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Abstract
Healthcare facilities consume massive amounts of energy. This study outlines a methodology to enhance energy
efficiency and solve common problems in hospital cooling-water systems, since hospitals are the most energy-
intensive type of building. Building Management Systems (BMS) are a widely used technique to control and
monitor all the different energy facilities contained in hospitals. Proper setup and upgrades can resolve inefficien-
cies and existing problems. The methodology described herein addresses the general cooling system adjustments
in three main areas: control system (CS), data acquisition system (DAS), and physical system (PS). An innovative
feature incorporated in this methodology is the cooling demand model integrated into the CS, which is capable
of forecasting and transmitting a schedule for maximum thermal energy requirements to the BMS a day in ad-
vance, thereby anticipating decisions and scheduling energy generation and maintenance operations. During the
process of developing the cooling demand model, various machine learning models were trained. This process
consisted of searching for low-complexity models using a methodology called GAparsimony. This methodology
uses genetic algorithms to search for highly precise, robust models that use a low input. The final model consisted
of a weighted combination of Artificial Neural Network (ANN) and Support Vector Regression (SVR) models.
The energy savings obtained thanks to this methodology are estimated to be between 7% and 10% per year. The
energy plant improved its performance and chiller starts were reduced by 82.5%. It should also be noted that this
study was affected by the recommendations for increased ventilation due to the COVID-19 pandemic, which en-
tailed at 22.4% increase in energy consumption in 2020. The methodology was developed and tested successfully
in a real hospital BMS between 2017 and 2019; the model was finally integrated in 2020.

Keywords: Cooling demand forecasting, Building Management Systems (BMS), Energy efficiency,
GAparsimony, Parsimonious modeling, Ensemble algorithms.

1. Introduction1

The Paris climate accord (signed April 22th, 2016) was designed to keep global tem-2

perature rise below 2 ◦C above pre-industrial levels and to limit that increase even further3

to 1.5 ◦C [1]. This goal requires that global carbon emissions drop as soon as possible, in4

order to "achieve a balance between anthropogenic emissions by sources and removals by5

sinks of greenhouse gases". In accordance with this agreement, on November 28th, 2018 the6

European Commission published its Climate Strategies [2]: establishing greenhouse-gas-7

emissions reduction targets for 2020, key laws and measures to achieve their goals for 2030,8
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and the long-term objective of a climate-neutral European Union (EU) by 2050. That is,9

by 2050, the EU will reduce its emissions by 80%, to below 1990 levels. More recently, the10

UN Climate Change Conference COP25 (2˘13 December, 2019) took place in Madrid with11

the purpose of following up on the implementation of the Paris agreement guidelines and12

build prospects ahead of 2020.13

European buildings are the greatest consumers of energy and are responsible for ap-14

proximately 40% of the EU’s total energy consumption of its CO2 emissions [3] and 36%.15

Improving the efficiency of existing buildings could potentially lead to significant energy16

savings and lower CO2 emissions by about 5%, in the case of both total energy and CO217

emissions.18

The International Energy Agency (IEA) has found that cooling is the fastest-growing19

end-use of energy in buildings, as the energy demand of cooling systems more than tripled20

between 1990 and 2018, reaching around 2,000 TWh of electricity [4]. The increase in cool-21

ing demand is impacting power generation and distribution capacity, especially during22

peak-demand periods and extreme-heat events. Space cooling in buildings is responsi-23

ble for 50% of peak electricity demand. CO2 emissions from space cooling are also rising24

rapidly, tripling between 1990 and 2018 to reach 1,130 million tons. Air conditioning ac-25

counts for nearly 20% of total electricity use in buildings around the world today [5].26

This study focuses on a chilled-water installation because of its essential role in hos-27

pitals for healthcare activities: Air Conditioning (AC) in operating rooms, intensive care28

units (ICU), emergency rooms, etc. It is also fundamental for operating medical equipment29

such as that used in radiology and diagnostic imaging, scanners, refrigeration storage in30

blood bank, kitchens, and pharmacies; pathology, the morgue, and laboratories. Computer31

and data center racks also require cooled water. Studies have shown that the energy re-32

quired by chilled-water installations and AC in a medical building constitutes 40% to 45%33

of the total energy necessary [6, 7]. Hospitals can decrease their energy consumption by34

more than 20% by implementing a BMS, adequately zoning for AC, adding measurement35

sensors in different areas, analyzing historical data from those systems, planning proper36

use schedules, harnessing energy from extraction air and regulating the speed of fans and37

water pumps.38

The methodology presented herein enhances energy efficiency and solves common prob-39

lems in hospital cooling plants. Its foremost innovation is that it incorporates a predictive40

model of thermal cooling demand to the BMS that can forecast the activity of the water-41

cooled generators. The model integrated into the BMS creates a predicted schedule for the42

day ahead for the cooling generators. The optimized system is capable of reducing ineffec-43

tive starts and stops that can otherwise lead to costly breakdowns and inefficient electrical44

starting peaks.45

This study has shown that the methodology proposed is effective in improving the46

building’s energy efficiency, optimizing the electrical consumption of cooling systems, de-47

creasing CO2 emissions, contributing to the thermal comfort of users, and minimizing48

maintenance costs through the use of machine learning techniques.49

1.1. Related studies50

In the past some interesting related studies have been conducted to predict thermal51

demand in buildings using different forecasting techniques: linear regression for estimat-52

ing cooling energy of condominiums [8], combining ANN with an ensemble approach or53

clustering-enhanced adaptative ANN to forecast building cooling loads [9, 10], Artificial54

2



Intelligence (AI) to predict energy consumption of Low Energy Buildings (LEB) [11], and55

hybrid approach for building stock energy prediction [12].56

Likewise, electrical demand models have been designed to predict the energy consump-57

tion of Heating, Ventilation and Air Conditioning (HVAC) systems applying different tech-58

niques: algebraic modeling [13], ANN [14], an ANN comparison with Random Forest (RF)59

[15], and SVR [16]. In a field related to the present study, research has been conducted to60

forecast electrical consumption in hospital facilities based on ANN [17].61

Model Predictive Control (MPC) applications for HVAC models have been tested with62

ANN models [18, 19], including a MPC formulation framework for Enhancing Building63

and HVAC System Energy Efficiency [20].64

Some recently published methods have automated and facilitated modeling processes65

with hyperparameter optimization (HO) and feature selection (FS) in [21, 22]. The GAparsimony66

methodology used in this study is a genetic algorithm (GA) that conducts parsimonious67

model selection (PMS) [23]. It has been successfully applied in a range of contexts such as68

steel industrial processes [24], hotel room booking forecasting [25], mechanical design [26],69

and solar radiation forecasting [27].70

This article presents a new methodology that has been successfully applied in an ac-71

tual large-sized hospital to improve energy efficiency and performance by forecasting the72

thermal energy demand of the cooling-water system. The final model integrated into the73

BMS is an ensemble model comprised of the best SVR and ANN models built with the74

GAparsimony methodology for parsimonious modeling. The optimizations and the appli-75

cation of the improvements were carried out over the past three years. The results were76

integrated, tested and measured during 2020.77

2. Case study description78

2.1. Main hospital description79

The San Pedro Hospital is the foremost hospital in the region of La Rioja (Spain) and80

belongs to the Spanish national public healthcare system. The area of the hospital is about81

126, 057.83 m2 and has seven above-ground floors.82

As the primary hospital in the area, it offers a wide range of medical services, the most83

energy-demanding of which are: over 600 beds for hospitalization (which were fully occu-84

pied during the first wave of COVID-19), a diagnostic imaging area, 23 operating rooms, an85

emergency area with 40 beds, hemodialysis, two ICUs with 32 beds (one of them adapted86

during the COVID-19 crisis), endoscopy, laboratories, pharmacy, sterilization, and other87

general services.88

2.2. Technical description of the cooling system89

Hospital’s high voltage facilities, water tanks, emergency generators, storage of medical90

gases, cold-water production system and heating installations are centralized in a separate91

building and then distributed by a ring pipe around the basement of the building.92

The cooling generation system under study consists of three centrifugal chiller units of93

3.51 MW, namely the Trane CVFG model (herein designated as EF1, EF2, EF3), and another94

screw machine of 1 MW cooling capacity, namely the Trane RTHD model (designated as95

EF4). Figure 1 shows the hydraulic schema of the water-cooling facility.96

The BMS is comprised primarily by controllers belonging to the Sauter EY3600 family.97

The BMS interface is a SCADA application with a novaPro Open 4.1. environment. The98
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existing BMS controlled the system on a real-time basis, using information captured by99

sensors and ordering actions to the actuators when temperature set-points exceeded pre-100

determined values.101

Figure 1: Hydraulic schema of cooling-water-generation system.

2.3. Past problems in the cooling system102

Before starting the optimization process, the following malfunctions were detected:103

- Inefficient and repeated starts and stops of the cooling generators, which were con-104

trolled exclusively by the water-distribution temperature set-point. This malfunction105

impacted energy efficiency negatively and can lead to significant breakdowns. The106

top manufacturers recommend that the maximum number of starts in scroll type com-107

pressors be under 12 per hour, and 6 in compressors equipped with inverters [28]. In108

addition, it is recommended that the working time after a chiller starts be at least 60109

minutes.110

- Inefficient maintenance expenses incurred because of a lack of a daily schedule. The111

system required having all the cold-water pumps ready for a start signal from the112

chillers. This fact entailed high maintenance costs because operating all the cooling113

towers required expensive antimicrobial and chemical treatments.114

- Subcooling-water-ring temperature below established set-points diminished energy115

efficiency, e.g. two chillers begin operating simultaneously when only one of them116

was necessary.117

- Overheating-water-ring temperature above established set-points owing to sudden118

chiller stops, which adversely affected healthcare services.119
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3. Methodology120

The methodology provides a structured process to review all the main aspects related121

to the cooling-water system. As a final step, a forecasting demand model was implemented122

that can transmit the maximum energy required for the next day to the BMS. The process,123

which started in 2017, began with a deep optimization of the installation, the goal being to124

solve the problems described in Subsection 2.3. A timeline of the study and the stages of125

the methodology is depicted in Figure 2.126

Figure 2: Case study timeline indicating the most influential improvements, model generations and implementa-
tion of the model inside the BMS.

3.1. Control system improvements127

These enhancements are applied to the control system and affect the set-points, the128

behavior of the field elements and actuators, the operating schedules and the predictive129

control systems that could be integrated.130

The main facilities of the hospital are controlled by the BMS system. It was implanted131

in 2008, one year after the hospital opening. Since 2010 on-going optimization of the BMS132

has been underway in three main areas: lighting (adding sensors and schedules), HVAC133

distribution adjustments (adding sensors, and implementing schedules in fan coils, air con-134

ditioners, and pumps), heating generation (implementing schedules in pumps, optimizing135

the system).136

The 1st optimization of the cooling system was developed before this study. It imple-137

mented a stepped set-point temperature of the cold-water ring (TCONSIG) that was calcu-138

lated depending on the outside temperature, instead of a fixed value, as beforehand.139

In the 2nd optimization, a minimum working time for the water-cooled generators was140

established of at least one hour, and a cyclic order of use for the chillers was set up. This141

optimization significantly improved the behavior of the cooling-water generation system142

as can be observed in Figure 10 (from April 2018): the number of starts and stops in the143

chillers decreased dramatically. The improvement can also be appreciated in Figure 17,144

which depicts the number of starts of chillers.145
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Figure 3: Set-point temperature of the cooling generation system (TCONSIG) calculated with the Exterior Tem-
perature (TEXT) and modified in the third optimization from a stepped set-point to a linear one.

In the 3rd optimization, a linear set-point temperature of the cold-water ring (TCONSIG)146

was applied and, in this optimization, calculated in proportion to the outside temperature147

(TEXT) instead of as a stepped variable, as can be seen in Figure 3.148

A supervised control system was implemented in the 5th optimization, described in149

Subsection 3.4. The model communicates the maximum cooling-power demand for the150

next day to the BMS and allows the system to foresee how many chillers will be necessary.151

This also provides a schedule that allows planning for which chillers will be in operation,152

optimizing energy efficiency and planning maintenance operations. In Figure 4, the contri-153

bution of EF4 (1 MW) chiller to EF3 (3.5 MW) can be appreciated: these two chillers work154

in conjunction to best fit the power generation to the day’s maximum demand, instead of155

starting two of the 3.5 MW chillers and subcooling the ring temperature.156

Additionally, in this final step, a new generation schedule was implemented for Sum-157

mer and Winter to adjust the demand to the appropriate chiller capacity. The scheduling158

establishes separate day and night programs in Summer. Night programming establishes159

the priority of use of the small chiller EF4 if the outside temperature is below 17 ºC. The160

winter schedule is similar to the summer-night program.161

3.2. Improvements in the data acquisition system162

These improvements affect the information acquisition and data processing system, as163

well as the measurement systems.164

Local Operating Network (LON) communication cards were installed in every genera-165

tor in the 4th optimization to improve the internal adjustments of the chillers that the BMS166

had not been able modify before. These communication cards allow the BMS to monitor167

the internal operating parameters of the machine and modify the working conditions and168

limits. They allow the set-point to be modified and limit the electrical power of each gen-169

erator. This enables the machine’s consumption to be adjusted according to the immediate170

needs of the facility. The maximum power limitations of EF1, EF2, and EF3 were upgraded171

from 70% to 90%, thereby providing a maximum cooling power greater than 3 MW per172

chiller.173

Furthermore, after these cards were set up, the quality and quantity of data recorded174

improved dramatically in terms of precision as compared to data recorded with external175

sensors, as can be observed in Figures 4 and 5.176
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Figure 4: Cooling power generated July 21st – 23th , 2020. The reinforcement obtained by EF3 plus EF4 chiller to
fit the demand can be observed. Data extracted from LON Cards installed in the 4th optimization.

DAYTIME [h]

Figure 5: Thermal power generation of EF1 chiller data obtained with LON cards installed in the 5th optimization.
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In the 5th optimization, electrical power meters were installed and integrated into the177

BMS system to measure the instantaneous consumption of each chiller. The impact of in-178

tegrating these power meters can be visualized in Figure 5. This improvement made it179

possible to analyze the efficiency of each machine while in operation.180

3.3. Improvements in the physical system181

These improvements are made by integrating new physical systems into the existing182

installation.183

A frequency inverter system was installed in the EF4 screw type generator in the 4th
184

optimization. The frequency inverter (AFD) can regulate the speed of the compressor with185

a partial load. In the EF1, EF2, and EF3, which are centrifugal chillers, AFDs could not be186

installed, nevertheless they still have a modulation with the refrigerant charge.187

Figure 6: Detail of the thermal generation showing behavior after installation of frequency inverter in the EF4
chiller, after approx. 5000 hours, in 2019.

The operation of the screw type chiller is similar to a centrifugal chiller, in that operation188

ceases once it reaches the set-point. The main difference is that if the screw chiller has a fre-189

quency inverter installed in the modulation, it begins operating once this point is reached.190

The inverter acts directly on the power supplied to the compressor, reducing the electrical191

power injected and saving more energy. In addition, the minimum thermal power that the192

chiller can provide can be reduced before it has to be stopped. This optimization signifi-193

cantly reduces the number of starts and stops as shown in Figure 17, starting in the 35th
194

month (November 2019). The thermal energy graph is flattened, as can be appreciated in195

Figure 6, and the generation of cooling energy is adapted to the demand, especially during196

the periods before and after the Summer, in which EF4 is the pre-established chiller because197

of its power capacity.198

3.4. Proposed predictive control schema199

The activity of the hospital’s water-cooled generators was improved by implementing200

a predictive model of cooling demand within the BMS control system that anticipates deci-201

sions. The incorporated control scheme is depicted in Figure 7. The prediction model was202

trained with real historical data from previous years.203

Before implementation, the BMS controlled the starting and stopping of the chillers204

through the set-point temperature exclusively. With the new control scheme the prediction205

model foresees the maximum thermal energy demanded in the cooling system for the next206
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Figure 7: Control scheme. The cooling-energy prediction model communicates to the BMS the maximum thermal
demand for the next day. The model reads the weather forecast conditions for the day ahead.

day. This allows decisions to be made ahead of time for the BMS, such as the maximum207

number of chillers necessary or scheduling the cooling towers. To do this, a script devel-208

oped in R language is executed daily. This program reads the internal system and external209

variables, predicts the energy demand for the next 24 hours and communicates it to the210

BMS.211

The weather conditions for the coming hours (temperature, relative humidity, etc.) are212

obtained from the climatological model of the Spanish National Meteorological Agency213

(AEMET). The data is loaded from an XML file that is updated daily [29]. It should be214

noted that these temperatures are predicted and subsequently can drag errors into the de-215

mand model results, as can be observed in the difference between the predicted and real216

temperatures in Figure 8.217

Figure 8: Outside temperature (TEXT) registered in BMS versus Forecasted temperature by AEMET model, 1st to
15th of August 2020.

Once the script reports the results of the forecasted cooling-energy demand for the day218

ahead, the maximum demand is predicted and communicated to the BMS by an analog219

signal transducer. Four possible system states have been established for the maximum220

demand of the next day, as depicted in Figure 9:221

- STATE 1, covered by the 1 MW chiller (EF4).222

- STATE 2, covered by one of the 3.5 MW chillers (EF1, EF2 orEF3).223
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- STATE 3, covered by a combination of the 1 MW and one of the 3.5 MW chillers(EF4224

+ EF1, EF2 or EF3).225

- STATE 4, covered by two of the 3.5 MW chillers.226

Figure 9: Energy Demand States based on the rank of the maximum energy demand for the next day.

In May 2020 the machine learning model that forecasts the maximum energy demand227

for the cooling system was included within the BMS. A logger software was also incorpo-228

rated to register data and render graphs.229

3.5. Dataset230

The Knowledge Discovery in Databases (KDD) methodology was used to develop the231

forecasting model. During the process, three generations of models were created.232

1. The first-generation models was tested in March 2019 [30].233

2. A second generation of models was developed in December 2019 [31].234

3. And finally, a third generation was created and included within the new control235

scheme in May 2020.236

The following sections describe the processes for extracting information and creating237

the third-generation models, which are very similar to the previous generations.238

3.5.1. Data extraction239

The data was extracted from the BMS Sauter NovaPro Open software since the beginning240

of this study in 2017 (Table 1).241
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Table 1: Control system variables of the BMS
Short name Description

EF1 to EF4 EF1 to EF4 - Status
TIMP Cold-ring-drive temperature[ºC]
TEXT Exterior temperature of power installation building [ºC]
TCONSIG Calculated set-point of the regulation for cold-production

drive [ºC]
RH Relative humidity [%]

TENEF1 to 4 Water temperature at the inlet of the EF1 to EF4 [ºC]
TSALEF1 to 4 Water temperature at the outlet of the EF1 to EF4 [ºC]

3.5.2. Data preprocessing242

The preprocessing entailed, among others, the following actions (common in KDD pro-243

cesses):244

1. Data Cleaning: Filling in or dropping missing values.245

2. Data Integration: Averaging measurements by hour.246

3. Data Transformation: The generated cooling energy (ENERGYKWHPOST) was cal-247

culated from the combination of other control system variables. This new feature248

was converted to energy [kWh] rather than instantaneous power [kW]. To smooth249

the noise, the final target, ENE_GAUSSFILT11, was obtained by filtering ENERGYK-250

WHPOST with a Gaussian function that used a window size of 11 hours.251

4. Feature and Model Selection: GAparsimony R package was used to simultaneously252

select the most important attributes and algorithm’s parameters. The objective was253

to obtain parsimonious models with high accuracy and low complexity (more robust254

against noise and process changes, and easier to maintain).255

3.5.3. Final dataset256

In order to improve the first two generations and, according to [9, 11, 15], two new257

variables were included in the third generation: time and relative humidity (RH).258

The final selection of attributes was:259

Table 2: Attributes selected for testing the forecast models.
Variable Description

ENE_GAUSSFILT11 Target feature

time Time of measurement
month Month of measurement
day_of_week Day of the week
Is_holiday Boolean variable for holiday
TIMP Instant impulsion temperature
TEXT Instant outside temperature
TMEAN Average daily temperature
TMAX Maximum daily temperature
TMIN Minimum daily temperature
RH Relative humidity [%]
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The set-point temperature of the cooling water (TCONSIG) was not selected because it260

was linearly related to the outside temperature (TEXT), as can be observed in Figure 3.261

3.6. Parsimonious Modeling262

The search for parsimonious models (low complexity models) is one of the current chal-263

lenges in the field of Machine Learning (ML). Among models of a similar degree of pre-264

cision (accuracy), choosing those that are less complex is recommended, given that they265

will be better at generalizing the problem, perform more robustly against noise and dis-266

turbances; and they are easier for experts to interpret, and less expensive to maintain and267

update. Mechanisms used within KDD processes such as regularization or feature selection268

make valuable contributions in this regard.269

In this study, training and selecting the best parsimonious models was conducted us-270

ing the GAparsimony methodology. This methodology performs a search for parsimonious271

machine learning models through optimization with genetic algorithms (GA). The final272

objective is to obtain models that are high in precision, yet low in complexity, using fea-273

ture selection (FS), hyperparameter optimization (HO), and parsimonious model selection274

(PMS). In GAparsimony, the PMS of the best individuals of each generation is carried out275

in two steps: selecting the most accurate models and, from them, choosing those with the276

least complexity.277

In this study, the three ML algorithms that showed the best results in previous tests278

were selected: artificial neural networks (ANN), support vector machines for regression279

(SVR) with kernel based on radial basis functions (RBF), and extreme gradient boosting280

machines (XGB). The final selected model was a weighted blending of the two best models281

obtained with ANN and SVR. For the third generation, the use of the XGB model was282

ruled out as the improvement it provided was minimal when compared to the significant283

computing effort it required. All the experiments were implemented with the GAparsimony284

[32] package developed in the R language.285

3.7. GAparsimony settings286

To perform GA optimization with GAparsimony, it is necessary to define the chromo-287

somes of each individual to be trained with the corresponding machine learning algorithm.288

In this methodology, the chromosome is defined by a combination of the algorithm’s train-289

ing parameters and the input attributes selected for that individual. In particular, for the290

SVR and ANN algorithms, each individual i of each generation g is defined by λi
g chromo-291

some formed by the combination of two vectors P and Q:292

SVR(λi
g) = [P(cost, gamma, epsilon), Q]

ANN(λi
g) = [P(size, decay, num_epochs), Q]

(1)

293

294

where the values of the vector P correspond to the training parameters of the algorithm,295

and Q corresponds to a vector of probabilities used for the selection of each input attribute296

j if qj ≥ 0.5.297

As a function of J (fitness function), GAparsimony uses the Root Mean Squared Error298

(RMSE) obtained with the validation database, RMSEval . The RMSE error measured with299

the test database, RMSEtst, is used to check the generalizability of the model. Finally, the300
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complexity of the model is defined by NFS, the number of attributes selected. This mea-301

sure of complexity has proven to be very effective in past experiences when searching for302

parsimonious models with GAparsimony [24, 25, 26, 27].303

The optimization process with GAparsimony genetic algorithms was defined with a pop-304

ulation of 40 individuals evaluated in 100 iterations but with a stop criterion if the RMSEval305

error did not improve in 20 consecutive generations. The selection process used 20% of the306

best individuals (elite individuals) and was based on a two-step algorithm: In the first step,307

the selected models were ordered in an increasing manner based on the RMSEval error. In308

the second step, the individuals with similar values of RMSEval were re-ordered according309

to their lower complexity. This helped promote those less complex solutions (simpler be-310

cause they have fewer variables) to the top positions. In this second step, two individuals311

were considered similar if the absolute difference of their RMSEval was less than a ReRank312

parameter, defined by the user. In this study, and after several experiments, ReRank was313

set at 0.1 as it showed a satisfactory balance between complexity and RMSEval .314

After selecting the best individuals of a generation (the elite population), GAparsimony315

performs the traditional processes of crossing the chromosomes of the best individuals to316

create the next generation of individuals, as well as chromosome mutation to create more317

diversity of solutions in later generations. The crossover function for the P vector of the318

chromosomes was heuristic blending with /alpha = 0.1. For the Q vector of the chromo-319

somes, random swapping was performed. In this case, the elite individuals of the previous320

generation also pass on to the new generation.321

The first generation of individuals is created randomly, but with 90% of the characteris-322

tics of the individuals selected. This allows the search for models to start with models that323

have a high number of entries.324

Finally, the mutation is applied to the chromosomes of the new generation, except for325

the two best individuals. For the P vector of chromosomes, a random variation of 10% of326

the values is performed. In the case of vector Q, the probability of changing 0 to 1 was327

set at 10% in order to facilitate the reduction of the number of attributes in subsequent328

generations.329

3.8. Energy demand model330

To calculate the 3rd generation of models, data was collected from April 2018 to Decem-331

ber 2019. Prior data was removed due the relevant improvements that went into effect at332

that time, as shown in Figure 10. The training dataset corresponded to the period between333

January 2018 and February 2019. The validation database was defined to the even weeks334

between March 2019 and December 2019, and the test database to the odd weeks of the335

same period.336

GAparsimony was used to choose the best parsimonious models trained with SVR and337

ANN algorithms, by adjusting the algorithm’s parameters, selecting the most relevant fea-338

tures and choosing the best parsimonious solution. Table 3 shows the best SVR and ANN339

models: RMSEval and RMSEtst, selected features with the percentage of appearance in the340

elitist models during the last generations, model complexity (NFS), and the parameters of341

the best-tuned algorithm.342
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Figure 10: Evolution of energy generated in the cooling-water facility (ENERGYKWHPOST) from 2017 to 2020.
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Table 3: Best models with RMSE errors, features used and their percentage of appearance in the group of elite
models within the optimization process with genetic algorithms, complexity, generation and parameters.

SVR ANN

RMSEval 222.95 226.04
RMSEtst 256.08 264.02

used % appear. used % appear.
time 1 99.7 1 100
month 1 99.6 1 98.6
day_of_week 0 11.8 0 11.5
Is_holiday 0 1.9 0 7.7
TIMP 0 13.7 1 99.2
TEXT 1 99.6 1 100
TMEAN 1 99.5 1 96.4
TMAX 1 63.4 1 95.8
TMIN 0 8.5 0 11.9
RH 0 32.2 0 11.1

Complexity 5 6

Parameters expcost -0.014 size 33.95
gamma 0.331 decay 200.04
epsilon 0.048 maxit 708.13

SVR Model: The best SVR model was obtained with 5 features: time (time); month343

(month); and the outside (TEXT), averaged (TMEAN), and maximum (TMAX) daily temper-344

ature. Figure 11 shows the evolution for the most elite population of the best GAparsimony345

iteration for SVR model. White and gray box-plots represent the RMSEval and RMSEtst346

evolutions respectively. Continuous and dash-dotted lines indicate the best individual er-347

ror for validation and test of each population. The gray area covers the range of features of348

most elite individuals, and the dashed line indicates the minimum number of features NFS349

(right axis).350
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Figure 11: Evolution of the errors of the most elite solutions for SVR algorithm.

ANN Model: The best ANN model converged in 2 generations with 6 features: time351

(time); month (month); and the temperatures of the ring (TIMP), outside (TEXT), averaged352

(TMEAN), and maximum daily (TMAX). ANN errors were slightly higher than those of the353

SVR model. Figure 12 displays the evolution of the ANN model.354

Figure 12: Evolution of the errors of the most elite solutions for ANN algorithm.

HYBRID Model: The best SVR and ANN models were combined to obtain a blending355

model by weighting the predictions as follows,356

Hybrid_Model = (w1 ∗ SVR + w2 ∗ ANN)/2 (2)

The weights were optimized to reduce the RMSEval and obtain this solution:357
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Hybrid_Model = (1.651619 ∗ SVR + 0.348381 ∗ ANN)/2 (3)

Table 4 shows the improvement of RMSEval and RMSEtst of the hybrid model versus358

single models. The error rate was slightly better in the ensemble model than the best single359

model (SVR). This hybrid model reduces errors compared to the second generation hybrid360

model. And in addition, it was further simplified since the previous one was composed361

of 3 models (SVR, ANN, XGBoost), and it is less complex because it uses less features.362

Therefore, this model is easier to maintain and more robust against noise.363

Table 4: Ensemble validation and test errors versus single models.
SVR ANN HYBRID

RMSEval 221.95 226.04 220.86
RMSEtst 256.08 264.02 253.20

complexity 5 6 5+6
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Figure 13: Combined prediction for the Hybrid model.

As described in Section 3.2, the quality of data logged improved significantly as a result364

of the installation of the LON cards. The graphs in Figures 14 compare the registered ther-365

mal energy generated (data obtained from the LON cards) to the energy demand predicted366

by the ensemble model (which uses the data predicted by AEMET as input). Furthermore,367

these graphs show the influence of the outside temperature on the demand in the dotted368

line: its impact increases when the outside temperature TEXT is more extreme (during July369

and August). Although the data that were finally used for modeling were extracted from370

the BMS sensors instead of that from LON cards, the prediction obtained is very close to371
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the registered demand.372

Figure 14: Forecasted energy demand (ENE_GAUSSFILT11) versus thermal energy generated (ENERGYKW-
POST) obtained from LON cards, June and July of 2020.

4. Results373

4.1. Energy savings374

The electrical energy logged made it possible to compare the annual energy savings375

obtained before and after the model was implemented. The data was extracted from the376

readings of the electrical power meter located in the hospital’s power plant. This meter also377

measured other electrical consumption from heating and lightning. Nevertheless this data378

is valid for this study because the cooling generation system is the most energy-intensive379

installation in the building, while heating or lightning have a stable demand over time.380

Moreover, electrical meters were installed in every chiller, but they were not integrated381

until the 5th optimization of the system.382

The method of cooling degree days (CDD) was used to normalize the consumptions for383

a more adequate comparison. For this calculation the temperature of 17 ºC was selected384

as the base temperature, Figure 15 shows the variation of energy that increases once this385

base temperature is exceeded. Below this temperature, the cooling system stabilizes at386

an almost constant power of less than 1 MW (approximately 800 kW). That is the reason387

why in the winter season the EF4 screw chiller is able to supply enough energy to the388

cooling system. The meteorological data for the study was obtained from the official La389
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Rioja Government weather station [33], with data validated in accordance with the Spanish390

UNE 500540 standard.391

Time

Figure 15: Outside temperature of 17 ºC was chosen as the base temperature for estimating CDD since it requires
additional energy to hold the cooling system. The energy peak generated can be observed inside the circle.

Table 5 shows the normalization of the annual electricity consumption in the building392

from the year 2016 (prior to the study) to the year 2020. To perform this normalization,393

the average degree days CDD17 in the interval 2016− 2020 (which was 587.3 degree days),394

multiplied by each annual value of Energy/CDD17 provides the normalized energy for395

each year.396

Table 5: Normalized energy per year [kWh] previous and over the course of the study, based on CDD17.
Year CDD17 Energy [kWh] Energy/CDD17 Normalized E. [kWh]

2016 590 5,968,990 10,119 5,942,682
2017 597 6,258,184 10,483 6,156,502
2018 576 6,124,609 10,629 6,242,594
2019 620 5,864,247 9,455 5,553,164
2020 553 6,400,075 11,569 6,794,584

The average cost of electrical energy during the 2017-2020 period for this building sup-397

plied from a 66 kV high voltage substation is 0.0988521EUR/kWh. Depending on whether398

the comparison is between the year 2016, prior to the study, or 2017, the first year of the399

study, and the year 2019, the energy savings obtained by implementing this methodology400

represent between 7% and 10%, which indicates economic saving of between 38, 504EUR401

and 59, 641EUR per year, as shown in Table 6.402

Table 6: Estimated savings thanks to application of the methodology.
Year Saving (%) Saving (EUR)

2016 vs 2019 7% 38,504.63
2017 vs 2019 10% 59,641.20
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In order to evaluate the behavior of the plant during this year (2020, the year when403

the predictive system was implemented), the monthly evolution should be analyzed in the404

months of higher degree days CDD17, which are July and August, where the comparison405

of normalized data is more descriptive, Table 7.406

Table 7: Normalized Energy of most demanding months [kWh], monthly CDD17.
Year CDD17 July CDD17 August

2016 177.5 691,762 180.2 627,752
2017 176.9 715,953 160.6 738,306
2018 183.8 713,190 185.9 671,673
2019 211.2 638,511 180.2 686,522
2020 180.7 675,942 164.0 711,752

Higher electrical consumption (+22.3%, +122,716 EUR) was observed during the year407

2020. The reason is that plant operations were atypical since all areas of the hospital408

equipped with Air Handling Units (AHU), see Figure 16, were configured to avoid air409

recirculation and increase ventilation flow to prevent the spread of COVID-19 [34].410

Figure 16: AHU internal scheme. The SARS-CoV-2 virus general recommendation is to avoid central recirculation
by closing the recirculation dampers either using the BMS or manually.

4.2. Measurement of the number of starts per chiller411

The number of starts should be reduced as much as possible, especially in chillers not412

equipped with inverter systems. An excessive number of starts can damage internal parts,413

and every start generates an electrical peak that may affect surrounding installations.414

The results of measurements of the number of starts per chiller are shown in Table 8415

summarizing measurements by year and chiller. If the year 2017 is compared with 2019,416

the total number of starts decreased by 82.7%.417

Table 8: Number of starts per chiller from 2017 to 2020 (* Chiller EF4 was damaged during 2017).
Year EF1 EF2 EF3 EF4 TOTAL Reduction

2017 1.911 783 1.234 0(*) 3.928
2018 971 210 137 498 1.816 53, 8%
2019 155 122 196 206 679 82, 7%
2019 91 177 192 427 887 77, 4%
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Figure 17: Number of starts per chiller from 2017 to 2020. The diagram shows the notable reduction in the number
of chiller starts thanks to optimizations made to the system during the process.

In order to be able to compare the evolution of the number of starts during the current418

year 2020, Table 9 indicates the total sum of starts of all the chillers per month. As can be419

observed, in the year 2020 there have been more starts due to the night programming that420

the EF4 chiller activated. This action was carried out in a controlled manner and improves421

energy efficiency since this chiller gives its maximum Energy Efficiency Ratio (EER) in loads422

within that range.423

Table 9: Total number of chiller starts for each month and each year. The number of starts since the model was
implemented is marked in bold.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2017 159 207 292 315 450 416 424 442 391 348 235 249
2018 273 280 213 125 160 251 200 115 62 56 24 57
2019 26 29 34 36 55 121 111 47 62 85 35 38
2020 44 47 61 62 46 55 111 166 88 82 37 88

5. Conclusions424

This methodology reworked the hospital’s cooling system and solved problems that425

had plagued the system in the past. Optimizing the control system by adjusting parame-426

ters (such as set-point temperature and minimum machine working time) led to the most427

significant reduction in the number of chiller starts. Furthermore, implementing the BMS of428

a cooling-demand prediction model allowed plant operations and performance to be opti-429

mized. Thanks to this system, the maximum cooling energy demand for the next day can be430

forecasted, and therefore, the BMS system can establish the number of chillers necessary. In431

addition, this model provides a daily schedule for plant maintenance and a self-generated432

report in R script.433
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To develop the blended prediction model, the GAparsimony methodology facilitated op-434

timization. In the final models, the XGBoost model was discarded because its high level of435

resource consumption was not compensated for by the improvements it offered. In the436

models that make up the final ensemble (SVR and ANN), it should be noted that the com-437

mon features influencing the predictions were: time, month, outdoor temperature, average438

temperature and maximum daily temperature. The prediction model behaves effectively,439

although in the months with the highest cooling energy demand (July and August), it is a440

conservative model and the feature "outside temperature" may have better correlation than441

the ensemble model (the model would not be overtrained). On the other hand, it was ob-442

served that the external model that implements the weather-forecast information (outdoor443

temperature, average temperature and maximum daily temperature) can drag errors into444

the prediction results.445

Improvements in the data acquisition system enhanced the accuracy of the data from the446

chillers. However, since this improvement occurred at the end of the optimization process,447

the last models made did not include the more accurate data. These acquisition systems448

have improved communication with the chillers, allowing the maximum working power449

to be fine-tuned, which contributes to expanding cooling power, and reducing the electrical450

demand of the chillers by improving modulation. What’s more, the addition of electrical451

meters in each chiller would further enrich our knowledge of plant efficiency.452

Regarding the improvements made to the physical system, it is worth highlighting the453

significant improvement in the modulation of the screw chiller after an inverter system was454

installed, which allowed the plant to work at maximum energy efficiency and significantly455

reduced the number of starts and electrical demand. In the last year of the study, the total456

number of starts was increased deliberately due to the implementation of time schedules457

for higher efficiency.458

The methodology has achieved energy savings between 7% and 10%, but the most re-459

markable effect was the improvement in the overall performance of the plant. The unex-460

pectedly greater energy demand due to increased ventilation to prevent the spread COVID-461

19 obviously impacted this study. Hence, the electrical consumption data from 2020 (+22.3%462

as compared to 2019) cannot be compared in terms of savings derived from implementing463

the prediction model.464

The optimization of the plant and the KDD process are long-term procedures; the present465

work was conducted over the course of more than 3 years. In order to apply this method-466

ology in similar hospitals, it would be necessary to compile a database period of at least467

one year. Hence, it is exceedingly difficult to implement this methodology from scratch in468

a short period of time.469

In terms of future ways to further improve the cooling plant within the same line of470

research, the forecasting model should be revisited using the data obtained from the LON471

cards installed in the chillers after a period of at least one year, and once the special mea-472

sures implemented due to COVID-19 are lifted. The energy efficiency of the plant should473

be analyzed by studying the data provided by the electrical energy meters installed in the474

chillers. Such research would identify the most efficient conditions for each cooler. In terms475

of future physical improvements, there are plans to install a system that would capture476

surplus energy from the condensation cooling towers, which would reinforce the overall477

energy efficiency of the power plant.478
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