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A B S T R A C T   

Healthcare facilities consume massive amounts of energy. This study outlines a methodology to enhance energy 
efficiency and solve common problems in hospital cooling-water systems, since hospitals are the most energy- 
intensive type of building. Building Management Systems (BMS) are a widely used technique to control and 
monitor all the different energy facilities contained in hospitals. Proper setup and upgrades can resolve in
efficiencies and existing problems. The methodology described herein addresses the general cooling system 
adjustments in three main areas: control system (CS), data acquisition system (DAS), and physical system (PS). 
An innovative feature incorporated in this methodology is the cooling demand model integrated into the CS, 
which is capable of forecasting and transmitting a schedule for maximum thermal energy requirements to the 
BMS a day in advance, thereby anticipating decisions and scheduling energy generation and maintenance op
erations. During the process of developing the cooling demand model, various machine learning models were 
trained. This process consisted of searching for low-complexity models using a methodology called GAparsi
mony. This methodology uses genetic algorithms to search for highly precise, robust models that use a low input. 
The final model consisted of a weighted combination of Artificial Neural Network (ANN) and Support Vector 
Regression (SVR) models. The energy savings obtained thanks to this methodology are estimated to be between 
7% and 10% per year. The energy plant improved its performance and chiller starts were reduced by 82.5%. It 
should also be noted that this study was affected by the recommendations for increased ventilation due to the 
COVID-19 pandemic, which entailed at 22.4% increase in energy consumption in 2020. The methodology was 
developed and tested successfully in a real hospital BMS between 2017 and 2019; the model was finally inte
grated in 2020.   

1. Introduction 

The Paris climate accord (signed April 22th, 2016) was designed to 
keep global temperature rise below 2 ◦C above pre-industrial levels and 
to limit that increase even further to 1.5 ◦C [1]. This goal requires that 
global carbon emissions drop as soon as possible, in order to “achieve a 
balance between anthropogenic emissions by sources and removals by 
sinks of greenhouse gases”. In accordance with this agreement, on 
November 28th, 2018 the European Commission published its Climate 
Strategies [2]: establishing greenhouse-gas-emissions reduction targets 
for 2020, key laws and measures to achieve their goals for 2030, and the 
long-term objective of a climate-neutral European Union (EU) by 2050. 
That is, by 2050, the EU will reduce its emissions by 80%, to below 1990 
levels. More recently, the UN Climate Change Conference COP25 
(December 2019) took place in Madrid with the purpose of following up 

on the implementation of the Paris agreement guidelines and build 
prospects ahead of 2020. 

European buildings are the greatest consumers of energy and are 
responsible for approximately 40% of the EU’s total energy consumption 
of its CO2 emissions [3] and 36%. Improving the efficiency of existing 
buildings could potentially lead to significant energy savings and lower 
CO2 emissions by about 5%, in the case of both total energy and CO2 
emissions. 

The International Energy Agency (IEA) has found that cooling is the 
fastest-growing end-use of energy in buildings, as the energy demand of 
cooling systems more than tripled between 1990 and 2018, reaching 
around 2,000 TWh of electricity [4]. The increase in cooling demand is 
impacting power generation and distribution capacity, especially during 
peak-demand periods and extreme-heat events. Space cooling in build
ings is responsible for 50% of peak electricity demand. CO2 emissions 

* Corresponding author. 
E-mail address: fjmartin@unirioja.es (F.J. Martinez-de-Pison).  

Contents lists available at ScienceDirect 

Journal of Building Engineering 

journal homepage: www.elsevier.com/locate/jobe 

https://doi.org/10.1016/j.jobe.2021.102839 
Received 18 December 2020; Received in revised form 19 February 2021; Accepted 2 June 2021   

mailto:fjmartin@unirioja.es
www.sciencedirect.com/science/journal/23527102
https://www.elsevier.com/locate/jobe
https://doi.org/10.1016/j.jobe.2021.102839
https://doi.org/10.1016/j.jobe.2021.102839
https://doi.org/10.1016/j.jobe.2021.102839
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jobe.2021.102839&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Building Engineering 43 (2021) 102839

2

from space cooling are also rising rapidly, tripling between 1990 and 
2018 to reach 1,130 million tons. Air conditioning accounts for nearly 
20% of total electricity use in buildings around the world today [5]. 

This study focuses on a chilled-water installation because of its 
essential role in hospitals for healthcare activities: Air Conditioning (AC) 
in operating rooms, intensive care units (ICU), emergency rooms, etc. It 
is also fundamental for operating medical equipment such as that used in 
radiology and diagnostic imaging, scanners, refrigeration storage in 
blood bank, kitchens, and pharmacies; pathology, the morgue, and 
laboratories. Computer and data center racks also require cooled water. 
Studies have shown that the energy required by chilled-water in
stallations and AC in a medical building constitutes 40%–45% of the 
total energy necessary [6,7]. Hospitals can decrease their energy con
sumption by more than 20% by implementing a BMS, adequately zoning 
for AC, adding measurement sensors in different areas, analyzing his
torical data from those systems, planning proper use schedules, har
nessing energy from extraction air and regulating the speed of fans and 
water pumps. 

The methodology presented herein enhances energy efficiency and 
solves common problems in hospital cooling plants. Its foremost inno
vation is that it incorporates a predictive model of thermal cooling de
mand to the BMS that can forecast the activity of the water-cooled 
generators. The model integrated into the BMS creates a predicted 
schedule for the day ahead for the cooling generators. The optimized 
system is capable of reducing ineffective starts and stops that can 
otherwise lead to costly breakdowns and inefficient electrical starting 
peaks. 

This study has shown that the methodology proposed is effective in 
improving the building’s energy efficiency, optimizing the electrical 
consumption of cooling systems, decreasing CO2 emissions, contributing 
to the thermal comfort of users, and minimizing maintenance costs 
through the use of machine learning techniques. 

1.1. Related studies 

In the past some interesting related studies have been conducted to 
predict thermal demand in buildings using different forecasting tech
niques: linear regression for estimating cooling energy of condominiums 
[8], combining ANN with an ensemble approach or clustering-enhanced 
adaptative ANN to forecast building cooling loads [9,10], Artificial In
telligence (AI) to predict energy consumption of Low Energy Buildings 
(LEB) [11], and hybrid approach for building stock energy prediction 
[12]. 

Likewise, electrical demand models have been designed to predict 
the energy consumption of Heating, Ventilation and Air Conditioning 
(HVAC) systems applying different techniques: algebraic modeling [13], 
ANN [14], an ANN comparison with Random Forest (RF) [15], and SVR 
[16]. In a field related to the present study, research has been conducted 
to forecast electrical consumption in hospital facilities based on ANN 
[17]. 

Model Predictive Control (MPC) applications for HVAC models have 
been tested with ANN models [18,19], including a MPC formulation 
framework for Enhancing Building and HVAC System Energy Efficiency 
[20]. 

Some recently published methods have automated and facilitated 
modeling processes with hyperparameter optimization (HO) and feature 
selection (FS) in Refs. [21,22]. 

The GAparsimony methodology used in this study is a genetic algo
rithm (GA) that conducts parsimonious model selection (PMS) [23]. It 
has been successfully applied in a range of contexts such as steel in
dustrial processes [24], hotel room booking forecasting [25], mechani
cal design [26], and solar radiation forecasting [27]. 

This article presents a new methodology that has been successfully 
applied in an actual large-sized hospital to improve energy efficiency 
and performance by forecasting the thermal energy demand of the 
cooling-water system. The final model integrated into the BMS is an 

ensemble model comprised of the best SVR and ANN models built with 
the GAparsimony methodology for parsimonious modeling. The opti
mizations and the application of the improvements were carried out 
over the past three years. The results were integrated, tested and 
measured during 2020. 

2. Case study description 

2.1. Main hospital description 

The San Pedro Hospital is the foremost hospital in the region of La 
Rioja (Spain) and belongs to the Spanish national public healthcare 
system. The area of the hospital is about 126,057.83 m2 and has seven 
above-ground floors. 

As the primary hospital in the area, it offers a wide range of medical 
services, the most energy-demanding of which are: over 600 beds for 
hospitalization (which were fully occupied during the first wave of 
COVID-19), a diagnostic imaging area, 23 operating rooms, an emer
gency area with 40 beds, hemodialysis, two ICUs with 32 beds (one of 
them adapted during the COVID-19 crisis), endoscopy, laboratories, 
pharmacy, sterilization, and other general services. 

2.2. Technical description of the cooling system 

Hospital’s high voltage facilities, water tanks, emergency generators, 
storage of medical gases, cold-water production system and heating 
installations are centralized in a separate building and then distributed 
by a ring pipe around the basement of the building. 

The cooling generation system under study consists of three cen
trifugal chiller units of 3.51 MW, namely the Trane CVFG model (herein 
designated as EF1, EF2, EF3), and another screw machine of 1 MW 
cooling capacity, namely the Trane RTHD model (designated as EF4). 
Fig. 1 shows the hydraulic schema of the water-cooling facility. 

The BMS is comprised primarily by controllers belonging to the 
Sauter EY3600 family. The BMS interface is a SCADA application with a 
novaPro Open 4.1. environment. The existing BMS controlled the system 
on a real-time basis, using information captured by sensors and ordering 
actions to the actuators when temperature set-points exceeded pre
determined values. 

Fig. 1. Hydraulic schema of cooling-water-generation system.  
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2.3. Past problems in the cooling system 

Before starting the optimization process, the following malfunctions 
were detected:  

- Inefficient and repeated starts and stops of the cooling generators, 
which were controlled exclusively by the water-distribution tem
perature set-point. This malfunction impacted energy efficiency 
negatively and can lead to significant breakdowns. The top manu
facturers recommend that the maximum number of starts in scroll 
type compressors be under 12 per hour, and 6 in compressors 
equipped with inverters [28]. In addition, it is recommended that the 
working time after a chiller starts be at least 60 minutes.  

- Inefficient maintenance expenses incurred because of a lack of a 
daily schedule. The system required having all the cold-water pumps 
ready for a start signal from the chillers. This fact entailed high 
maintenance costs because operating all the cooling towers required 
expensive antimicrobial and chemical treatments.  

- Subcooling-water-ring temperature below established set-points 
diminished energy efficiency, e.g. two chillers begin operating 
simultaneously when only one of them was necessary.  

- Overheating-water-ring temperature above established set-points 
owing to sudden chiller stops, which adversely affected healthcare 
services. 

3. Methodology 

The methodology provided a structured process to review all the 
main aspects related to the cooling-water system. As a final step, a 
forecasting demand model was implemented that can transmit the 
maximum energy required for the next day to the BMS. The process, 
which started in 2017, began with a deep optimization of the installa
tion, the goal being to solve the problems described in Subsection 2.3. A 
timeline of the study and the stages of the methodology is depicted in 
Fig. 2. 

3.1. Control system improvements 

The improvements were applied to the existing control system and 
affected the set-points, the behavior of the field elements and actuators, 
the operating schedules and the predictive control systems that could be 
integrated. 

The main facilities of the hospital are controlled by the BMS system. 
It was implanted in 2008, one year after the hospital opening. Since 
2010 on-going optimization of the BMS has been underway in three 

main areas: lighting (adding sensors and schedules), HVAC distribution 
adjustments (adding sensors, and implementing schedules in fan coils, 
air conditioners, and pumps), heating generation (implementing 
schedules in pumps, optimizing the system). 

The 1st optimization of the cooling system was developed before this 
study. It implemented a stepped set-point temperature of the cold-water 
ring (TCONSIG) that was calculated depending on the outside temper
ature, instead of a fixed value, as beforehand. 

In the 2nd optimization, a minimum working time for the water- 
cooled generators was established of at least 1 h, and a cyclic order of 
use for the chillers was set up. This optimization significantly improved 
the behavior of the cooling-water generation system as can be observed 
in Fig. 10 (from April 2018): the number of starts and stops in the 
chillers decreased dramatically. The improvement can also be appreci
ated in Fig. 17, which depicts the number of starts of chillers. 

In the 3rd optimization, a linear set-point temperature of the cold- 
water ring (TCONSIG) was applied and, in this optimization, calcu
lated in proportion to the outside temperature (TEXT) instead of as a 
stepped variable, as can be seen in Fig. 3. 

A supervised control system was implemented in the 5th optimiza
tion, described in Subsection 3.4. The model communicates the 
maximum cooling-power demand for the next day to the BMS and allows 
the system to foresee how many chillers will be necessary. This also 
provides a schedule that allows planning for which chillers will be in 
operation, optimizing energy efficiency and planning maintenance op
erations. In Fig. 4, the contribution of EF4 (1 MW) chiller to EF3 (3.5 
MW) can be appreciated: these two chillers work in conjunction to best 
fit the power generation to the day’s maximum demand, instead of 
starting two of the 3.5 MW chillers and subcooling the ring temperature. 

Fig. 2. Case study timeline indicating the most influential improvements, model generations and implementation of the model inside the BMS.  

Fig. 3. Set-point temperature of the cooling generation system (TCONSIG) 
calculated with the Exterior Temperature (TEXT) and modified in the third 
optimization from a stepped set-point to a linear one. 
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Additionally, in this final step, a new generation schedule was 
implemented for Summer and Winter to adjust the demand to the 
appropriate chiller capacity. The scheduling establishes separate day 
and night programs in Summer. Night programming establishes the 
priority of use of the small chiller EF4 if the outside temperature is below 
17 ◦C. The winter schedule is similar to the summer-night program. 

3.2. Improvements in the data acquisition system 

These improvements affected the information acquisition and data 
processing system, as well as the measurement systems. 

Local Operating Network (LON) communication cards were installed 
in every generator in the 4th optimization to improve the internal ad
justments of the chillers that the BMS had not been able modify before. 
These communication cards allow the BMS to monitor the internal 
operating parameters of the machine and modify the working conditions 
and limits. They allow the set-point to be modified and limit the elec
trical power of each generator. This enables the machine’s consumption 
to be adjusted according to the immediate needs of the facility. The 
maximum power limitations of EF1, EF2, and EF3 were upgraded from 
70% to 90%, thereby providing a maximum cooling power greater than 
3 MW per chiller. 

Furthermore, after these cards were set up, the quality and quantity 
of data recorded improved dramatically in terms of precision as 

compared to data recorded with external sensors, as can be observed in 
Figs. 4 and 5. 

In the 5th optimization, electrical power meters were installed and 
integrated into the BMS system to measure the instantaneous con
sumption of each chiller. The impact of integrating these power meters 
can be visualized in Fig. 5. This improvement made it possible to analyze 
the efficiency of each machine while in operation. 

3.3. Improvements in the physical system 

These improvements were made by integrating new physical systems 
into the existing installation. 

A frequency inverter system was installed in the EF4 screw type 
generator in the 4th optimization. The frequency inverter (AFD) can 
regulate the speed of the compressor with a partial load. In the EF1, EF2, 
and EF3, which are centrifugal chillers, AFDs could not be installed, 
nevertheless they still have a modulation with the refrigerant charge. 

The operation of the screw type chiller is similar to a centrifugal 
chiller, in that operation ceases once it reaches the set-point. The main 
difference is that if the screw chiller has a frequency inverter installed in 
the modulation, it begins operating once this point is reached. The 
inverter acts directly on the power supplied to the compressor, reducing 
the electrical power injected and saving more energy. In addition, the 
minimum thermal power that the chiller can provide can be reduced 

Fig. 4. Cooling power generated July 21st – 23rd , 2020. The reinforcement obtained by EF3 plus EF4 chiller to fit the demand can be observed. Data extracted from 
LON Cards installed in the 4th optimization. 

Fig. 5. Thermal power generation of EF1 chiller data obtained with LON cards installed in the 5th optimization.  
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before it has to be stopped. This optimization significantly reduces the 
number of starts and stops as shown in Fig. 17, starting in the 35th 
month (November 2019). The thermal energy graph is flattened, as can 
be appreciated in Fig. 6, and the generation of cooling energy is adapted 
to the demand, especially during the periods before and after the Sum
mer, in which EF4 is the pre-established chiller because of its power 
capacity. 

3.4. Proposed predictive control schema 

The activity of the hospital’s water-cooled generators was improved 
by implementing a predictive model of cooling demand within the BMS 
control system that anticipates decisions. The incorporated control 
scheme is depicted in Fig. 7. The prediction model was trained with real 
historical data from previous years. 

Before implementation, the BMS controlled the starting and stopping 
of the chillers through the set-point temperature exclusively. With the 
new control scheme the prediction model foresees the maximum ther
mal energy demanded in the cooling system for the next day. This allows 
decisions to be made ahead of time for the BMS, such as the maximum 

number of chillers necessary or scheduling the cooling towers. To do 
this, a script developed in R language is executed daily. This program 
reads the internal system and external variables, predicts the energy 
demand for the next 24 h and communicates it to the BMS. 

The weather conditions for the coming hours (temperature, relative 
humidity, etc.) are obtained from the climatological model of the 
Spanish National Meteorological Agency (AEMET). The data is loaded 
from an XML file that is updated daily [29]. It should be noted that these 
temperatures are predicted and subsequently can drag errors into the 
demand model results, as can be observed in the difference between the 
predicted and real temperatures in Fig. 8. 

Once the script reports the results of the forecasted cooling-energy 
demand for the day ahead, the maximum demand is predicted and 
communicated to the BMS by an analog signal transducer. Four possible 
system states have been established for the maximum demand of the 
next day, as depicted in Fig. 9:  

- STATE 1, covered by the 1 MW chiller (EF4).  
- STATE 2, covered by one of the 3.5 MW chillers (EF1, EF2 or EF3).  
- STATE 3, covered by a combination of the 1 MW and one of the 3.5 

MW chillers (EF4 + EF1, EF2 or EF3).  
- STATE 4, covered by two of the 3.5 MW chillers. 

In May 2020 the machine learning model that forecasts the 
maximum energy demand for the cooling system was included within 
the BMS. A logger software was also incorporated to register data and 
render graphs. 

3.5. Dataset 

The Knowledge Discovery in Databases (KDD) methodology was 
used to develop the forecasting model. During the process, three gen
erations of models were created.  

1. The first-generation models was tested in March 2019 [30]. 

Fig. 6. Detail of the thermal generation showing behavior after installation of frequency inverter in the EF4 chiller, after approx. 5,000 h, in 2019.  

Fig. 7. Control scheme. The cooling-energy prediction model communicates to 
the BMS the maximum thermal demand for the next day. The model reads the 
weather forecast conditions for the day ahead. 

Fig. 8. Outside temperature (TEXT) registered in BMS versus Forecasted temperature by AEMET model, 1st to 15th of August 2020.  
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Fig. 9. Energy Demand States based on the rank of the maximum energy demand for the next day.  

Fig. 10. Evolution of energy generated in the cooling-water facility (ENERGYKWHPOST) from 2017 to 2020.  
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2. A second generation of models was developed in December 2019 
[31].  

3. And finally, a third generation was created and included within the 
new control scheme in May 2020. 

The following sections describe the processes for extracting infor
mation and creating the third-generation models, which are very similar 
to the previous generations. 

3.5.1. Data extraction 
The data was extracted from the BMS Sauter NovaPro Open software 

since the beginning of this study in 2017 (Table 1). 

3.5.2. Data preprocessing 
The preprocessing entailed, among others, the following actions 

(common in KDD processes):  

1. Data Cleaning: Filling in or dropping missing values.  
2. Data Integration: Averaging measurements by hour. 
3. Data Transformation: The generated cooling energy (ENER

GYKWHPOST) was calculated from the combination of other control 
system variables. This new feature was converted to energy [kWh] 
rather than instantaneous power [kW]. To smooth the noise, the final 
target, ENE_GAUSSFILT11, was obtained by filtering ENER
GYKWHPOST with a Gaussian function that used a window size of 
11 h.  

4. Feature and Model Selection: GAparsimony R package was used to 
simultaneously select the most important attributes and algorithm’s 
parameters. The objective was to obtain parsimonious models with 
high accuracy and low complexity (more robust against noise and 
process changes, and easier to maintain). 

3.5.3. Final dataset 
In order to improve the first two generations and, according to Refs. 

[9,11,15], two new variables were included in the third generation: time 
and relative humidity (RH). 

The final selection of attributes is shown in Table 2. 
The set-point temperature of the cooling water (TCONSIG) was not 

selected because it was linearly related to the outside temperature 
(TEXT), as can be observed in Fig. 3. 

3.6. Parsimonious modeling 

The search for parsimonious models (low complexity models) is one 
of the current challenges in the field of Machine Learning (ML). Among 
models of a similar degree of precision (accuracy), choosing those that 
are less complex is recommended, given that they will be better at 
generalizing the problem, perform more robustly against noise and 
disturbances; and they are easier for experts to interpret, and less 
expensive to maintain and update. Mechanisms used within KDD pro
cesses such as regularization or feature selection make valuable contri
butions in this regard. 

In this study, training and selecting the best parsimonious models 
was conducted using the GAparsimony methodology. This methodology 
performs a search for parsimonious machine learning models through 
optimization with genetic algorithms (GA). The final objective is to 
obtain models that are high in precision, yet low in complexity, using 
feature selection (FS), hyperparameter optimization (HO), and parsi
monious model selection (PMS). In GAparsimony, the PMS of the best 
individuals of each generation is carried out in two steps: selecting the 
most accurate models and, from them, choosing those with the least 
complexity. 

The three ML algorithms that showed the best results in previous 
tests were selected: artificial neural networks (ANN), support vector 
machines for regression (SVR) with kernel based on radial basis func
tions (RBF), and extreme gradient boosting machines (XGB). The final 
selected model was a weighted blending of the two best models obtained 
with ANN and SVR. For the third generation, the use of the XGB model 
was ruled out as the improvement it provided was minimal when 
compared to the significant computing effort it required. All the ex
periments were implemented with the GAparsimony [32] package 
developed in the R language. 

3.7. GAparsimony settings 

To perform GA optimization with GAparsimony, it is necessary to 
define the chromosomes of each individual to be trained with the cor
responding machine learning algorithm. In this methodology, the 
chromosome is defined by a combination of the algorithm’s training 
parameters and the input attributes selected for that individual. In 
particular, for the SVR and ANN algorithms, each individual i of each 
generation g is defined by λi

g chromosome formed by the combination of 
two vectors P and Q:  

SVR
(

λi
g

)
= [P(cost, gamma, epsilon),Q]

ANN
(

λi
g

)
= [P(size, decay, num epochs),Q]

(1)  

where the values of the vector P correspond to the training parameters of 
the algorithm, and Q corresponds to a vector of probabilities used for the 
selection of each input attribute j if qj ≥0.5. 

As a function of J (fitness function), GAparsimony uses the Root 
Mean Squared Error (RMSE) obtained with the validation database, 
RMSEval. The RMSE error measured with the test database, RMSEtst, is 
used to check the generalizability of the model. Finally, the complexity 
of the model is defined by NFS, the number of attributes selected. This 
measure of complexity has proven to be very effective in past experi
ences when searching for parsimonious models with GAparsimony 
[24–27]. 

The optimization process with GAparsimony genetic algorithms was 
defined with a population of 40 individuals evaluated in 100 iterations 
but with a stop criterion if the RMSEval error did not improve in 20 
consecutive generations. The selection process used 20% of the best 
individuals (elite individuals) and was based on a two-step algorithm: In 
the first step, the selected models were ordered in an increasing manner 
based on the RMSEval error. In the second step, the individuals with 
similar values of RMSEval were re-ordered according to their lower 

Table 1 
Control system variables of the BMS.  

Short name Description 

EF1 to EF4 EF1 to EF4 status 
TIMP Cold-ring-drive temperature[◦C] 
TEXT Exterior temperature of power installation building [◦C] 
TCONSIG Calculated set-point of the regulation for cold-production drive [◦C] 
RH Relative humidity [%] 
TENEF1 to 4 Water temperature at the inlet of the EF1 to EF4 [◦C] 
TSALEF1 to 4 Water temperature at the outlet of the EF1 to EF4 [◦C]  

Table 2 
Attributes selected for testing the forecast models.  

Variable Description 

ENE_GAUSSFILT11 Target feature 
Time Time of measurement 
Month Month of measurement 
day_of_week Day of the week 
Is_holiday Boolean variable for holiday 
TIMP Instant impulsion temperature 
TEXT Instant outside temperature 
TMEAN Average daily temperature 
TMAX Maximum daily temperature 
TMIN Minimum daily temperature 
RH Relative humidity [%]  
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complexity. This helped promote those less complex solutions (simpler 
because they have fewer variables) to the top positions. In this second 
step, two individuals were considered similar if the absolute difference 
of their RMSEval was less than a ReRank parameter, defined by the user. 
In this study, and after several experiments, ReRank was set at 0.1 as it 
showed a satisfactory balance between complexity and RMSEval. 

After selecting the best individuals of a generation (the elite popu
lation), GAparsimony performs the traditional processes of crossing the 
chromosomes of the best individuals to create the next generation of 
individuals, as well as chromosome mutation to create more diversity of 
solutions in later generations. The crossover function for the P vector of 
the chromosomes was heuristic blending with /alpha = 0.1. For the Q 
vector of the chromosomes, random swapping was performed. In this 
case, the elite individuals of the previous generation also pass on to the 
new generation. 

The first generation of individuals is created randomly, but with 90% 
of the characteristics of the individuals selected. This allows the search 
for models to start with models that have a high number of entries. 

Finally, the mutation is applied to the chromosomes of the new 
generation, except for the two best individuals. For the P vector of 
chromosomes, a random variation of 10% of the values is performed. In 
the case of vector Q, the probability of changing 0 to 1 was set at 10% in 
order to facilitate the reduction of the number of attributes in 

subsequent generations. 

3.8. Energy demand model 

To calculate the 3rd generation of models, data was collected from 
April 2018 to December 2019. Prior data was removed due the relevant 
improvements that went into effect at that time, as shown in Fig. 10. The 
training dataset corresponded to the period between January 2018 and 
February 2019. The validation database was defined to the even weeks 
between March 2019 and December 2019, and the test database to the 
odd weeks of the same period. 

GAparsimony was used to choose the best parsimonious models 
trained with SVR and ANN algorithms, by adjusting the algorithm’s 
parameters, selecting the most relevant features and choosing the best 
parsimonious solution. Table 3 shows the best SVR and ANN models: 
RMSEval and RMSEtst, selected features with the percentage of appear
ance in the elitist models during the last generations, model complexity 
(NFS), and the parameters of the best-tuned algorithm. 

SVR Model: The best SVR model was obtained with 5 features: time 
(time); month (month); and the outside (TEXT), averaged (TMEAN), and 
maximum (TMAX) daily temperature. Fig. 11 shows the evolution for 
the most elite population of the best GAparsimony iteration for SVR 
model. White and gray box-plots represent the RMSEval and RMSEtst 
evolutions respectively. Continuous and dash-dotted lines indicate the 
best individual error for validation and test of each population. The gray 
area covers the range of features of most elite individuals, and the 
dashed line indicates the minimum number of features NFS (right axis). 

ANN Model: The best ANN model converged in 2 generations with 6 
features: time (time); month (month); and the temperatures of the ring 
(TIMP), outside (TEXT), averaged (TMEAN), and maximum daily 
(TMAX). ANN errors were slightly higher than those of the SVR model. 
Fig. 12 displays the evolution of the ANN model. 

HYBRID Model: The best SVR and ANN models were combined to 
obtain a blending model by weighting the predictions as follows, 

Hybrid_Model ​ = ​ (w1 ∗ ​ SVR + w2 ​ ∗ ANN)/2 (2) 

The weights were optimized to reduce the RMSEval and obtain this 
solution: 

Hybrid_Model = (1.65162∗SVR + 0.34838 ∗ ANN)/2 (3) 

Table 4 shows the improvement of RMSEval and RMSEtst of the hybrid 
model versus single models. The error rate was slightly better in the 
ensemble model than the best single model (SVR). The combined pre
diction for the hybrid model is represented in Fig. 13. This hybrid model 
reduces errors compared to the second generation hybrid model. And in 
addition, it was further simplified since the previous one was composed 

Table 3 
Best models with RMSE errors, features used and their percentage of appearance 
in the group of elite models within the optimization process with genetic algo
rithms, complexity, generation and parameters.   

SVR ANN 

RMSEval 222.95 226.04 

RMSEtst 256.08 264.02  

used % appear. used % appear. 

time 1 99.7 1 100 
month 1 99.6 1 98.6 
day_of_week 0 11.8 0 11.5 
Is_holiday 0 1.9 0 7.7 
TIMP 0 13.7 1 99.2 
TEXT 1 99.6 1 100 
TMEAN 1 99.5 1 96.4 
TMAX 1 63.4 1 95.8 
TMIN 0 8.5 0 11.9 
RH 0 32.2 0 11.1 

Complexity 5 6 

Parameters expcost -0.014 size 33.95  
gamma 0.331 decay 200.04  
epsilon 0.048 maxit 708.13  

Fig. 11. Evolution of the errors of the most elite solutions for SVR algorithm.  
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of 3 models (SVR, ANN, XGBoost), and it is less complex because it uses 
less features. Therefore, this model is easier to maintain and more robust 
against noise. 

As described in Section 3.2, the quality of data logged improved 
significantly as a result of the installation of the LON cards. The graphs 
in Fig. 14 compare the registered thermal energy generated (data ob
tained from the LON cards) to the energy demand predicted by the 
ensemble model (which uses the data predicted by AEMET as input). 
Furthermore, these graphs show the influence of the outside 

temperature on the demand in the dotted line: its impact increases when 
the outside temperature TEXT is more extreme (during July and 
August). Although the data that were finally used for modeling were 
extracted from the BMS sensors instead of that from LON cards, the 
prediction obtained is very close to the registered demand. 

4. Results 

4.1. Energy savings 

The electrical energy logged made it possible to compare the annual 
energy savings obtained before and after the model was implemented. 
The data was extracted from the readings of the electrical power meter 
located in the hospital’s power plant. This meter also measured other 
electrical consumption from heating and lightning. Nevertheless this 
data is valid for this study because the cooling generation system is the 
most energy-intensive installation in the building, while heating or 
lightning have a stable demand over time. Moreover, electrical meters 
were installed in every chiller, but they were not integrated until the 5th 
optimization of the system. 

The method of cooling degree days (CDD) was used to normalize the 
consumptions for a more adequate comparison. For this calculation the 
temperature of 17 ◦C was selected as the base temperature, Fig. 15 
shows the variation of energy that increases once this base temperature 
is exceeded. Below this temperature, the cooling system stabilizes at an 
almost constant power of less than 1 MW (approximately 800 kW). That 
is the reason why in the winter season the EF4 screw chiller is able to 
supply enough energy to the cooling system. The meteorological data for 
the study was obtained from the official La Rioja Government weather 
station [33], with data validated in accordance with the Spanish UNE 
500540 standard. 

Table 5 shows the normalization of the annual electricity consump
tion in the building from the year 2016 (prior to the study) to the year 
2020. To perform this normalization, the average degree days CDD17 in 
the interval 2016 2020 (which was 587.3 degree days), multiplied by 
each annual value of Energy/CDD17 provides the normalized energy for 
each year. 

The average cost of electrical energy during the 2017-2020 period 
for this building supplied from a 66 kV high voltage substation is 
0.0988521 €/kWh. Depending on whether the comparison is between 
the year 2016, prior to the study, or 2017, the first year of the study, and 
the year 2019, the energy savings obtained by implementing this 
methodology represent between 7% and 10%, which indicates economic 
saving of between €38, 504.63 and €59, 641.20 per year, as shown in 
Table 6. 

In order to evaluate the behavior of the plant during this year (2020, 

Fig. 12. Evolution of the errors of the most elite solutions for ANN algorithm.  

Table 4 
Ensemble validation and test errors versus single models.   

SVR ANN HYBRID 

RMSEval 221.95 226.04 220.86 
RMSEtst 256.08 264.02 253.20 
Complexity 5 6 6  

Fig. 13. Combined prediction for the Hybrid model.  
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the year when the predictive system was implemented), the monthly 
evolution should be analyzed in the months of higher degree days 
CDD17, which are July and August, where the comparison of normalized 

Fig. 14. Forecasted energy demand (ENE_GAUSSFILT11) versus thermal energy generated (ENERGYKWHPOST) obtained from LON cards, June and July of 2020.  

Fig. 15. Outside temperature of 17 ◦C was chosen as the base temperature for estimating CDD since it requires additional energy to hold the cooling system. The 
energy peak generated can be observed inside the circle. 

Table 5 
Normalized energy per year [kWh] previous and over the course of the study, 
based on CDD17.  

Year CDD17 Energy [kWh] Energy/CDD17 Normalized E. [kWh] 

2016 590 5,968,990 10,119 5,942,682 
2017 597 6,258,184 10,483 6,156,502 
2018 576 6,124,609 10,629 6,242,594 
2019 620 5,864,247 9,455 5,553,164 
2020 553 6,400,075 11,569 6,794,584  

Table 6 
Estimated savings thanks to application of the methodology.  

Year Saving (%) Saving (€) 

2016 vs 2019 7% 38,504.63 
2017 vs 2019 10% 59,641.20  

Table 7 
Normalized Energy of most demanding months [kWh], monthly CDD17.  

Year CDD17 July CDD17 August 

2016 177.5 691,762 180.2 627,752 
2017 176.9 715,953 160.6 738,306 
2018 183.8 713,190 185.9 671,673 
2019 211.2 638,511 180.2 686,522 
2020 180.7 675,942 164.0 711,752  

Fig. 16. AHU internal scheme. The SARS-CoV-2 virus general recommendation 
is to avoid central recirculation by closing the recirculation dampers either 
using the BMS or manually. 
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data is more descriptive, Table 7. 
Higher electrical consumption (+22.3%, +€122,716) was observed 

during the year 2020. The reason is that plant operations were atypical 
since all areas of the hospital equipped with Air Handling Units (AHU), 
see Fig. 16, were configured to avoid air recirculation and increase 
ventilation flow to prevent the spread of COVID-19 [34]. 

4.2. Measurement of the number of starts per chiller 

The number of starts should be reduced as much as possible, espe
cially in chillers not equipped with inverter systems. An excessive 
number of starts can damage internal parts, and every start generates an 
electrical peak that may affect surrounding installations. 

The results of measurements of the number of starts per chiller are 
shown in Table 8 summarizing measurements by year and chiller. If the 
year 2017 is compared with 2019, the total number of starts decreased 
by 82.7%. 

In order to be able to compare the evolution of the number of starts 
during the current year 2020, Table 9 indicates the total sum of starts of 
all the chillers per month. As can be observed, in the year 2020 there 
have been more starts due to the night programming that the EF4 chiller 
activated. This action was carried out in a controlled manner and im
proves energy efficiency since this chiller gives its maximum Energy 
Efficiency Ratio (EER) in loads within that range. 

5. Conclusions 

This methodology reworked the hospital’s cooling system and solved 
problems that had plagued the system in the past. Optimizing the control 
system by adjusting parameters (such as set-point temperature and 
minimum machine working time) led to the most significant reduction 
in the number of chiller starts. Furthermore, implementing the BMS of a 
cooling-demand prediction model allowed plant operations and per
formance to be optimized. Thanks to this system, the maximum cooling 
energy demand for the next day can be forecasted, and therefore, the 
BMS system can establish the number of chillers necessary. In addition, 
this model provides a daily schedule for plant maintenance and a self- 
generated report in R script. 

To develop the blended prediction model, the GAparsimony meth
odology facilitated optimization. In the final models, the XGBoost model 
was discarded because its high level of resource consumption was not 
compensated for by the improvements it offered. In the models that 
make up the final ensemble (SVR and ANN), it should be noted that the 
common features influencing the predictions were: time, month, outdoor 
temperature (TEXT), average temperature (TMEAN) and maximum 
daily temperature (TMAX). The prediction model behaves effectively, 
although in the months with the highest cooling energy demand (July 
and August), it is a conservative model and the feature “outside tem
perature” may have better correlation than the ensemble model (the 
model would not be overtrained). On the other hand, it was observed 
that the external model that implements the weather-forecast informa
tion (outdoor temperature, average temperature and maximum daily 
temperature) can drag errors into the prediction results. 

Improvements in the data acquisition system enhanced the accuracy 
of the data from the chillers. However, since this improvement occurred 
at the end of the optimization process, the last models made did not 
include the more accurate data. These acquisition systems have 
improved communication with the chillers, allowing the maximum 
working power to be fine-tuned, which contributes to expanding cooling 
power, and reducing the electrical demand of the chillers by improving 
modulation. What’s more, the addition of electrical meters in each 

Fig. 17. Number of starts per chiller from 2017 to 2020. The diagram shows the notable reduction in the number of chiller starts thanks to optimizations made to the 
system during the process. 

Table 8 
Number of starts per chiller from 2017 to 2020 (* Chiller EF4 was damaged 
during 2017).  

Year EF1 EF2 EF3 EF4 TOTAL Reduction 

2017 1.911 783 1.234 0(*) 3.928 - 
2018 971 210 137 498 1.816 53, 8% 
2019 155 122 196 206 679 82, 7% 
2019 91 177 192 427 887 77, 4%  

Table 9 
Total number of chiller starts for each month and each year. The number of starts since the model was implemented is marked in bold.  

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2017 159 207 292 315 450 416 424 442 391 348 235 249 
2018 273 280 213 125 160 251 200 115 62 56 24 57 
2019 26 29 34 36 55 121 111 47 62 85 35 38 
2020 44 47 61 62 46 55 111 166 88 82 37 88  
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chiller would further enrich our knowledge of plant efficiency. 
Regarding the improvements made to the physical system, it is worth 

highlighting the significant improvement in the modulation of the screw 
chiller after an inverter system was installed, which allowed the plant to 
work at maximum energy efficiency and significantly reduced the 
number of starts and electrical demand. In the last year of the study, the 
total number of starts was increased deliberately due to the imple
mentation of time schedules for higher efficiency. 

The methodology has achieved energy savings between 7% and 10%, 
but the most remarkable effect was the improvement in the overall 
performance of the plant. The unexpectedly greater energy demand due 
to increased ventilation to prevent the spread COVID-19 obviously 
impacted this study. Hence, the electrical consumption data from 2020 
(+22.3% as compared to 2019) cannot be compared in terms of savings 
derived from implementing the prediction model. 

The optimization of the plant and the KDD process are long-term 
procedures; the present work was conducted over the course of more 
than 3 years. In order to apply this methodology in similar hospitals, it 
would be necessary to compile a database period of at least one year. 
Hence, it is exceedingly difficult to implement this methodology from 
scratch in a short period of time. 

In terms of future ways to further improve the cooling plant within 
the same line of research, the forecasting model should be revisited 
using the data obtained from the LON cards installed in the chillers after 
a period of at least one year, and once the special measures implemented 
due to COVID-19 are lifted. The energy efficiency of the plant should be 
analyzed by studying the data provided by the electrical energy meters 
installed in the chillers. Such research would identify the most efficient 
conditions for each cooler. In terms of future physical improvements, 
there are plans to install a system that would capture surplus energy 
from the condensation cooling towers, which would reinforce the 
overall energy efficiency of the power plant. 
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