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Abstract
Background and Aims: Hyperspectral imaging (HSI) is used to assess fruit composition mostly indoor under controlled
conditions. This work evaluates a HSI technique to measure TSS and anthocyanin concentration in wine grapes non-
destructively, in real time and in the vineyard.
Methods and Results: Hyperspectral images were acquired under natural illumination with a VIS–NIR hyperspectral camera
(400–1000 nm) mounted on an all-terrain vehicle moving at 5 km/h in a commercial Tempranillo vineyard in La Rioja, Spain.
Measurements were taken on four dates during grape ripening in 2017. Grape composition was analysed on the grapes
imaged, which was then used to develop spectral models, trained with support vector machines, to predict TSS and anthocya-
nin concentration. Regression models of TSS had determination coefficients (R2) of 0.91 for a fivefold cross validation [root
mean squared error (RMSE) of 1.358�Brix] and 0.92 for the prediction of external samples (RMSE of 1.274�Brix). For anthocy-
anin concentration, R2 of 0.72 for cross validation (RMSE of 0.282 mg/g berry) and 0.83 for prediction (RMSE of 0.211 mg/g
berry) was achieved. Spatial–temporal variation maps were developed for the four image acquisition dates during ripening.
Conclusions: These results suggest that potential for on-the-go HSI to automate the assessment of important grape compo-
sitional parameters in vineyard is promising.
Significance of the Study: The on-the-go HSI method described in this study could be automated and provide valuable
information to improve winery and vineyard decisions and vineyard management.
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Introduction
Wine composition is affected by compounds present in
grapes (Kennedy 2010). The monitoring of grape ripening is
often based on measuring TSS and, in the case of red grapes,
the anthocyanin concentration of berries. The TSS of grape
berries is closely related to the fermentable sugar concentra-
tion and the alcohol concentration of the subsequent wine
(Gomes et al. 2017). Anthocyanins are the pigmented phe-
nolic substances present mostly in the skin of red grapes
(Meléndez et al. 2013) responsible for red wine colour
(Boulton 2001). These two grape compositional parameters
are used to help determine harvest timing and are important
for establishing grape prices in many wineries and coopera-
tives worldwide (Bramley et al. 2011). At present, methods
for TSS and anthocyanin measurement in grapes are
destructive, however, TSS can be quickly and easily mea-
sured using hand-held refractometers, but anthocyanin con-
centration analysis requires more time consuming wet
chemistry methods (Iland et al. 2004, Liang et al. 2008).
Therefore, it would be valuable for vineyards and wineries
to have rapid, robust and non-destructive methods to assess
TSS and anthocyanin concentration during grape ripening.

Furthermore, knowledge of the spatial–temporal varia-
tion of TSS and anthocyanin in fruit across a vineyard could
inform better sampling, improve vineyard management and
allow for selective harvesting. The pattern of spatial variabil-
ity of grape anthocyanin in a Tempranillo vineyard changed
with phenology (Baluja et al. 2012a,b), and, therefore, to
obtain useful information it would be necessary to take

measurements at different locations and at different times
during ripening. This would require a large number of mea-
surements. Unfortunately, rapid measurement of a large
number of samples is not feasible for TSS or anthocyanin
concentration.

Several studies have investigated manual in-field moni-
toring of grape composition (Ben Ghozlen et al. 2010,
Baluja et al. 2012b, Barnaba et al. 2014), but the methods
these studies are based on tend to be time consuming and
labour intensive and, therefore, unsuitable for collecting
large amounts of representative data. Remote sensing has
been evaluated as a non-destructive alternative to assess the
spatial variability of grape colour in the vineyard. Spectral
indices, however, were weakly correlated with grape antho-
cyanin (Lamb et al. 2004). Other authors mounted a
chlorophyll-based sensor above the discharge conveyor of a
tow-behind harvester to measure the anthocyanin concen-
tration of harvested fruit at georeferenced positions within
the vineyard (Bramley et al. 2011). Although this enabled
the mapping of spatial variability of grape anthocyanin, as
the assessment was not completed until after the fruit was
picked, there was no provision for selective harvesting.

Ground-based, on-the-go monitoring has the potential
to replace manual data collection from the vineyard. This
approach, however, does present challenges that have
impeded its development and application (Ben Ghozlen
et al. 2010). These challenges include: (i) the need for a suf-
ficient amount of the fruit to be visible to the sensors;
(ii) the small measuring area of many devices (e.g. ~3 cm2,
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Fernández-Novales et al. (2017)) can make it difficult to
image and sense enough fruit; (iii) the low signal to noise
intensity of many devices monitoring; and (iv) the manage-
ment and analysis of large data sets that may be generated.

Within the context of precision agriculture, the develop-
ment of new sensors, especially with spectral capability,
allows for the acquisition of high resolution data that could
be useful for monitoring crop development. For instance,
the ability to assess ripening rapidly, non-destructively and
spatially would aid harvest decisions and provide objective
information upon which to base selective harvesting.

In recent years, hyperspectral imaging (HSI) has gained
prominence as a powerful technology for non-destructive
analysis in several agricultural and food quality and safety
applications (Sun 2010, Park and Lu 2015). Hyperspectral
imaging combines two different fields: the potential of spec-
troscopy modelling with two-dimensional digital imaging.
As each pixel in a hyperspectral image provides a full spec-
trum from the measured target, the capability of this tech-
nology for the extraction of information from the target is
powerful. Hyperspectral imaging has been used to assess the
chemical composition of fruit for a range of crops. Hyper-
spectral imaging-based modelling for predicting TSS has
been studied in grape berries (Gomes et al. 2017, Piazzolla
et al. 2017), apple (Ma et al. 2017, Mo et al. 2017, Tian
et al. 2018) and mango (Rungpichayapichet et al. 2017),
while HSI has also been used to predict the anthocyanin
concentration in grape berries (Diago et al. 2016, Martínez-
Sandoval et al. 2016, Zhang et al. 2017), mulberry (Huang
et al. 2017) and raspberry (Rodríguez-Pulido et al. 2017).
All these studies, however, were done in the laboratory and
under controlled conditions, including controlled illumina-
tion, sample positioning and temperature. In the vineyard,
ambient light and temperature as well as sample positioning
are not constant and often difficult to predict. Consequently,
although there are many potential applications for HSI in
the field, there are also significant challenges to overcome.
Thus, there are limited published studies on the use of in-
field HSI (Deery et al. 2014, Williams et al. 2017). On-the-
go approaches in robotics, however, have been reported
(Underwood et al. 2017, Wendel and Underwood 2017).
Given the demonstrated potential of HSI to assess grape
composition, developing the technology to add on-the-go
capability and mapping using automated platforms offers
much promise.

Therefore, the goal of this study was to develop and
evaluate non-destructive, in-field estimation and mapping
of two important compositional parameters, namely TSS
and the anthocyanin concentration, of berries using HSI.

Materials and methods
The study comprised three major stages (Figure 1). In stage
one, the in-field experiments were conducted, involving on-

the-go HSI image acquisition and collection and chemical
analysis of the imaged grapes. In the second stage, the
hyperspectral images were processed to automate the
extraction of grape berry spectra and datasets collated. In
the final stage, the data set was used to train different pre-
diction models, using machine learning algorithms, and
spatial–temporal maps were generated.

In-field experiments
Experimental layout. The experimental site was a 0.7 ha

commercial vineyard �Abalos, La Rioja, Spain (latitude
42�34045.700, longitude −2�42027.7800, asl 628 m). Vitis vinif-
era (L.) cultivar Tempranillo grapevines were planted in
2010, on rootstock R-110 and trained to a vertically shoot-
positioned (VSP) trellis system. Rows were orientated
northeast–southwest and row and vine spacing was 2.2 and
1.0 m, respectively. Three equal length rows were selected
and within each row 12 blocks of 5 m containing five vines
each were chosen for the spectral imaging and grape berry
analysis. Hyperspectral images were acquired from the east-
ern side of the canopy, which was defoliated in the basal
fruiting zone. In order to model relationships at various rip-
ening stages, images were acquired on four dates between
veraison and harvest. According to the modified Eichhorn
and Lorenz system (Coombe 1995) these dates and stages
during season 2017 were: 11 August, stage 36; 24 August,
stage 37; 18 September, stage 38; and 28 September, stage
38. Therefore, the total number of five-vine blocks that
were measured throughout the entire experiment was 144.

Hyperspectral images were acquired on-the-go using a
push broom Resonon Pika L VNIR hyperspectral imaging
camera (Resonon, Bozeman, MA, USA) that was installed
on an all-terrain vehicle (ATV) (Trail Boss 330, Polaris
Industries, MN, USA) (Figure 2) and connected to an indus-
trial computer. The spectral resolution of the camera was
2.1 nm (300 bands from 400 to 1000 nm), with 300 pixels
of spatial resolution. An 8 mm focal length lens was pointed
to the canopy on a lateral point of view at 2.0 m of distance,
casting a vertical recording line upon the plants of 1.32 m
(field of view of 36.5�). The recording line covered the
whole vine canopy, including the fruiting zone (Figure 2).
The 36 measurements per day (one for each five-vine block)
were performed on the south-eastern side of the canopy,
between 1000 and 1400, under the natural illumination
from the sun only. To test the HSI method under reproduc-
ible conditions (i.e. other types of terrestrial vehicles), no
specific mechanical compensation was applied for terrain
irregularity correction other than the suspension of the
vehicle. Nevertheless, the distance between the camera and
the vines ensured that the image acquired by the sensor
always covered whole plants and, therefore, the grape
bunches.

Figure 1. Design of the study, split into three
major stages: in-field experiments, processing of
the images and development of prediction
models.

© 2018 Australian Society of Viticulture and Oenology Inc.

128 Hyperspectral imaging for in-field grape estimation Australian Journal of Grape and Wine Research 25, 127–133, 2019



To take into account the variable illumination condi-
tions, the values for the camera configuration parameters
[integration time and frames per second (FPS)] were
adapted for each block measurement, depending on the
light intensity, in order to find the best trade-off between
acceptable image composition, enough spectral intensity and
the prevention of saturation. Frames per second ranged
from 50 (taking one frame each 20 ms) at the beginning of
the season to 40 at the end (one frame each 25 ms). Prior to
the hyperspectral measurement, a Spectralon (Labsphere,
Sutton, NH, USA) white reference (a surface with a reflec-
tance over 95%) was manually presented to the camera
simulating the same position and distance to the canopy of
the fruit. A dark current measurement was conducted to
obtain the inherent electronic noise. After this, the block
was imaged on-the-go at a constant speed of 5 km/h, com-
posing a hyperspectral image by push broom scanning
(Figure 2) with an average number of scanlines (columns)
of 710, with 900 pixels each one. On average, a total of
639 000 pixels (i.e. spectra) per block were acquired.

The spectral light intensity values collected by the cam-
era were translated into reflectance (R) with the
Equation 1:

R¼ G λð Þ−D λð Þ
W λð Þ−D λð Þ ð1Þ

where λ is a wavelength, G is the intensity of the light
reflected by the canopy, W is the intensity of the light com-
ing from the white reference, and D is the dark current. The
reflectance was then converted into absorbance [log(1/R)].
To prevent the noise that is commonly found in the tails of
a spectral signal, the first ten bands and the last 50 were dis-
carded, thus obtaining spectra that comprised 240 bands
(from 410 to 921 nm).

Hyperspectral images were georeferenced using an Ag
Leader 6500GPS receiver (Ag Leader Technology, Ames, IA,
USA) with RTK correction installed on the ATV.

Analysis of grape composition. At each measurement date
and immediately after the acquisition of HSI data for each
five-vine block, exposed bunches were identified and 10–15
visible berries were removed and placed in labelled plastic

bags for subsequent chemical analysis. On average,
200 grape berries per block were collected at each date.
Berries were then transported, in portable refrigerators, to
the laboratory and stored at −20�C until chemical analysis
was completed.

Anthocyanin concentration and TSS of berries were
measured. Berries were thawed overnight at 4�C before
analysis. For each sample, a subsample of 100 randomly
selected berries was hand crushed and filtered. The TSS was
determined with a temperature compensating Quick-Brix
60 digital refractometer (Mettler Toledo, Columbus, OH,
USA) and expressed as �Brix. The remaining berry subsam-
ple was homogenised with a T25 Ultra-Turrax high-
performance disperser (IKA, Staufen, Germany) at high
speed (14 000 rpm for 60 s). Anthocyanin concentration
was then measured after Iland et al. (2004) and expressed
as mg/g of berry.

Image processing
Processing of hyperspectral images. From each hyperspectral
image, spectra belonging to grape bunches were obtained
automatically. To do this, prior to image processing, a grape
reference spectrum was obtained manually by selecting
grape spectra from all the images (regions of approximately
200 spectra) and then averaging them. With this signature
spectrum, pre-processed with a Saviztky–Golay smoothing
and derivative (Savitzky and Golay 1964), the following
described algorithm was coded using Python 3.6.1 (Free
Software Foundation). Defining I as the original hyperspec-
tral image and C as an empty matrix with the same width
and height as I. Each one of the bins of C (with coordinates
x, y) was filled with the determination coefficient from the
correlation analysis between each one of the pixels of I in
the same position (e.g. spectra in the x, y coordinates) and
the grape signature spectra. The similarity of each pixel
(spectrum) from I with the grape signature spectra was thus
represented as an R2 value, and a correlation matrix C was
built. After a two-dimensional Gaussian smoothing to
C (with σ set to 1.0), all the pixels from C that surpassed the
0.75 mark were identified as grape spectra and averaged
(the 0.75 value was manually selected after intensive super-
vised review of the results of processing several hyperspec-
tral images). This average was thus considered as the image
(block) grape average spectrum. More details of this algo-
rithm are presented in Table S1.

Figure 3 presents the output of this algorithm: (i) the
original hyperspectral image is displayed with the red green
blue (RGB) channels; (ii) the correlation matrix C after the
Gaussian smoothing is shown; and (iii) the selected grape
pixels (those from C whose R2 is equal or greater than 0.75)
are segmented.

In a small proportion of hyperspectral images, a limited
number of pixels identified as grape had a spectral shape
with higher intensity than that of the white reference. This
was because of incident sunlight being directly reflected into
the camera sensor and returning a reflectance value over
1.0 for some wavelengths. These pixels were discarded from
final spectra averaging.

Generation of the data set. Grape berry spectra images and
measurement of TSS and anthocyanin concentration for
berries from each five-vine block comprised the data set, in
which each spectrum was linked to corresponding composi-
tional parameters. Combining 36 blocks and four measure-
ment dates led to a data set comprising 144 samples. From

Figure 2. On-the-go hyperspectral imaging with a camera mounted on an
all-terrain vehicle (ATV) at 5 km/h. Images of the entire vine canopy were
obtained from the ATV’s motion, by push-broom scanning, and used for the
estimation of grape composition.
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this, trained and tested subsets were built in an 80–20 ratio,
respectively, by randomly extracting 20% of samples per
date, making up a train set of 115 samples and a test set of
29 samples.

Development of prediction models
Machine learning modelling. Several machine learning algo-
rithms were tested for modelling, based on the authors’
experience and criteria. Epsilon-support vector machines
(ε-SVMs) were chosen for training regression models
because of superior performance. The input independent
variable X was the spectra (|X| = 240, the number of spectral
bands), pre-processed with standard normal variate (Barnes
et al. 1989) and Savitzky–Golay filter (second-grade deriva-
tive, window size of 15), while the TSS and anthocyanin
concentration were used as dependent variables y, each one
for the training two different models. For TSS and anthocya-
nin concentration, a radial basis function kernel was used,
with ε = 0.1 and γ = 0.00417 (1/|X|). The penalty parameter
C was set to 100 in the case of TSS and to 30 for anthocya-
nin concentration. The performance of SVM for the train
test was evaluated using a fivefold cross validation. The pre-
diction results were obtained by training a model with all
the samples from the train test and predicting the samples
from the test set. All the models were developed using the
Epsilon-support vector regression implementation in scikit-
learn 0.18.1 (Pedregosa et al. 2011).

Spatial–temporal mapping. Interpolated TSS and anthocya-
nin concentration prediction maps were generated using
multilevel b-spline interpolation (Lee et al. 1997) imple-
mented in QGIS 2.19 (Free Software Foundation, Boston,
MA, USA).

Results

Grape composition
The histograms for TSS and anthocyanin concentration on
each experimental date are displayed in Figure 4. Berry TSS
ranged from 10.7 to 25.2�Brix, indicating that many of the
grapes reached maturity. Means and SDs indicated wide
variability within measured TSS values. The results from
anthocyanin analysis were similar to TSS, with values rang-
ing from 0.05 (at veraison, when anthocyanin synthesis had
yet to commence) to 2.01 mg/g berry at harvest. The mean
values increased with ripening and the SD increased until
September (EL stage 38).

With regard to the shape of the histograms for TSS and
anthocyanin concentration, the gross of their values per
date increased with ripening. For TSS, similar values were
measured for the two last dates, indicating a final stage in
maturity at which TSS in the berry had plateaued. In the
case of anthocyanin concentration, the range increased with
ripening, perhaps corresponding to asynchronous ripening
of fruit.

Prediction models and mapping
The cross-validation and prediction results of the TSS
models are shown in Figure 5. The fivefold cross validation
(Figure 5a) yielded a determination coefficient R2 of 0.91,
with a root mean squared error (RMSE) of 1.358�Brix. The

Figure 3. (a) Hyperspectral image from a block
in red, green and blue (RGB) channels (histogram
normalised for the sake of illustration).
(b) Correlation matrix with R2 values between the
pixel spectrum and a grape reference spectrum. A
Gaussian smoothing was applied with σ = 1.0.
(c) Image with segmented grape pixels (pixels in
(b) whose R2 ≥ 0.75). All the images were
stretched in the horizontal axis for aesthetic
purposes.

Figure 4. Histograms for (a, c, e, g) TSS and (b, d, f, h) anthocyanin
concentration for (a, b) 11 August, (c, d) 24 August, (e, f) 18 September
and (g, h) 28 September 2017. (a) Mean 13.08, SD 1.061; (b) mean 0.24,
SD 0.090; (c) mean 17.27, SD 1.406; (d) mean 0.73, SD 0.199; (e) mean
22.44, SD 1.366; (f) mean 1.16, SD 0.315; (g) mean 23.57, SD 0.939;
(h) mean 1.47, SD 0.268.
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regression line was close to the 1:1 line with an even distri-
bution of results. The prediction results (Figure 5b) cast
comparable values for both R2 (0.92) and RMSE
(1.274�Brix).

Figure 6 shows the regression plots from cross validation
and prediction models for berry anthocyanin concentration.
Figure 6a displays a cross validation of R2 of 0.72, while the
prediction results (Figure 6b) yielded a larger determination
coefficient of 0.83. For the first case, the RMSE value was
0.282 mg/g berry, but in Figure 6b the lower number of
samples and their concentrated locations reduced the RMSE
value to 0.211 mg/g berry.

In Figure 7, the evolution of TSS and anthocyanin con-
centration is displayed in eight prediction maps, one per
date and grape composition parameter, for the vineyard.
The accumulation of TSS (Figure 7) remained steady
throughout the different maturity stages. Maximum values
were reached in the latter stages of ripening but by the last
sampling date there was only a slight increase in TSS. The
south corner of the vineyard was the fastest to ripen.

In the case of the anthocyanin concentration, large dif-
ferences were observed between the four dates, from little
variation (from 0.15 to 0.35 mg/g berry) on 11 August, to a
plot with higher anthocyanin concentration and variability
on 28 September.

Computational cost
The processing of 36 hyperspectral images using the
described algorithm took, per date, an average of 5 h and

35 min on an Intel Core i7-5820K CPU with 16 GB of RAM
(Intel Corporation, Santa Clara, CA, USA) (no thread opti-
misation). Taking into account that each image was com-
posed of approximately 710 scanlines (columns), the
calculations resulted in an average processing time of 0.79 s
per column, while the prediction of a single sample using a
trained SVM model took 0.05 s. Thus, the processing and
prediction of a hyperspectral scanline would take less than a
second.

Discussion
The study presents a solution for the non-destructive, in-
field estimation of grape compositional parameters using
on-the-go HSI in a vineyard. Specifically, the results support
the suitability of hyperspectral cameras for estimating TSS
and anthocyanin concentration of grape berries in the field.
Until now HSI to assess fruit composition has mostly been
conducted in laboratories and indoor environments where
the environmental conditions have been controlled, includ-
ing illumination, temperature, sample positioning and cam-
era stability. Here, the on-the-go hyperspectral images were
acquired successfully on a motorised platform at agricultural
speeds (5 km/h). The use of a mobile vehicle presents a
range of new challenges such as irregularities in terrain and
vehicle vibrations, differences in the distance between the
lens and the target, and variable speed. The results pre-
sented here are, to the best of our knowledge, the first pub-
lished attempt to automate on-the-go HSI to assess grape
composition in the vineyard.

The methodologies studied in this work could be
deployed on specific, man-driven platforms (such as the
ATV used), other common agricultural vehicles operating
upon the crops or even on agricultural robots. This last
option would also require an important step of automation
in the image computation, something that can be achieved
when dealing with hyperspectral images, as the methodol-
ogy described (the precise selection of grape spectra and the
prediction of their composition value) could be directly
translated. A collection of grape spectra could be preloaded
into the platform’s system, limiting the requirement for
manual collection of grape sample spectra collection to, for
example, once per season. Therefore, along with a pre-
trained model, the prediction of grape composition could be
fully automated during plot monitoring by the platform.
Some previous studies have shown that HSI can be per-
formed under field conditions (Williams et al. 2017) and
even on-the-go (Deery et al. 2014, Underwood et al. 2017,
Wendel and Underwood 2017). It is possible to integrate
HSI sensors, GPS monitoring and computing into a single
platform capable of performing real-time assessment in the
vineyard and some recent examples of this have been pub-
lished (Sandino et al. 2018, Vanegas et al. 2018).

Several studies have shown that the monitoring of grape
composition throughout ripening is feasible using spectro-
scopic technologies (Larrain et al. 2008, Cao et al. 2010,
González-Caballero et al. 2010, Bellincontro et al. 2011,
Barnaba et al. 2014, Musingarabwi et al. 2016) and per-
formed mostly under laboratory conditions. In-field moni-
toring of grape composition has been reported in previous
work using spectroscopy, but from discrete measurements
using portable manual devices. A portable NIR spectropho-
tometer was used for the estimation of TSS under field con-
ditions (Urraca et al. 2016), reporting prediction RMSE
values of 1.68�Brix and 10-fold cross validation R2 up to
0.90 (with an RMSE of 1.47�Brix), with a dataset created

Figure 5. Regression plot for (a) fivefold cross validation (R2 = 0.91;
RMSE = 1.358) and (b) prediction results (R2 = 0.92; RMSE = 1.274) for
the TSS models, showing the regression line of the samples ( ) and the
1:1 trend ( ). RMSE, root mean squared error (in �Brix).

Figure 6. Regression plot for (a) fivefold cross validation (R2 = 0.72;
RMSE = 0.282) and (b) prediction results (R2 = 0.83; RMSE = 0.211) for
the anthocyanin concentration models, showing the regression line of the
samples ( ) the 1:1 trend ( ). RMSE, root mean squared error
(in mg/g berry).
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under laboratory conditions. These results are comparable
with the results of this study. Furthermore, HSI is an accu-
rate tool for estimation of TSS and anthocyanin concentra-
tion under laboratory conditions. Several studies have
reported prediction R2 values from 0.88 to 0.93 (RMSE
values of 0.95 and 0.93�Brix, respectively) (Gomes
et al. 2017, Piazzolla et al. 2017) for TSS. Importantly, TSS
prediction using the on-the-go approach described in this
study used the same VIS–NIR spectral region
(400–1000 nm). Hyperspectral imaging has been employed
to estimate grape anthocyanin concentration (Diago
et al. 2016, Martínez-Sandoval et al. 2016, Zhang
et al. 2017). The reported R2 values ranged from 0.72 to
0.93 and are in line with the results presented in this study.

The HSI method developed in this work has overcome
two of the three main limitations for on-the-go grape moni-
toring, that is a larger spot size of measurement (basically all
fruit exposed area is measured) and an acceptable signal to
noise ratio. The need for fruit to be visible to the sensor still
represents a challenge. Partial basal defoliation, however, in
the fruiting zone on the side of the canopy exposed to
morning sun is a frequent practice in many regions world-
wide to improve bunch exposure and air circulation (Smart
and Robinson 1991).

The mapping of vineyards to describe spatial variation is
a common component of precision viticulture. The technol-
ogy developed in this study allows the mapping of TSS,
anthocyanin concentration and grape ripening spatially in a
rapid and non-destructive way (Figure 7).

Conclusions
This study highlights the potential of in-field, on-the-go HSI
for the monitoring of grape composition in vineyards. The
results obtained from the spectral models trained with sup-
port vector machines demonstrate that it is possible to
deploy a hyperspectral camera from the laboratory to the
field, and that can acquire high resolution information of
large areas in a fast, unsupervised manner. An HSI system
could be fitted to agricultural machinery or even robotics.
Likewise, mapping of grape composition during different
phenological stages is possible. This information has the
potential to improve winery and vineyard decisions and
vineyard management during the season.
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