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ABSTRACT

Let (u1, u2) be a coherent pair of Jacobi measures. In most cases, we obtain conver-
gence and boundedness of the Fourier series for Sobolev polynomials with respect
to this kind of measures.
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1. Introduction

Let w1, po be positive Borel measures supported on R and consider the Sobolev inner
product

(f.9)s = / F(@)g(x) dpa(z) + A / F(@)g (@) dus(z), A> 0. (1)

Let { P, }» and {7}, },, denote some orthogonal polynomial sequences with respect to p;
and pe9, respectively. In [5], it is introduced the concept of coherent pair of measures
in this way: the pair (u1,u2) is a coherent pair of measures if there exist nonzero
constants A, and B,, such that

T, = AnP. ., + B,P., n>1.

This kind of measures has turned out to be very important in the research of Sobolev
orthogonal polynomials. In [10], a complete classification of all coherent pairs was
given. More precisely, (u1,u2) is a coherent pair of measures if at least one of the
two measures is a Jacobi or a Laguerre measure. The main target of this paper is
to study the convergence and uniform boundedness of the Fourier series in terms of
orthonormal polynomials associated with the inner Sobolev product (1) where (1, p2)
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forms a coherent pair of measure. In this work, we are going to consider pairs where
one of the measures will be a Jacobi measure

dptag(r) = (1 —2)*(1 +2)% dz, =€ [-1,1],

with a > —1, 5 > 0. It may happen two possibilities:

i) (u1,p2) is a coherent pair of measures of Jacobi type L'if 10 = p, g and depending
on «, pu1 would be
a) If a >0, dui(x) = (€ — 2)(1 — 2)* (1 + )P ~L dz with £ > 1.
b) If a =0, dui(z) = (1 + x)?~Ldz + M5(1), with M > 0.
c) If -1 <a<0,du(z)=(1—-2z)1+2z)’dr.
ii) (p1,p2) is a coherent pair of measures of Jacobi type IT if 11 = p14,5—1 and

T
X

dus(z) = (1—2) (1 +2)Pde+ M), €>1, M >0.

1
¢E—x
Notice that for € =1 and M = 0 the coherent pair is of type I.

It has been proved in [10] that all coherent pairs where pg is a Jacobi measure on
(—1,1) are of the above-mentioned form, or can be transformed to one of them by the
transformation x — —ux.

Given 1 < p < oo and p a positive Borel measure supported on [—1,1]. We will
write LP(u) as the space of all measurable functions on [—1, 1] for which

1 f e (uy = </_11 | f(z)P du(:c))l/p < 0.

Let (u1, 12) be a coherent pair of measures of Jacobi type, we define the space Wﬂ 2
for 1 < p < oo, as the space of measurable functions f defined on [—1, 1] such that
there exists f’ almost everywhere and

[l P, Hf”pp(m) + )\Hf/pr(uz) < 0.

Let { R, }» be the sequence of orthonormal polynomials with respect to (1). Let G, f
be the n-th partial sum given by

Guf(@) =) er(f)Ri(x), ex(f) = (Ri, f)s.
k=0

The main result of this paper provide us characterizations of the uniform bounded-
ness of the operator G,, for Jacobi coherent pairs.

Theorem 1.1. Let a > —1, > 0 and (u1, p2) be a coherent pair of Jacobi measures
where M =0 for type II. Let f € WﬂQ be with 1 < p < co. Then

1Gnfllwe, < Cllflwe,, (2)

with a constant C' independent of n and f, if and only if
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If the space Wi was complete and the polynomials formed a dense class, the
uniform boundedness of GG,, would be equivalent to the convergence in Wﬁ - The next
result gives us both requirements.

Theorem 1.2. Let o > —1, > 0. Let (u1, 2) be a coherent pair of Jacobi measures
with M = 0 for the type II. Then

i) the set of polynomials is dense in the space W&;
i) WﬁQ is a complete space.

So, Theorem 1.1 and Theorem 1.2 imply the following corollary.

Corollary 1.3. Let o > —1, 8> 0 and (u1, 12) be a coherent pair of Jacobi measures
where M = 0 for type II. Let f € WﬁQ be with 1 < p < co. Then

lim (|G f = fllwy, =0,
n—00 ’

if and only if

i) for type I, (3) holds.
i) for type II, (4) holds.

As we can read in [8] Sobolev orthogonal polynomials with respect to a Sobolev
inner product

(f.9) = 3 FPg® dpy,
>

have been widely studied, providing us with many applications and publications. The
lack of Christoffel-Darboux formula for Sobolev orthogonal polynomials, except for
particular cases, deprives an important tool for studying convergence and summabil-
ity of Fourier orthogonal expansions. In the last years, several papers have advanced
in this topic. In [13], the author presents some results on linear summation meth-
ods for Fourier series in orthonormal polynomials of discrete Sobolev spaces. In [1],
convergence and uniform boundedness of Fourier series are obtained in this context
(o = paa+M(61+6-1), 1 = N(01+6-1) and pp = 0, k > 2). More recently, we can
find papers as [15,16] which study more properties of Fourier series in discrete Sobolev
spaces.

In the continuous case (all the measures have continuous support), necessary con-
ditions of convergence are obtained in [3,4,7] for particular cases. Approximation by
polynomials is analyzed in [18] in the case gy = fa,3. In [2,6] the expansions for



Jacobi-Sobolev polynomials with g = a4k g+x are studied obtaining a complete
characterization of the uniform boundedness and the convergence of the partial sum
operators for the Fourier series in [2]. In this paper, we add to this topic by studying
Fourier series of ortonormal polynomials with respect to an inner Sobolev product
where the measures form a coherent pair of Jacobi measures.

This paper is structured as follows: in Section 2, we present the necessary definitions
and results concerning the Jacobi polynomials. Section 3 is devoted to give some
auxiliary results for Jacobi-Sobolev polynomials of type I and to prove i) of Theorem
1.1. Analogously, Section 4 is devoted to those of type II and proving ii) of Theorem
1.1. Finally, Theorem 1.2 is proved in Section 5.

2. Jacobi polynomials

Let {P,(La’ﬂ )}n be the sequence of Jacobi polynomials for arbitrary «, 3, defined by the
Rodrigues formula, which are orthogonal with respect to the measure djiq g(x),

PP (z) = (2—71173'" (1—2) (1 +z)7" <CZC> (1 — )" (1 4 z)"+F).

We denote TT(LO‘”B ) the leading coefficient of Péa”g ) for n > 2 that is given by

(@B — g7 <2n tat B) : (5)

n

For a > —1 and 8 > —1, we have

1
(@D = [P @), = [ (PP -2 (1 +2) da

22 Plnta+DI(n+B+1) 20168
T 2n+a+pB+1 nallnt+a+p+1) n

For arbitrary v and /3 the following relations are satisfied, as we can see in [11],

d 1 o
TP (@) = St at B+ DRI (@) (7)
and
pla—ts-n(yy - EAFF =L pap gy mEFTL plason g
n 2nt+a+pg-1" nta+pf-1 """

For o« > —1 it holds

rew= (1) =i (00 () "

Let {B,(fé’/3 ) ()}n be the sequence of orthonormal Jacobi polynomials. Taking 7 =



max{a, S} > —1, the following equivalence is well-known (see [17], Exercise 91),

1, 21 > pr — 2+ p/2,
~ (logn)l/i”, 21 =pr —2+4p/2, (10)

1B Lo ) =
nmH/2=2T 0/ 91 < pr — 24 p/2.

Let S )( f) be the n-th partial sum of Fourier expansion in terms of orthonormal
Jacobi polynomials,

Sgla,ﬂ) (f) — Z b](caﬁ)(f)B](gaﬁ) (l’),
k=0
where

/ F) B () dta ().

In [12], Muckenhoupt provides us with the following theorem that will be very useful
to prove our main result, Theorem 1.1.

Theorem 2.1. Leta, f > —1 and 1 < p < oo. There exists a constant C, independent
of n and f, such that

IS Fll o o) < ClF |2 )

if and only if

1 1 1 1 1 1
We define the operators
0 8) (7.6 O o
1670w = 3 U @B @), d,1=0.1

With the same arguments of Proposition 3 of [2] we can prove

Proposition 2.2. For a, 8,v,d > —1 and 1 < p < oo, it is verified that

a, 0
ISP gl ) < Cllgll o),

for each g € LP(p15).



3. Jacobi-Sobolev orthogonal polynomials type I

3.1. Auxiliary results

Let (u1,u2) be a coherent pair of Jacobi type I. Let {Q,}, be the corresponding
sequence of orthogonal polynomials with respect to (1), such that for n > 2 we choose

the leading coefficient of @, (z) equals to the leading coefficient of pletp 71)(33). In
[11] the authors studied the asymptotics of these polynomials and proved the following
relation:

PP (2) = Qu(@) — ap1Qu-1(z), n >3, ay=0(1/n?). (12)
From (8) and (9) we can prove

PP =1, PTYTI) =o. (13)

n
If we denote ¢, := (Qn, Qn)g/ 2, (12) can be written in terms of orthonormal polyno-
mials as

dn—1

d(a_lzﬂ_l)
niBr(La_lﬂ_l)(x) = Rp(z) —an—1

qn An

R,—1(x), n>3. (14)

Lemma 3.1. For n > 3 the Fourier coefficients e,(f) = (Rn, f)s can be expressed as

a) If a >0,

dgfoﬁfl) ) )
en(f) = = ——He (g =)
A da? -
+ S+ at 8= )bV (1) + an Pte, 1 (F). (15)
dn qn

=

), ¢) If =1 < a <0,

(Ot,ﬂ—l)
n+a+p—1 dn
en(f) = &

— plas=1)
2nt+a+pB-1 g, " ()
(Oé,ﬁ—l)
n+pf-1 d,” B
B 1 b( B8 1)(]0)

_2n+a+ﬁfl ¢ "t

A A (s n—1
+ 50+ B=D)ZELEED() +an 1T ena (). (16)

Proof. Using (14) for the case a) and (14), (8) and (13) for the cases b) and ¢). O

Using Theorem 2 of [9], we can obtain the asymptotic for g,.



Lemma 3.2. Let —1 < « and 8 > 0 then

A « A a
gi(n)+ G+ a+ B 1A < @2 < ga(n) + S (n+at B - 12ASDR, ()

where g1(n) = C/n and g2(n) =~ C/n.

Lemma 3.3. Let a > —1, >0 and 7 = max{«, 5}. Then

1, 21 > pr — 2+ p/2,
|Rnllwr, < C 4 (logn)/?, 27 = pr —2+p/2, (18)
n™H/2=20 0/ 9 < pr— 24 p/2.

Proof. If o > 0, we use (12) to prove

1Qnll e () < CIUPL D ays 1@l < CrIP Loy
Then

1Qullwy, < CIPLYPD]| L, ) AP Lo ()

Ha-1,6-1

Note that if « = 0, from (12) and (13) we have that
C
@] = .
If -1 < o <0, using (12), (13), (19) and (8) we have

1@nllzoge) < CIPE P Doy 1Qullzoguey < CrIPD -
Then
1Qullwr, < CUPE Do o) + A0 P Lo )-
It is well-known that
1P oy = 1P Lo
and using the equivalences (10) and (6), we have
Hp’r(l()é—l,ﬂ—l

)
oo } < Cnll B Lo, )

B—1
1P sy

Then, for a > —1 we can write

1Qullwr, < COIPED 1o ) + AP Lo, 1)) < CrIPED o, -



Taking into account (17) and (6)

gn > Cn'l?,
then
1Qnllwe, _ 2P g
IRulg, = =0 =2 < O== gt < CUBLE i )
n
Thus, from (10) we have proved the result. O

3.2. Proof of Theorem 1.1, i)

3.2.1. Sufficient conditions.

First of all, notice that applying Hélder inequality and (10) we have that for g €
LP(pia,)

677 @)1 < Clall o 1B i) < Clllzon (20)

where ¢ is the conjugate of p (1/p+ 1/g = 1). The last inequality is true if (3) holds.
On the other hand, for g € WY,, from Hélder inequality and (18) we have that if (3)
is satisfied

ler(9)] < C (19l o) |1 Bl o) + A9 2o gun) | R 2 )
< Cligllwz, | Rillwg, < Cligllwz,- (21)

We are going to start proving Theorem 1.1 for the type a), i.e., « > 0. Taking

Mo(z) :=Ga f(z),
n (dgca_lﬁ_l))2

Mi(z) = b (e - ) HBE T (@),
k=3 e
Ak (ktat - naPae Y a1
M) = ket T b ()BT (@),
k=3 £z
n (a—1,8-1)
ap_1d qr_ a—18—
My(a) =3 22%  Gd, (nBET D (@),
k=3 e
n (a—1,8-1)
ag—1d k-1, (a—1,8-1
My() =y =k b€~ ) ) Rea (@),
k=3 e
A (k+a+B8-1)dDa gy,
Ms(z) =5 T b () R (),
k=3 £
" a2 2
Mg (x) = %ek—l(f)Rk—l(x)'
=



Using (14) and (15) we can write the n-th partial sum as
Gnf(x) = Mo(z) + Mi(x) + Ma(x) + Ms(z) + Ma(x) + Ms(x) + Me().

So, we are going to bound the norms of each M;(z), ¢ = 0,...,6. Using Minkowski
inequality, (21) and (18), we obtain that

1My < Ol F (22)
We study now
n d(a—l,,@—l) 2 oL h ol
M) = S S yeta e py Bl ),

In this case,

So, from Minkowski inequality, (20), (10) and (3)

M1l o (1)
N C Y (e i P 1/p
: m(/ (1B (e =N IBE D w))) dul(a:)>
k=3 -1
- c (a—1,6—-1)
< CIE =) llruas s-0) Z ﬁHBk o (un) < Cllf oy (23)

k=3

The derivative of M (z) is

1N (b a+B—1)de g .
Mi(@) =5 7 ST (- nBEY (@),
k=3

Let h(k)=3(k+a+ 53— 1)2(d,g()ﬁ/f))2, then from Lemma 3.2

Thus

~ (24)



So, we can rewrite M (z) as

Mi(z) = M (2) + M 5(x) :=

n _ B n C B _
> A (e - nBE @) + Y T (- B @),
=3 k=3
where Ay, = O(1/k?). For the first summnand, applying again (20) and (10)
1M 1l o uz) < CUF N ) (25)

if (3) holds. For the second term, from Proposition 2.2 and Theorem 2.1
B8)(a—1, 1 oa— — o
1M1 117 / TGS AN (€ = ) MIPA - 2)(1 +2)7 do
< C/ S (¢ = )PP — ) (1 + )V dw < CUFIL, ) (26)
-1
if (3) holds. Thus, from (23), (25) and (26)

IM1llgyr, < CIFL

ul

For My (x),

A (k+a+ 8- Dd\ ™ {10~ )b(aﬁ)
2

My (z) = OB (),

k=3 qk
note that the coefficients satisfy

AE+atf—Dd)de Y
2 q]%

<

=

Then using (24) we can write
My(z) = Mai(x) + Maa(x) :=

ZA ble (a—1,6— Z% (=181 ()
k=

where Ay, = O(1/k?). For the first term of the sum from (20) and (10)

102117,y < CUT B (28)

10



if (3) is satisfied. For the second term, from Proposition 2.2 and Theorem 2.1

”M2’2”ip(u / |Ta 1,8- 1)(065)8( ,B)( ,)’pdul(ﬂj)

< (4 1)/1 ‘To(ifll,ﬁfl)(a,ﬁ)Sga,B)(f/)|pdua_lﬁ_l(x)

1
<C [ NI da @) < Ol Wiy

So, from (28) and (29) we have

1M%< CIFIE,,

N2

Derivating My (x)

(k+a+ 8- 1)2(dD)?
2
4,

(B (),

Aﬂ,
ZZ

and writing the coefficients like

it is easy to see that

(0% A o A a
ZAb (B (@) + 780 = 5857 (),

with Ay = O(1/k?). So, from (20), (10) and Theorem 2.1, we may prove

HM2||LP (1) = CHf ||LP (u2)?
if (3) holds, and from (30) and (31)

IMalyr, < ClF I

Mz
For Ms(x) the treatment is anologous.

n ak—ld](ga_lﬁ_l)q

Ms(z) =

k=3

5 k_16k71(f)B;(€a_1’6_1)(95)7
d;

and the coeflicients satisfy

—1,8-1
akfldéa P g

5 <

9
9% k3

11

(29)

(30)



Then from Minkowski inequality, (21) and (10) we have that

M3 Lo () Xn: % (/_ (\ek_l(f)Blga—l,ﬁ_n(x),)p dul(aj)>1/p

n

C a—1,4-1
< Cllflwe, D 75 1BE ™ Vs < Cllfllwg,
k=3

Analogously the result is obtained for the derivative of Mj. Since,

1311y, < Ol Il (33)

when (3) is true. We take now My(z).

"~ g 1da b 1>‘]k—1 (a—1,6-1)
=2 b (€ = ) ) R (a).
k=3
Observe that
ak—ldgx 1,6-1) - C
2 <73
9 k
Therefore from (20) and (18), we obtain
1My, < CUFI (34)

if (3) holds. For M5(z),

M;(x) =

5 (f")Rp—1(x),

Ao (k+a+5—1)d( 1)ak 19k— 1b(04ﬁ)
2 Tk

k=3

the coefficients satisfy
(k+a+ B — Dd™ ap_1q5-1 c

<
qa 2

B

so we obtain the desired bound with (20) and (18).

M5l < CIF

if (3) holds. Finally, for Mg(z)

12



and taking into account that

ai_lfﬁ_l C
2 S
95 k
we easily obtain
1Mol < Ol F Iy, (36)

Clearly, joining (22), (27), (32), (33), (34), (35) and (36), we have proved the direct
implication for a > 0.
Now, we are going to study the cases b) and c), that is, —1 < a < 0. Taking
Lo(x) :=Gaf (z),
L (k+a+ B —1)dPY (@F-1)

(O‘_LB_I)
L = P ’
1) k=3 ?2k+a+p-1) F (HP (=)
(k4B =0T s eensen
Ly(x) :=— 2 NP T (=),
2k +a+ 1) ! F
A (ktatB—1d™) am1,6—
Ls(z) == LD ()P (@),
k=3 e
A1k a—1.6—
Ly(x) = k%%lekfl(f)ﬂi M (),
k=3
Ls(x) : “(k+a+p- 1)d§gaﬁ_1)ak71Qk71b(a,ﬂfl)(f)R ()
5 = k—1 )
! GRk+a+p-1) k
Lo(a) Z”: (k+8— 1)d](€oif1)ak—IQk—lb(a,ﬂ1)(f)R ()
glx) = — _ k—1\T),
! @2k +a+B—1) k=1
A= (k+a+ 38— 1)d(ofﬁ)ak71%—1 o
Ly(z) =5 e b (F) Ry (),
k=3 qk
n a2_ qi—
Ls(x) =Y e 1 (f)Ri-1(2).
=3 T

From (12) and (16) the n-partial sum can be written as
Gnf(z) = Lo(x) + L1(x) + - - - + Ls(z).
Using Minkowski inequality, (21) and (18), we obtain that

1ol < CllF Iy (37)

13



First of all, note that Li(1) = 0 if & = 0 because of (13). Now we apply (8) to take

n (d(avﬁ—l))2 k+a+8—1 2 e i
Ly(z) = Ly (2)+Lyo(z) = Y —* . T bA-D) (1) BB ()
k=3 k
_Z kfil)(k+a+ﬁfl)(k+ﬁfl
q; 2k +a+ 3 —1)2

k=3

n d(aﬁ*l)d(oi e B
: e (1) B ),

In both cases, applying (20) and (10) we have

Ll

p
) S CUAIZ () (38)

if (3) is satisfied. When we derive L;(x)

n k+a+/8 ) ( )d(a7ﬁ) (o, 8)

Z 2¢2(2k + a + 6 —1) T NBY @),
=3

Analogously to Mj(x), the derivative of Li(x) becomes
Ly () = Ly (@) + Dhafe) = > A" V(DB (@)
k=3

= C o,0— «
3T HBI @), A= 0(1/k),
k=3

From (20) and (10), if (3) holds, we obtain

/ p P p
1E4A I, < CIAI < CUFI

?(pa,p—1) =

From Proposition 2.2 and Theorem 2.1 we have

1
IZ5 Mgy = [ TS V804D )
1
< [ 1805 o s1(2) < Cl

So, we have proved that

IL1llye, < ClIA (39)

lh

The boundedness for Ly(x) is totally similar to L;(x). For

Ls(z) = . 1 b,(:ff)(f/)P,ga_l’B_l)(x).

k=3 £

A s (ki at f—1)dy)
2

14



Firstly, note that L3(1) = 0 when a = 0. Taking into account (8) we obtain that

ZA b(aﬁ 76 +ZD b(avﬁ) ( )( )
+ Z b(avﬁ) k + Z b a 5) B(avﬂ )(.’IJ>,

where Ay, Dy = O(1/k?). So, (20) and (10) are applied in the two first terms, and
Proposition 2.2 and Theorem 2.1 in the two last terms obtaining

L3175y < CUF I gy (40)

#1

Making the derivative we have
ZA B @) + S = S5,

where Ay, = O(1/k?). Then from (20), (10), Theorem 2.1 and (40) we can write

IZslwz, < CIE I (41)
For L4(x)
n a—1,5-1)
d! ap—1qk—1 1
Lia) =Y H—ryg (NBET (@),
k=3 L
as
A Ve g e
a TR
from (21) and (10), we obtain
VZallyp, < Ol (42)
With the same arguments,
1Lllys, < Clflyp,s =508 (43)

Finally from (37), (39), (41), (42) and (43) we have the desired result.

3.2.2. Necessary conditions.

If (2) holds, it is clear that

lex(F)Rellwy, = [IGnf = G fllwr, < Cllflwy,- (44)

15



Consider the linear functionals on Wf 9

To(f) = er( )1 Rllwr,-

Then, for every f € WY, sup,, |Tn(f)| < oo holds. Because of WY, is a complete space,
as we will prove in Theorem 1.2, the Banach-Steinhaus theorem implies sup,, || 1] <
00. On the other hand, by duahty we have

1Tl = | Bellwr, |1 Ricllwe,»
where ¢ is the conjugate of p. Therefore,

sup || By |lwe, | Rellwy, < oc. (45)
n

And from (18), (3) holds.

4. Jacobi-Sobolev orthogonal polynomials type 11

4.1. Auxiliary results

Let (p1, pu2) be a coherent pair of Jacobi type II with £ > 1 and M = 0. Recall that
in this case, « > —1, § > 0 and

dpy(z) = (1 —2)*(1 4 2)°Yde, duo(z) = (1 —2)*T (1 4 2)%dz, €>1.

1
E—x
Let {@Qn}n be the corresponding sequence of orthogonal polynomials with respect to
(1), such that for n > 2 we choose the leading coefficient of @, (x) equals to the leading

coefficient of P{*~#~ (x). Let {1}, },, be the sequence of orthogonal polynomials with

respect to dug, with leading coefficients equal to the leading coefficients Ty(La’B) of Péa’ﬁ).

In [11], the authors proved the following lemma:

Lemma 4.1. There exist positive constants ¢, such that

n+a+5+1 P(O‘“’ﬁ)(x)— n+ 8 P(a+1”8)( )

T (z)= 2 T@TPT 2 >1. (46
n(@) MmtatpB+1 " mtat+f+1 " z), n=1, (46)

where

Cp =

; + 0 (1)
£+ -1 n)
with /&2 —1 > 0. Moreover,

208

tr =Tl 7o) = Cn. (47)

n

The sequence {Qy}, satisfies a relation similar to (12) in Section 3:

16



ntatf-1 0p 1, ntB-1
Ty e L Gl ey po
= Qun(x) — an-1Qn_1(x), n>3, a,=0(1/n?). (48)

cn1 PV (@)

Notice that when we derive (48) we obtain

%(n tatB—1DTh(2) = Q(z) — an 1@ (2). (49)

Let {Sy, }» be the sequence of orthonormal polynomials with respect to pg. Let s,(f)
denote the Fourier coefficients with respect to Sy, i.e.

5ulf) = / @S0 (@) dpa(o).

Lemma 4.2. Let « > —1, >0 and 7 = max{a + 1,3}. Then

1, 27 > pr — 2+ p/2,
1Sl Lo (usy < € { (logn)'/7, 27 = pr —2+p/2, (50)
nT+1/272(T+1)/p, o < pT — 9 +p/2

Proof. From (46) and (47) we have that

1Sl o) < CIBET | o )-

Using (48) we may prove the following lemma.

Lemma 4.3. Forn > 3 the Fourier coefficients ey (f) = (Rn, f)s can be expressed as

_ntat+B8-14d77Y sy
enll) = g e )
n+p—1 dﬁfﬁf*l)
- Cn—1
2n+a+p—-1 Gn
An+a+p8-1)

tp— —1Gn—
T3 (1) + T e (f). (51)
dn dn

()

In this case the asymptotic for ¢ = (Qn,Qn)s, following the same arguments of
Theorem 2 of [9], remains in this way.

Lemma 4.4. Let o > —1 and 8 > 0 then

A A
gin) + Jn+a+ B - Dy < gy < gn) + T+ a+ - 1), (52)
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where g1(n) = C/n and ga(n) =~ C/n.

Lemma 4.5. Let a > —1, >0 and 7 = max{a + 1, 5}. Then

1, 27 > pr — 2+ p/2,
1Bnllwe, < C{ (logn)"/7, 21 = pr —2+p/2, (53)
nTH/2=20t0/p 90 < pr— 24 p/2.

Proof. From (48) and (49)

1Qull oy < CUPE P N iouys 1Qlliruny < Ol Tt 1|10 (-

Then from (46) and (47)

o,p— 0517
1Qnllwz, < CUPLP Vit s ) + MUPET P o i),

From (10) and (6) the following inequalities hold

+1, .
1P sy < CIUPCH YD |y, G <
and
12D sy < ORI P oy
Then, for a > —1, we can write
1Qnllwz, < COUPCT Y Lo sy + XU P Lo )

< On|[ PP g

#a+1,/3) :

Taking into account (52) and (47)

Gn = C’nl/2,
then
[@nllwz, _ 2P s
HR”HWf’,z = 12 <C nl/2 (tot1.0) < C|’Bq(za+1’ﬁ)||LP(ua+1,ﬁ)'
dn
Thus, from (10), we have proved the result. O

4.2. Proof of Theorem 1.1, ii)
First note, that applying Holder inequality and (50) we have that for g € LP(us)

[51(9)] < Cllgll Lo o) 19K [ Lo () < CllGl o (2 (54)
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The last inequality is true if (4) holds. With analogous arguments (21) remains true
in type II. Taking

My(z) :==Gaf (),

K (kta+B-1dY s
Aﬁ@%_;% %@k+a+6—U e )

k+a+B-1 Jap-1), . k+B8-1 (a,B—1)
<2k+a+ﬁlpk ST . aBE @) )

_ (k+B8=Depdi™7 ™ sy
Mo(w) := = kzg Gk +a+p—1) bt )

k+a+B-1 Jap-1), v k+B8-1 (a,B—1)
<2k+a+ﬁlpk ST aBET @) )

M) :Z% 5 (k+a +q6,% “Dta
k=3

Eta+B-1 _ap-1) kE+B8—1 (BD
-~ p@® -1
<2k~|—a+ﬁ—1 c O ey g W)

My(z) ==Y B 1 (f)

=3 Ik
k+a+B—-1 (ap-1) k+p5-1 (BD
-~ p@® — 1D
<2ks+a+ﬁ e @ ey p ot @)
n CVB 1)
k
M) =3 EH Ot B DA Dot s

— qk(2k+a+ﬂ—1)

i (k+8—1)c— 1d( - )ak 1qk—1
q; Zk:—i-oz—l—ﬂ—l)

b (F) Ry (),

k=3
Aem (k+a+8—1ag_1t
M7($)Z 5 ( 6 ) k—10k—19k— 1 1(f/)Rk—1($)7
k=3 9
N ap G,
Mg(z) ==Y =L Ler 1 (f)Re-1().
k=3 &

Using (48) and (51) we can write

Gnf(z) = Mo(x) + My(z) + - - + Mg().

From (20), (21), (54), Proposition 2.2 and Theorem 2.1, we prove the sufficient
conditions. Necessary conditions are proved with the same arguments of Theorem 1.1.

Remark 1. If we took M > 0 in the second measure, it would appear in Ms(z) a
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term of this kind

and as

the series could be divergent. Thus, we cannot obtain the boundedness of the operator.

5. Proof of Theorem 1.2
We start proving i). Let (i1, u2) be a Jacobi coherent pair of measures with M = 0 for
type II and « # 0 for type I. Then, we may prove the result using directly Theorem
4.1 and Corollary 4.1 of [14]. For type I with a = 0, we take

diny(z) = (14 2)" dz,  dps(x) = (14 2)Pda,

and WZ{Q will be the space of measurable functions f on [—1, 1] such that there exists
f" almost everywhere and

£ = £y, = MIFDPP < oo.

From Theorem 4.1 of [14], the set C3°(R) is dense in the Sobolev space WILQ. That is,
given f € Wﬁz and € > 0, there exists g € C2°(R) such that

€
1f =gl , < 5
Let h € C2°(R) be such that

and  h(1) = f(1) — g(1).

N | Oy

1Pl , <
Then, using Minkowski inequality
17~ (o Wllwz, = (17— @ + Wl + M7 — g+ HOP) "
g L
On the other hand, given &€ > 0 there exists a polynomial p, of degree n such that

lg+h—pnlleo <& [(g+h) —plle <E

Therefore, given e = &(14+1/87 4+ M +1/(8+1)P)Y/? >0 and f € WY, there exists
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ppn, polynomial of degree n such that

1f = pallwe, <IIf = (g +M)llwz, + (g + 1) = pallwr, <e

So we have proved i).

Again for type Il measures with M = 0 and type I measures with a # 0, we deduce
i) from [14]. When « = 0, let {f,}, be a Cauchy sequence in W{,. Our target is to
show that {fn}n is convergent in W7,. {fn}s will also be a Cauchy sequence in W‘Z{’Q

that is a complete space. Thus, there exists f € W‘Z{Q such that

Therefore,

T [—) (55)

On the other hand, f,, will also be a Cauchy sequence in LP(u;). And as LP(u) is
a complete space, we obtain that there exists g € LP(u1) such that

1fr = 9l () + M fn(1) = g(L)I" — 0,

and then
[ fn — 9||pp(ﬂ1) — 0. (56)

From (55) and (56), we deduce f(x) = g(x) almost everywhere.
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