

(α−1,β−1)
k (x),

L4(x) :=

n∑
k=3

ak−1qk−1

q2
k

ek−1(f)P
(α−1,β−1)
k (x),

L5(x) :=

n∑
k=3

(k + α+ β − 1)d
(α,β−1)
k ak−1qk−1

q2
k(2k + α+ β − 1)

b
(α,β−1)
k (f)Rk−1(x),

L6(x) :=−
n∑
k=3

(k + β − 1)d
(α,β−1)
k−1 ak−1qk−1

q2
k(2k + α+ β − 1)

b
(α,β−1)
k−1 (f)Rk−1(x),

L7(x) :=
λ

2

n∑
k=3

(k + α+ β − 1)d
(α,β)
k−1 ak−1qk−1

q2
k

b
(α,β)
k−1 (f ′)Rk−1(x),

L8(x) :=

n∑
k=3

a2
k−1qk−1

q2
k

ek−1(f)Rk−1(x).

From (12) and (16) the n-partial sum can be written as

Gnf(x) = L0(x) + L1(x) + · · ·+ L8(x).

Using Minkowski inequality, (21) and (18), we obtain that

‖L0‖pW p
1,2
≤ C‖f‖pW p

1,2
. (37)
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First of all, note that L1(1) = 0 if α = 0 because of (13). Now we apply (8) to take

L1(x) = L1,1(x)+L1,2(x) :=

n∑
k=3

(d
(α,β−1)
k )2

q2
k

(
k + α+ β − 1

2k + α+ β − 1

)2

b
(α,β−1)
k (f)B

(α,β−1)
k (x)

−
n∑
k=3

d
(α,β−1)
k d

(α,β−1)
k−1

q2
k

(k + α+ β − 1)(k + β − 1)

(2k + α+ β − 1)2
b
(α,β−1)
k (f)B

(α,β−1)
k (x).

In both cases, applying (20) and (10) we have

‖L1‖pLp(µ1) ≤ C‖f‖
p
Lp(µ1), (38)

if (3) is satisfied. When we derive L1(x)

L′1(x) =

n∑
k=3

(k + α+ β − 1)2d
(α,β−1)
k d

(α,β)
k−1

2q2
k(2k + α+ β − 1)

b
(α,β−1)
k (f)B

(α,β)
k−1 (x).

Analogously to M ′1(x), the derivative of L1(x) becomes

L′1(x) = L′1,1(x) + L′1,2(x) :=

n∑
k=3

Akb
(α,β−1)
k (f)B

(α,β)
k−1 (x)

+

n∑
k=3

C

k
b
(α,β−1)
k (f)B

(α,β)
k−1 (x), Ak = O(1/k2).

From (20) and (10), if (3) holds, we obtain

‖L′1,1‖
p
Lp(µ2) ≤ C‖f‖

p
Lp(µα,β−1) ≤ C‖f‖

p
Lp(µ1).

From Proposition 2.2 and Theorem 2.1 we have

‖L′1,2‖
p
Lp(µ2) =

∫ 1

−1
|T (α,β)(α,β−1)
−1,0 S(α,β−1)

n (f)|pdµα,β(x)

≤ C
∫ 1

−1
|S(α,β−1)
n (f)|pdµα,β−1(x) ≤ C‖f‖pLp(µ1).

So, we have proved that

‖L1‖pW p
1,2
≤ C‖f‖pLp(µ1). (39)

The boundedness for L2(x) is totally similar to L1(x). For

L3(x) =
λ

2

n∑
k=3

(k + α+ β − 1)d
(α,β)
k−1

q2
k

b
(α,β)
k−1 (f ′)P

(α−1,β−1)
k (x).
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Firstly, note that L3(1) = 0 when α = 0. Taking into account (8) we obtain that

L3(x) =

n∑
k=3

Akb
(α,β)
k−1 (f ′)B

(α,β−1)
k (x) +

n∑
k=3

Dkb
(α,β)
k−1 (f ′)B

(α,β)
k−1 (x)

+

n∑
k=3

C

k
b
(α,β)
k−1 (f ′)B

(α,β−1)
k (x) +

n∑
k=3

C

k
b
(α,β)
k−1 (f ′)B

(α,β−1)
k−1 (x),

where Ak, Dk = O(1/k2). So, (20) and (10) are applied in the two first terms, and
Proposition 2.2 and Theorem 2.1 in the two last terms obtaining

‖L3‖pLp(µ1) ≤ C‖f
′‖pLp(µ2). (40)

Making the derivative we have

L′3(x) =
λ

4

n∑
k=3

Akb
(α,β)
k−1 (f ′)B

(α,β)
k−1 (x)|+ S(α,β)

n−1 (f ′)− S(α,β)
2 (f ′),

where Ak = O(1/k3). Then from (20), (10), Theorem 2.1 and (40) we can write

‖L3‖W p
1,2
≤ C‖f ′‖pLp(µ2). (41)

For L4(x)

L4(x) =

n∑
k=3

d
(α−1,β−1)
k ak−1qk−1

q2
k

ek−1(f)B
(α−1,β−1)
k (x),

as ∣∣∣∣∣d
(α−1,β−1)
k ak−1qk−1

q2
k

∣∣∣∣∣ ≤ C

k3
,

from (21) and (10), we obtain

‖L4‖pW p
1,2
≤ C‖f‖pW p

1,2
. (42)

With the same arguments,

‖Li‖pW p
1,2
≤ C‖f‖pW p

1,2
, i = 5, . . . , 8. (43)

Finally from (37), (39), (41), (42) and (43) we have the desired result.

3.2.2. Necessary conditions.

If (2) holds, it is clear that

‖ek(f)Rk‖W p
1,2

= ‖Gnf −Gn−1f‖W p
1,2
≤ C‖f‖W p

1,2
. (44)
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Consider the linear functionals on W p
1,2

Tn(f) = ek(f)‖Rk‖W p
1,2
.

Then, for every f ∈W p
1,2, supn |Tn(f)| <∞ holds. Because of W p

1,2 is a complete space,
as we will prove in Theorem 1.2, the Banach-Steinhaus theorem implies supn ‖Tn‖ <
∞. On the other hand, by duality we have

‖Tn‖ = ‖Rk‖W p
1,2
‖Rk‖W q

1,2
,

where q is the conjugate of p. Therefore,

sup
n
‖Rk‖W p

1,2
‖Rk‖W q

1,2
<∞. (45)

And from (18), (3) holds.

4. Jacobi-Sobolev orthogonal polynomials type II

4.1. Auxiliary results

Let (µ1, µ2) be a coherent pair of Jacobi type II with ξ > 1 and M = 0. Recall that
in this case, α > −1, β > 0 and

dµ1(x) = (1− x)α(1 + x)β−1dx, dµ2(x) =
1

ξ − x
(1− x)α+1(1 + x)βdx, ξ > 1.

Let {Qn}n be the corresponding sequence of orthogonal polynomials with respect to
(1), such that for n ≥ 2 we choose the leading coefficient of Qn(x) equals to the leading

coefficient of P
(α−1,β−1)
n (x). Let {Tn}n be the sequence of orthogonal polynomials with

respect to dµ2, with leading coefficients equal to the leading coefficients τ
(α,β)
n of P

(α,β)
n .

In [11], the authors proved the following lemma:

Lemma 4.1. There exist positive constants cn such that

Tn(x) =
n+ α+ β + 1

2n+ α+ β + 1
P (α+1,β)
n (x)− n+ β

2n+ α+ β + 1
cnP

(α+1,β)
n−1 (x), n ≥ 1, (46)

where

cn =
1

ξ +
√
ξ2 − 1

+O

(
1

n

)
,

with
√
ξ2 − 1 > 0. Moreover,

t2n := ‖Tn‖2Lp(µ2) ≈
2α+β

n
cn. (47)

The sequence {Qn}n satisfies a relation similar to (12) in Section 3:
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n+ α+ β − 1

2n+ α+ β − 1
P (α,β−1)
n (x)− n+ β − 1

2n+ α+ β − 1
cn−1P

(α,β−1)
n−1 (x)

= Qn(x)− an−1Qn−1(x), n ≥ 3, an = O(1/n2). (48)

Notice that when we derive (48) we obtain

1

2
(n+ α+ β − 1)Tn−1(x) = Q′n(x)− an−1Q

′
n−1(x). (49)

Let {Sn}n be the sequence of orthonormal polynomials with respect to µ2. Let sn(f)
denote the Fourier coefficients with respect to Sn, i.e.

sn(f) =

∫ 1

−1
f(x)Sn(x) dµ2(x).

Lemma 4.2. Let α > −1, β > 0 and τ = max{α+ 1, β}. Then

‖Sn‖Lp(µ2) ≤ C


1, 2τ > pτ − 2 + p/2,

(log n)1/p, 2τ = pτ − 2 + p/2,

nτ+1/2−2(τ+1)/p, 2τ < pτ − 2 + p/2.

(50)

Proof. From (46) and (47) we have that

‖Sn‖Lp(µ2) ≤ C‖B(α+1,β)
n ‖Lp(µα+1,β).

Using (48) we may prove the following lemma.

Lemma 4.3. For n ≥ 3 the Fourier coefficients en(f) = (Rn, f)S can be expressed as

en(f) =
n+ α+ β − 1

2n+ α+ β − 1

d
(α,β−1)
n

qn
b(α,β−1)
n (f)

− n+ β − 1

2n+ α+ β − 1
cn−1

d
(α,β−1)
n−1

qn
b
(α,β−1)
n−1 (f)

+
λ

2

(n+ α+ β − 1)tn−1

qn
sn−1(f ′) +

an−1qn−1

qn
en−1(f). (51)

In this case the asymptotic for q2
n = (Qn, Qn)S , following the same arguments of

Theorem 2 of [9], remains in this way.

Lemma 4.4. Let α > −1 and β > 0 then

g1(n) +
λ

4
(n + α + β − 1)2t2n−1 ≤ q2

n ≤ g2(n) +
λ

4
(n + α + β − 1)2t2n−1, (52)
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where g1(n) ≈ C/n and g2(n) ≈ C/n.

Lemma 4.5. Let α > −1, β > 0 and τ = max{α+ 1, β}. Then

‖Rn‖W p
1,2
≤ C


1, 2τ > pτ − 2 + p/2,

(log n)1/p, 2τ = pτ − 2 + p/2,

nτ+1/2−2(τ+1)/p, 2τ < pτ − 2 + p/2.

(53)

Proof. From (48) and (49)

‖Qn‖Lp(µ1) ≤ C‖P (α,β−1)
n ‖Lp(µ1), ‖Q′n‖Lp(µ2) ≤ Cn‖Tn−1‖Lp(µ2).

Then from (46) and (47)

‖Qn‖W p
1,2
≤ C(‖P (α,β−1)

n ‖Lp(µα,β−1) + λn‖P (α+1,β)
n−1 ‖Lp(µα+1,β))),

From (10) and (6) the following inequalities hold

‖P (α+1,β)
j ‖Lp(µα+1,β) ≤ C‖P (α+1,β)

n ‖Lp(µα+1,β), j ≤ n

and

‖P (α,β−1)
n ‖Lp(µα,β−1) ≤ Cn‖P (α+1,β)

n ‖Lp(µα+1,β).

Then, for α > −1, we can write

‖Qn‖W p
1,2
≤ C(n‖P (α+1,β)

n ‖Lp(µα+1,β) + λn‖P (α+1,β)
n ‖Lp(µα+1,β))

≤ Cn‖P (α+1,β)
n ‖Lp(µα+1,β).

Taking into account (52) and (47)

qn ≥ Cn1/2,

then

‖Rn‖W p
1,2

=
‖Qn‖W p

1,2

q
1/2
n

≤ C
n‖P (α+1,β)

n ‖Lp(µα+1,β)

n1/2
≤ C‖B(α+1,β)

n ‖Lp(µα+1,β).

Thus, from (10), we have proved the result.

4.2. Proof of Theorem 1.1, ii)

First note, that applying Hölder inequality and (50) we have that for g ∈ Lp(µ2)

|sk(g)| ≤ C‖g‖Lp(µ2)‖Sk‖Lq(µ2) ≤ C‖g‖Lp(µ2), (54)
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The last inequality is true if (4) holds. With analogous arguments (21) remains true
in type II. Taking

M0(x) :=G2f(x),

M1(x) :=

n∑
k=3

(k + α+ β − 1)d
(α,β−1)
k

q2
k(2k + α+ β − 1)

b
(α,β−1)
k (f)(

k + α+ β − 1

2k + α+ β − 1
P

(α,β−1)
k (x)− k + β − 1

2k + α+ β − 1
ck−1P

(α,β−1)
k−1 (x)

)
,

M2(x) :=−
n∑
k=3

(k + β − 1)ck−1d
(α,β−1)
k−1

q2
k(2k + α+ β − 1)

b
(α,β−1)
k−1 (f)(

k + α+ β − 1

2k + α+ β − 1
P

(α,β−1)
k (x)− k + β − 1

2k + α+ β − 1
ck−1P

(α,β−1)
k−1 (x)

)
,

M3(x) :=
λ

2

n∑
k=3

(k + α+ β − 1)tk−1

q2
k

sk−1(f ′)(
k + α+ β − 1

2k + α+ β − 1
P

(α,β−1)
k (x)− k + β − 1

2k + α+ β − 1
ck−1P

(α,β−1)
k−1 (x)

)
,

M4(x) :=

n∑
k=3

ak−1qk−1

q2
k

ek−1(f)(
k + α+ β − 1

2k + α+ β − 1
P

(α,β−1)
k (x)− k + β − 1

2k + α+ β − 1
ck−1P

(α,β−1)
k−1 (x)

)
,

M5(x) :=

n∑
k=3

(k + α+ β − 1)d
(α,β−1)
k ak−1qk−1

q2
k(2k + α+ β − 1)

b
(α,β−1)
k (f)Rk−1(x),

M6(x) :=−
n∑
k=3

(k + β − 1)ck−1d
(α,β−1)
k−1 ak−1qk−1

q2
k(2k + α+ β − 1)

b
(α,β−1)
k−1 (f)Rk−1(x),

M7(x) :=
λ

2

n∑
k=3

(k + α+ β − 1)ak−1tk−1qk−1

q2
k

sk−1(f ′)Rk−1(x),

M8(x) :=

n∑
k=3

a2
k−1q

2
k−1

q2
k

ek−1(f)Rk−1(x).

Using (48) and (51) we can write

Gnf(x) = M0(x) +M1(x) + · · ·+M8(x).

From (20), (21), (54), Proposition 2.2 and Theorem 2.1, we prove the sufficient
conditions. Necessary conditions are proved with the same arguments of Theorem 1.1.

Remark 1. If we took M > 0 in the second measure, it would appear in M3(x) a
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term of this kind

n∑
k=3

C

k

1

tk−1
|Tk−1(ξ)|,

and as

|Tk−1(ξ)|
tk−1

≤ C,

the series could be divergent. Thus, we cannot obtain the boundedness of the operator.

5. Proof of Theorem 1.2

We start proving i). Let (µ1, µ2) be a Jacobi coherent pair of measures with M = 0 for
type II and α 6= 0 for type I. Then, we may prove the result using directly Theorem
4.1 and Corollary 4.1 of [14]. For type I with α = 0, we take

dµ̃1(x) = (1 + x)β−1dx, dµ2(x) = (1 + x)βdx,

and W
p
1,2 will be the space of measurable functions f on [−1, 1] such that there exists

f ′ almost everywhere and

‖f‖p
W
p

1,2

= ‖f‖pW p
1,2
−M |f(1)|p <∞.

From Theorem 4.1 of [14], the set C∞c (R) is dense in the Sobolev space W
p
1,2. That is,

given f ∈W p
1,2 and ε̃ > 0, there exists g ∈ C∞c (R) such that

‖f − g‖W p

1,2
<
ε̃

2
.

Let h ∈ C∞c (R) be such that

‖h‖W p

1,2
<
ε̃

2
and h(1) = f(1)− g(1).

Then, using Minkowski inequality

‖f − (g + h)‖W p
1,2

=
(
‖f − (g + h)‖p

W
p

1,2

+M |f(1)− (g + h)(1)|p
)1/p

≤ ‖f − g‖W p

1,2
+ ‖h‖W p

1,2
< ε̃.

On the other hand, given ε̃ > 0 there exists a polynomial pn of degree n such that

‖g + h− pn‖∞ < ε̃, ‖(g + h)′ − p′n‖∞ < ε̃.

Therefore, given ε = ε̃(1 + 1/βp +M + 1/(β+ 1)p)1/p > 0 and f ∈W p
1,2 there exists
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pn polynomial of degree n such that

‖f − pn‖W p
1,2
≤ ‖f − (g + h)‖W p

1,2
+ ‖(g + h)− pn‖W p

1,2
< ε.

So we have proved i).
Again for type II measures with M = 0 and type I measures with α 6= 0, we deduce

ii) from [14]. When α = 0, let {fn}n be a Cauchy sequence in W p
1,2. Our target is to

show that {fn}n is convergent in W p
1,2. {fn}n will also be a Cauchy sequence in W

p
1,2

that is a complete space. Thus, there exists f ∈W p
1,2 such that

‖fn − f‖pLp(µ̃1) + λ‖f ′n − f ′‖
p
Lp(µ2) −→ 0.

Therefore,

‖fn − f‖pLp(µ̃1) −→ 0. (55)

On the other hand, fn will also be a Cauchy sequence in Lp(µ1). And as Lp(µ1) is
a complete space, we obtain that there exists g ∈ Lp(µ1) such that

‖fn − g‖pLp(µ̃1) +M |fn(1)− g(1)|p −→ 0,

and then

‖fn − g‖pLp(µ̃1) −→ 0. (56)

From (55) and (56), we deduce f(x) = g(x) almost everywhere.
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